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Abstract: Hyperthermia has the potential to damage cancerous tissue by increasing the body temper-
ature. However, targeting cancer cells whilst protecting the surrounding tissues is often challenging,
especially when implemented in clinical practice. In this direction, there are data showing that the
combination of nanotechnology and hyperthermia offers more successful penetration of nanoparticles
in the tumor environment, thus allowing targeted hyperthermia in the region of interest. At the
same time, unlike radiotherapy, the use of non-ionizing radiation makes hyperthermia an attractive
therapeutic option. This review summarizes the existing literature regarding the use of hyperthermia
and nanoparticles in cancer, with a focus on nanoparticle-induced cytotoxicity mechanisms.

Keywords: cancer; hyperthermia; nanoparticles; cytotoxicity mechanisms

1. Introduction

Cancer is one of the most lethal human illnesses, exhibiting a variety of distinctive
clinical symptoms and causing millions of deaths worldwide each year. According to the
World Health Organization, it is one of the highest mortality causes globally, accounting for
over 10 million fatalities in 2020 [1]. Oncogene activation and/or tumor suppressor gene
deactivation results in uncontrolled cell cycle progression and obstruction of apoptotic
mechanisms [2]. As opposed to benign tumors, cancerous tumors develop metastasis,
which is partially caused by the down-regulation of cell adhesion receptors required
for tissue-specific cell–cell attachment and the up-regulation of receptors that facilitate
cell mobility. Despite significant scientific and technical advances in the diagnosis and
treatment of numerous cancer types over the last decades, we still lack of effective, early
stage diagnostic tools and targeted therapeutic approaches.

The combination of tumor abscission and chemotherapy along with or without radi-
ation is widely used for cancer treatment [3,4]. Despite advancements in the field, there
are still serious challenges in the treatment of cancer, such as toxicity and side effects that
may occur, due to high evasiveness [5]. The limited bioavailability of certain traditional
drugs as well as acquired resistance to treatment are additional key limitations of precision
therapy. A variety of novel treatments, such as gene therapy, has been arising throughout
years; nevertheless, such approaches are currently neglected from widespread use due to
their complexity and expensiveness [6]. For example, although vaccines for certain cancer
types have been developed, only one has been granted Food and Drug Administration
(FDA) approval to date [7]. Moreover, several drug delivery systems based on nanoscale
vehicles [8] or autologous cell tissues (i.e., erythrocytes) [9] have been developed, but their
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efficacy is still under investigation. Therefore, it is crucial to find innovative and applicable
therapeutic strategies, auxiliary to current gold standards, for cancer treatment.

Traditionally, one major concern in cancer therapy has been its specificity for cancer
tissues without harming surrounding healthy tissues. A very promising approach exhibit-
ing the abovementioned targeted action is hyperthermia treatment (HTT). Indeed, several
studies have demonstrated the potential benefits of HTT, including the increased tumor
blood flow and oxygenation as well as improved treatment outcomes [10,11]. In recent
years, significant advancements have been made in the field of nanotechnology, paving
the way for the development and application of nanoparticles as effective hyperthermia
agents [12]. Nanoparticles offer unique properties, such as enhanced stability, tunable
surface chemistry, and high surface area-to-volume ratio, making them ideal candidates
for delivering localized heat to cancerous tissues. Nanotechnology offers tumor-selective
drug delivery, thus minimizing toxicity, and has emerged as a very promising field in
precision oncology. Novel nanotechnology features could provide meaningful advantages
in cancer treatment, such as reinforcement of radiation effect and enhanced bioavailability
of therapeutic agents. This paper aims to provide a comprehensive overview of the cur-
rent landscape in the research of nanoparticle-based cancer hyperthermia, highlighting
its potential applications, mechanism of action, and challenges. By examining the latest
findings and discussing key studies, we aim to present a comprehensive understanding of
the remarkable potential of nanoparticles in revolutionizing cancer therapy.

2. Methods and Results

A literature search was conducted in PubMed database as of 16 November 2023, using
the following terms: “Cancer AND hyperthermia AND nanoparticles AND cytotoxicity
mechanisms”. Of the 50 publications, 44 were of original content, 5 were review articles,
and 1 was an editorial. All articles were evaluated for relevance and included in the
current work.

Of the 44 original articles, the majority included both in vitro and in vivo experiments.
A total of 10 in vivo studies utilized inorganic nanomaterials, such as ferrous or gold;
9 studies included organic nanoparticles, such as liposomes or polymeric nanoparticles;
and 2 used carbon-based nanoparticles. A total of 36 in vitro studies included inorganic
nanomaterials, 5 included organic nanoparticles, and 1 included carbon-based nanoparti-
cles. The cargo drugs under investigation were doxorubicin, methotrexate, combretastatin,
camptosar, nifedipine, and gemcitabine.

3. Hyperthermia: Properties and Mechanism of Action

Hyperthermia is defined as treatment with increasing temperatures between 39 ◦C
to 45 ◦C in order to induce cell death through apoptosis or necrosis [13]. HTT aims to
increase intracellular oxidative stress levels, taking advantage of their susceptibility to
heating. In terms of surface coverage, three different types of HTT have been established.
In whole-body HTT, the temperature increases evenly [14]. The other types are regional and
local HTT [15], with the latter being more targeted with respect to the number of affected
tissues. Selection is evaluated case-by-case, taking into consideration the location, type,
and stage of cancer [16].

Localized HTT is employed for the treatment of cancer that is confined to a particular
area. The application of this treatment can be achieved through external, intraluminal, and
interstitial methods, which are used to target (i) skin tumors, (ii) subcutaneous tumors,
(iii) tumors present within or near the body cavities, and (iv) brain tumors. Heat can be
generated using various types of energy sources, such as radiofrequency (RF), ultrasound,
and microwaves. Similarly, regional hyperthermia refers to a treatment technique used to
heat extensive areas of tissue, including organs, limbs, or body cavities, depending on the
type of cancer being treated [10].

Whole-body hyperthermia is used to treat cancers that have spread throughout the
body. One critical aspect of this procedure is the introduction of energy into the body
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while minimizing energy loss. Infrared radiation, radiofrequency energy, and microwave
electromagnetic energy are some of the most recent methods used to induce heat that are
employed either alone or in combination with each other [10].

One of the primary limitations of both radiation and chemotherapy is the lack of
ability to induce cytotoxic responses in tumor cells due to a series of resistance mecha-
nisms [17]. HTT may assist in overcoming these obstacles by inflicting direct double-strand
DNA breaks or intercepting DNA repair mechanisms [18,19], thus sensitizing tumor cells
to radiation and chemotherapeutic drugs. The application of HTT in tissues generates a
series of physiological cell changes, creating a favorable environment for the application
of traditional cancer treatments. More specifically, tumor cells become more permeable
to drugs [20] due to alterations in membrane properties, such as fluidity [21]. Further-
more, the intracellular levels of ions, such as Ca2+, Na+, K+ and Mg2+, are modified [22],
resulting in the promotion of cell death signaling. Additionally, increased permeability
amplifies the accumulation of fluids and proteins in the tumor microenvironment, lead-
ing to a sharp increase in the interstitial fluid pressure (IFP). The later, in turn, exerts
pressure on the vessels and reduces vascular perfusion in the tumors [23]. Hyperthermia
can exert structural changes in the extracellular matrix by reducing IFP and enhances
hydraulic conductivity and lymphatic drainage. This can increase blood perfusion, thus
facilitating the intratumoral concentration of NPs [24]. It has been also suggested that
modifications to cytoskeletal components may enhance intracellular drug delivery [25]
and promote programmed cell death signaling through the induction of (i) alterations
in the cytoskeleton-integrin network [26] or (ii) reactive oxygen species (ROS) produc-
tion in mitochondria [27]. Moreover, nanoparticle-mediated HTT has been reported to
increase the apoptosis and necrosis of tumor cells due to collagen fiber damage [28]. Using
microCT imaging, one recent study offers insight into NPs migration and intra-tumoral
distribution during HT treatment. Increased temperatures promote thermal damage and
further induce cell necrosis and apoptosis that contributes to the expansion of interstitial
space. This results in augmented tumor porosity that facilitates NP redistribution [29].
Alterations in apoptosis-associated transcription factors, such as heat shock transcription
factor 1 (HSF1) [30,31], gene expression modifications [32–34], and regulation of anti/pro-
apoptotic proteins, such as the anti-apoptotic Bcl-2 protein and the p53 tumor suppressor
protein [35,36], have been identified as physiological changes in cancer cells. In fact, uti-
lization of HTT is not utopic as heat shock protein expression may arise [37], thus acting
protectively for the tumor by maintaining the growth and survival of cancer cells. However,
efforts to optimize the beneficial aspects would be worthwhile.

4. Nanoparticles: Definition & Remarks

Nanoparticles (NPs) are defined as solid particles with a diameter range of
10–100 nanometers. They display unique properties, such as a large surface area to volume
ratio and the ability to exhibit quantum confinement, making them suitable candidates for
a wide range of applications in various fields of biomedicine, such as nanobiotechnology,
drug delivery, biosensors, and tissue engineering [38]. The small size of nanoparticles
enables them to have greater mobility within the human body when compared to larger
materials. Despite stability issues (due to their high surface energy), their unique struc-
tural, chemical, mechanical, magnetic, electrical, and biological properties showcase the
promising potential of nanomedicine in cancer research [39].

The properties of nanoparticles mainly depend on their size, shape, and surface
characteristics. For instance, it has been observed that they exhibit higher reactivity, stronger
magnetization, and improved optical and electrical properties compared to their bulk
counterparts [40]. Several materials have been used as raw materials for the synthesis
of nanoparticles. Some of the most commonly used include metals, such as gold, silver,
and platinum; metal oxides, such as titanium dioxide, iron oxide, and zinc oxide; and
semiconductors, such as silicon, cadmium selenide, and zinc sulfide [41,42]. Other materials
that have been used to synthesize nanoparticles include carbon-based materials, such as
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graphene and carbon nanotubes [43], as well as biological materials, such as peptides [44],
DNA [45], liposomes [46], and micelles [47]. Notably, Doxil®, Ambisome®, and DepoDur™
are now FDA-approved [48] as they act as direct drug carriers to transport inorganic
nanoparticles, including gold or magnetic nanoparticles [49].

NPs have shown diagnostic and prognostic potential in cancer, indicating tumor loca-
tion and stage of the disease; are considered to be ideal radiosensitizers for radiotherapy
due to their high X-ray absorption and unique physicochemical properties [50]; and pro-
vide information regarding the efficacy of treatment [51]. These nanoparticles can also
carry anticancer therapeutic agents, which can be delivered in precise concentrations via
molecular and/or external stimuli. More specifically, tissue-specific accumulation and
activation of nanoparticles can be achieved using various methods, such as the application
of magnetic fields, light waves, and ultrasounds and the modulation of internal factors,
such as pH, temperature, redox potential, and enzymes [52]. This results in their activation
only in pathogenic tissues, allowing for the desired therapeutic effect to manifest in a
targeted and specific manner [53]. Indeed, nanostructures have been utilized as delivery
vehicles, facilitating drug encapsulation or attachment of therapeutic drugs, in order to
allow targeted and controlled drug release to specific tissues [54].

Consequently, NPs have revolutionized the field of medicine due to their unique prop-
erties and potential for targeted drug delivery. In addition, recent research has shown that
combining nanoparticles with hyperthermia can provide even greater benefits for cancer
treatment (as shown in Figure 1). Nanoparticles have garnered considerable attention as
versatile platforms for hyperthermia-mediated cancer treatment, as they offer the ability to
selectively heat cancerous cells. This application of nanoparticles in hyperthermia-mediated
cancer treatment holds tremendous potential to revolutionize oncology and offers new
avenues for personalized and targeted therapies.
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A variety of external stimuli have been used to initiate the heating process of solid
tumors without affecting the surrounding tissues, thus establishing the four main pillars of
NP-mediated HTT, including magnetically induced hyperthermia (MIH), photothermal-
induced hyperthermia (PIH), radiofrequency-induced hyperthermia (RIH), and ultrasound-
induced hyperthermia (UIH), with all of them exhibiting exceptional potentials for can-
cer treatment.

5. Nanoparticle-Associated HTT in Cancer: Current Evidence

As mentioned above, one significant limitation of using HTT as a standalone treatment
modality is the indiscriminate warming of surrounding tissues as well as the failure to
achieve sufficiently elevated temperatures within the targeted tissue. Ongoing research
has focused on the combination of HTT and NPs in an attempt to improve localized cancer
treatment. Soon after the first implementation of NP HTT in cancer therapy took place [55],
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the encapsulation of chemotherapeutic drugs into liposomes and their temperature de-
pendent release occurred [56]. In the following sections, we summarize existing evidence
regarding the combination of nanoparticles and hyperthermia. The data obtained from
the literature research were categorized based on in vivo (Table 1) and in vitro (Table 2)
experiments.

5.1. Adenocarcinoma

Only one study on adenocarcinoma was retrieved from our literature review. Accord-
ing to the results, when magnetic Fe3O4 nanoparticles (MNPs) were subjected to pulsed
ultrasound, the cytotoxicity of tumor cells (Ehrlich ascites carcinoma cells [EACs]) was
significantly enhanced (both in vitro and in vivo). The treated tumor tissue had areas of
apoptotic cells with fragmented chromatin, degraded nuclei and nuclear membranes, and
ruptured organelles, suggesting that fundamental changes in cytoskeleton and epigenetics
play a pivotal role in the observed cell death. Furthermore, the study suggested that cell
viability was time- and MNP-concentration dependent [57].

5.2. Bone

The Fe3O4-doped mesoporous bioactive glass NPs exhibited a hyperthermia effect
when exposed to an alternating magnetic field (AMF), indicating potential applications in
HTT therapy. Additionally, these NPs demonstrated favorable biocompatibility and low
cytotoxicity, making them a safe and promising biomaterial for use in drug delivery for
bone tissue regeneration. To further elaborate, in vitro analysis of cell viability using MTT
assays of normal human fibroblast (NHFB) cells and an osteosarcoma cell line (MG-63)
showed that noticeable anti-proliferative and dose-dependent effects were observed using
mitomycin C-loaded NPs (Mc-Fe3O4-MBG NPs), whereas cell viability was maintained in
the NHFB cell line treated with Fe3O4-MBG [58].

5.3. Brain

The surface of nanoplates used in the study by Zhao et al. was engineered with
polydopamine, which provided effective photothermal conversion ability. This allowed
the increase in localized temperature and acceleration of the intratumoral Fenton-like
process in the tumor site arising from U-87 MG cells, a cell line that was isolated from
malignant gliomas. A high synergistic effect of laser phototherapy and nanoparticles that
promoted cell death was observed both in vitro and in vivo. In fact, cell viability was
maintained without laser irradiation, thus presenting the favorable bio-compatibility of
NPs. Further analyses demonstrate a slight necrotic response after treatment due to the
cytolethal distending toxin (CDT) effect, and nuclear pyknosis, tumor necrosis, and typical
apoptosis were observed when combining the two methods [59].

Thermosensitive magnetic liposomes that can be triggered by an alternating magnetic
field have been shown to improve the efficacy and reduce the side effects of camptosar in
nude mice injected with human primary glioblastoma cells (U87) [60]. A distinct study
revealed the same conclusion regarding the efficacy of temozolomide (TMZ), a chemother-
apeutic used for high-grade gliomas. TMZ was sheathed into metal core nanoparticles
and injected to rats with C6 glioma in combination with alternating magnetic field (AMF)
exposure, and the method promoted apoptosis of glioma cells. Moreover, a signaling
pathway that induced tumor suppression was identified by western blot analysis and
involved suppression of bcl-2 protein and increased levels of Bax protein [61].

5.4. Breast

The majority of scientific publications identified focused on the utilization of nanopar-
ticles in conjunction with hyperthermia as a potential therapeutic approach for breast
cancer [62–82]. All types of exogenous stimuli sources were tested using in vitro assays,
while radiofrequency-induced hyperthermia, in particular microwave hyperthermia, has
only been tested in vivo in the treatment of chest wall breast cancer recurrence [63]. Cur-
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rent treatment options for this entity are being summarized in a recent review by Youssef
et al. Hyperthermia in conjunction with other available treatment modalities, such as
surgical resection, radiation therapy, chemotherapy, and immunotherapy, appears to have
favorable outcomes in terms of local disease control and prognosis [63]. As the world’s
most prevalent cancer type, breast cancer presents an opportunity to evaluate drug release
efficacy under both in vitro and in vivo conditions. Cancer cell apoptosis [64–67] or necro-
sis [66,67], inhibition of tumor angiogenesis [68], and tumor-targeted and beclin-1-induced
autophagy [69,70] are associated with tumor growth inhibition. On the other hand, the en-
hancement of anti-tumor immunity [71] and increased T cell cytotoxicity in tumor sites [72]
have been reported.

Previous research has highlighted doxorubicin (DOX), the most commonly employed
chemotherapeutic agent, as a promising candidate for nanoparticle-mediated drug de-
livery systems [73]. Combined treatment of BALB/c mice with low-toxic porous silicon
nanowires (PSi NWs) resulted in tumor cell death following the application of high-intensity
ultrasound hyperthermia [66]. Interestingly, various combinations of core materials and
coatings, such as gold-liposome [74], citosan@carbon nanotubes-NIPAM [66], mesoporous
silica-polydopamine [75], and mesoporous silica@ICG-polyadenine [76], were employed
to investigate the in vitro and in vivo efficacy of drug release for DOX-loaded nanoparti-
cles [77–84].

5.5. Cervix

In vitro investigations conducted on HeLa and Hep2 cell lines have yielded valuable
information regarding the potential applications of hyperthermia induced by photother-
mal [85] or RF stimulation agents, inducing RF-mediated cell membrane breakdown [86].
Although augmented cell killing rates using different NPs after irradiation were shown,
research limitations, such as RF exposure time, intensity, concentration of nanoparticles in
cell culture, and incubation time, require further investigation. Furthermore, the release
properties of doxorubicin have been evaluated [87,88], demonstrating encouraging out-
comes in terms of nanoparticle utilization for the management of cervical cancer. Minimal
cytotoxicity was reported when applied individually. On the contrary, interdependent
interactions between doxorubicin-coated NPs and AMFs result in low cell viability due to
the facilitation of endocytosis in an acidic environment and intracellular release of the drug.
Nevertheless, the implied in vivo effects of this treatment approach remain uncertain.

5.6. Colon

The utilization of AuNP, as a highly effective sonosensitizer capable of harnessing
the thermal and mechanical effects of ultrasound to inflict damage, specifically at the
site of the targeted tumor, has been suggested [89]. Tumor metabolic parameters used
in PET/CT scans, such as Standardized uptake value (SUV) and total lesion glycolysis
(TLG), appeared significantly reduced in treated animals. It has been hypothesized that
tumor ablation is caused by the collapse cavitation phenomenon, shock waves and jet
formation. Furthermore, the interaction of ultrasound and gold-loaded NPs initiates
vascular disruption and tumor necrosis, providing vascular-focused ultrasound therapy.

This thermal and mechanical damage attenuated by NPs was further investigated.
Ultrasound-responsive nanomaterials, such as gold nanoparticles (AuNPs), iron oxide
nanoparticles (IONPs), and nano-graphene oxide (NGO), have been suggested as viable
options to concentrate the energy of acoustic waves on the tumor and trigger localized
hyperthermia [90]. It was therefore necessary to consider the combined use of liposome-
coated Fe2O3 nanoparticles encapsulated with combretastatin A4 phosphate (CA4P) [91],
a vascular targeting drug that disrupts tumor blood flow [92]. In vivo tumor regression
was assessed with MRI using parameters such as Ktrans and extracellular volume (Ve),
and the results were corroborated with histological analyses for microvascular density
and cellularity. The vascular inhibition effectiveness of the drug was further attenuated
with the conjunction of magnetic targeting. Similarly, alginate-coated gold nanoparticles
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transferring cisplatin demonstrated anti-tumor efficacy in BALB/c mice injected with CT26
colon adenocarcinoma cells by decreasing their metabolic activity, as assessed by PET/CT
scan [93].

5.7. Liver

The mouse hepatocellular carcinoma cell line (H22) has been used to assess the in-
duction of hyperthermia due to the presence of Ag2Se nanodots upon laser irradiation,
providing a possible theranostic agent [94]. This was the only in vivo approach found in the
literature, whereas in vitro studies shed light to the gold nanoparticle-assisted, RF-induced
hyperthermia effect [95] and alternating magnetic field (AMF)-induced hyperthermia in
the presence of Fe3O4 NPs [96] in HepG2 cells. The apoptotic cell ratio was decreased in
gold nanoparticle-incorporated and RF-treated cells, implying a protective role of electro-
hyperthermia, whereas in the later study, cell viability was significantly reduced upon AMF
exposure. Furthermore, drug release examinations provided useful data on the cytotoxic
effects of curcumin–nifedipine [97] and DOX [98] when encapsulated in hyperthermia-
induced drug delivery systems by promoting apoptosis and the generation of ROS.

5.8. Lungs

Recently, in vitro and in vivo evaluation of MnZnFe3O4-HA NPs showed outstanding
activity in lung adenocarcinoma A549 cells. It has been reported that this therapeutic
performance is achieved by boosting oxygenation levels and subsequently enhancing the
radiofrequency’s effect [99]. The synergistic anticancer effect of MnZnFe3O4-HA NPs
and RIH in vitro and in vivo was well documented based on a compelling increase in
apoptosis and necrosis in the cell population, but also by restraining tumor growth and
size in histological studies. In the same cell line, the effects of ferum oxide NPs on the
release properties of DOX were assessed when AMF [100] or RF [101] was administered.
In tumor-xenografted mice, iron-dextran used as a thermosensitizer after RF stimulation
completely eradicated cancer caused by the injection of NCI-H460 cells [102]. Radiation-
related release of DOX from silica NPs was assessed in in vitro and in vivo experiments,
where it suppressed the growth of the carcinoma and prolonged the survival time of the
animals [103].

5.9. Prostate

Albarqi et al. suggested that the injection of hydrophobic iron oxide nanoparticles
intravenously into mice bearing DU145 human prostate carcinoma cell line xenografts
efficiently promoted the accumulation of nanoparticles at the tumor site. Exposure to
AMF effectively increased the intra-tumor temperature above 42 ◦C and significantly
inhibited prostate cancer growth without exhibiting any toxic effects in normal tissues [104].
Furthermore, Zhu et. al. used microCT scan blood perfusion rates to evaluate the thermal
response and transport mechanism of injected NP-mediated hyperthermia in PC3 tumors
implanted on the flank of healthy mice [105]. Thermal damage from hyperthermia promotes
NP redistribution to the tumor periphery, a phenomenon that minimizes the required
treatment time that is originally predicted from traditional protocols. Another recent study
investigated the effects of inverse heat transfer, using infrared imaging techniques, on PC3
tumor cells implanted in Balb/c mice [106]. The results from the latter studies may facilitate
future experiments by implementing heating variables and intratumoral NP redistribution.

5.10. Pancreas

The γ-Fe2O3 NPs loaded with gemcitabine (GEM) developed by Lafuente-Gómez et al.
demonstrated high cytotoxicity in three distinctive pancreatic cancer cell lines (PANC-1,
BxPC-3 and MIA Paca-2), displaying different susceptibility to GEM. Thus, the combi-
nation of chemotherapeutic agent with MIH definitely contributed to the establishment
of a synergistic cytotoxic effect, including the generation of ROS, in all cell lines under
evaluation [107].
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5.11. Sarcoma

One of the latest studies included in this review investigated the possible effects of
merging PIH with immunogenic cell death in vivo. This was accomplished by coating
MnFe2O4 NPs with red blood cell membranes, resulting in enhanced survival rates of Swiss
Albino mice injected with murine sarcoma cells (S180) [108]. Flow cytometry data clearly
demonstrated decreased viability of S180 cells, with the predominance of late apoptosis
as a death mechanism in vitro. Furthermore, the antitumor immune response mediated
via extraction of HMGB1 and calreticulin suggested ICD under PTT. The same murine
sarcoma cancer cell line was used to induce tumors in BALB/c mice in pursuance of
highlighting the RF-dependent release of DOX [109]. The theranostic efficacy of C60@Au
hybrid nanocomposite loaded with DOX was assessed with in vivo and in vitro studies,
showing RF-controlled drug releasing potential, tumor targeting properties, and X-ray
imaging abilities.

5.12. Skin

Using macromolecules (DNA and cytochrome C) as coating agents of Au-NPs, Park
et al. exposed B16 F10 mouse melanoma cells to a PT laser source to induce HTT, which
subsequently promoted tumor-selective cell death [110]. These pH-sensitive CytC/ssDNA-
AuNPs stimulate high accumulation of AuNPs within the cell. The photothermal thera-
peutic efficiency of pH-responsive nanoparticles and their ability to induce tumor-selective
death were investigated using cytotoxicity tests on normal (MDCK-GFP) and B16F10 cancer
cells. B16-F0 tumor mice models were used to assess the UIH effect that was mediated
by Yb3+/Er3+-Zeolite NPs through the production of cytoplasmic ROS and mitochondrial
superoxide [111].

Table 1. In vivo experiments focusing on the combination of nanoparticles and hyperthermia.

Tumor Model Method Core Material Coating Cargo Cell Line References

Adenocarcinoma UIH 1 Fe3O4 - - Swiss albino mice
injected with EACs [57]

Brain PIH 2 MnGdO PDA-PEG - Nude mice injected
with U-87 MG cells [59]

Breast

MIH 3 Fe3O4
Dextran-folic

acid - BALB/c mice [62]

MIH Fe3O4
PAMAM

dendrimer - Bagg albino strain C
(BALB/c) mice [64,69]

MIH MoS2/CoFe2O4 - - BALB/c mice tumor [68]

PIH Melanin - -
BALB/c nude mice

injected with
MDA-MB-231 cells

[70]

PIH SPNs PEG -
BALB/c mice
injected with

4T1 cells
[86]

DR 4 PIH Gold Liposome Doxorubicin BALB/c mice bearing
MCF-7 tumors [78]

DR PIH
Fluorinated
aza-boron-

dipyrromethen
- Doxorubicin Mice bearing 4T1

tumors [80]

DR PIH Citosan@carbon
nanotubes NIPAM Doxorubicin Mice with Luc-4T1

orthotopic tumors [72]

DR PIH Mesoporous
silica Polydopamine Doxorubicin

BALB/c mice
injected with 4T1

cells
[81]
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Table 1. Cont.

Tumor Model Method Core Material Coating Cargo Cell Line References

Breast
DR PIH Mesoporous

silica@ICG Polyadenine Doxorubicin Mice bearing 4T1
tumors [71]

UIH nrGO@MSN-
ION-PEG - - BALB/c injected

with SKBr3 [75]

DR UIH Liposome - Doxorubicin
BALB/c athymic

nude mice injected
with MDA-MB-231

[83]

DR UIH Liposome - Doxorubicin Mouse 4T1 breast
tumor model [82]

Colon

UIH Gold - -

BALB/c
mice-bearing CT26

colorectal tumor
model

[89]

UIH
Gold, iron oxide

and graphene
oxide

- - BALB/c mice
injected with CT26 [90]

DR UIH Fe2O3 Liposome Combretastatin
A4 phosphate BALB/c [91]

Colorectal DR UIH Gold Alginate Cisplatin BALB/c mice
injected with CT26 [93]

Glioblastoma DR MIH Fe3O4 Liposome Camptosar
BALB/c nude mice
injected with U-87

cells
[60]

Glioma DR MIH Fe3O4 PEG-PBA-PEG Temozolomide C6 glioma in rats [61]

Liver PIH UCNPs CS@Ag2Se -
Kunming mice

injected with H22
cells

[94]

Lung

MIH MnZnFe3O4 HA-PEG-PCL -
A549 subcutaneous
tumor xenografts

model
[99]

RIH 5 Iron-dextran - BALB/c injected
with NCI-H460 [102]

DR RIH Silica NIPAM
copolymer Doxorubicin

CBA line mice with
lung carcinoma (3LL)

tumors
[103]

Melanoma DR UIH Yb3+/Er3+

Zeolite
FA-PEG Doxorubicin B16-F0 tumor model

mice [111]

Prostate MIH MnZnFe3O4 PEG-PCL -
Nude mice bearing

subcutaneous DU145
xenografts

[104]

Sarcoma DR RIH C60@Au-HBA PEG Doxorubicin BALB/c S180 tumor
models [109]

Sarcoma PIH MnFe2O4
Red Blood Cell

Membrane -
Swiss albino mice
injected with S180

cells
[108]

1 UIH: Ultrasound-induced hyperthermia. 2 PIH: photothermal-induced hyperthermia. 3 MIH: magnetically
induced hyperthermia. 4 DR: drug release. 5 RIH: radiofrequency-induced hyperthermia.
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Table 2. In vitro experiments focusing on the combination of nanoparticles and hyperthermia.

Tumor Model Method Core Material Coating Cargo Cell Line References

Adenocarcinoma UIH Fe3O4 - -
Ehrlich ascites
carcinoma cells

(EACs)
[57]

Bone MIH
Fe3O4-

Bioactive
Glass

- -

Normal human
fibroblast (NHFB)
and cancer cells

(MG-63)

[58]

Brain PIH MnGdO PDA-PEG U-87 MG cells [59]

Breast MIH Fe3O4
Dextran-Folic

acid - MC4-L2 [62]

Breast

MIH Fe3O4
PAMAM

dendrimer -

Human breast cancer
cell line (MCF7) and
human fibroblast cell

line (HDF1)

[64,69]

DR MIH Fe3O4
NIPAM-co-
DMAEMA Methotrexate MCF-7 breast cancer

cell line [77]

PIH Melanin - -

NIH3T3 cells (ATCC),
Hela cells, and

MDA-MB-231 cells
(ATCC)

[70]

PIH Gold Gold PEG - MCF7 and 4T1 cells [74]

PIH SPNs PEG - 4T1 and RAW264.7
cells [84]

DR PIH Gold Liposome Doxorubicin MCF-7 breast cancer
cell line [78]

DR PIH Gold NIPAM Doxorubicin Hela and
MDA-MB-231 cells [79]

DR PIH
Fluorinated
aza-boron-

dipyrromethen
- Doxorubicin 4T1 cells [80]

DR PIH Citosan@carbon
nanotubes NIPAM Doxorubicin 4T1 cells [72]

DR PIH Mesoporous
silica Polydopamine Doxorubicin 4T1 cells [80]

DR PIH Mesoporous
silica@ICG Polyadenine Doxorubicin A549 cells [71]

RIH Au@IONPs - MCF-7 breast cancer
cells [65]

RIH

Gold, Iron
oxide,

Gold@iron
oxide

-
Fibroblast (L-929)
and breast cancer
(MCF-7) cell lines

[66]

DR RIH La0.7Sr0.3MnO3 Chitosan Doxorubicin MCF-7 and
MDA-MB-231 [67]

UIH nrGO@MSN-
ION-PEG - - SKBr3 cell line [75]
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Table 2. Cont.

Tumor Model Method Core Material Coating Cargo Cell Line References

Breast

DR UIH Liposome - Doxorubicin

4T1 mammary
carcinoma cells,

MCF-7 human breast
adenocarcinoma cells,
and human umbilical
vein endothelial cells

(HUVECs)

[82]

Manual
Temperature

Swift
Gold Liposome Doxorubicin MDA-MB-231 [76]

Cervical

DR MIH MnZnFe3O4
Chitosan-g-

NIPAM Doxorubicin
Human cervical

cancer cells (HeLa
cells)

[87]

DR MIH Gadolinium
Ferrite PAMAM Doxorubicin HeLa cells [88]

PIH MoO3 Cysteine - HeLa cells [85]

RIH Silicon NW - Hep2 cells [86]

Colon DR UIH Fe2O3 Liposome Combretastatin
A4 phosphate EA.hy926 cell line [91]

Glioblastoma DR MIH Fe3O4 Liposome Camptosar U-87 human primary
glioblastoma cell line [60]

Liver

MIH Fe3O4 PCL - Human liver cancer
cells (HepG2) [96]

DR MIH Fe3O4 PLGA Curcumin and
nifedipine HepG2 cancer cells [97]

PIH UCNPs CS@Ag2Se - A549 cells [94]

DR PIH Chitosan @ ICG NIPAM Doxorubicin HepG2 cancer cells [98]

RIH Gold -
HepG2 human
hepatocellular

carcinoma cell line
[95]

Lung

MIH MnZnFe3O4 HA-PEG-PCL -
A549 (human lung

adenocarcinoma cell
line)

[99]

DR MIH Fe3O4 PEG1500 Doxorubicin
Human lung

adenocarcinoma
(A549)

[100]

RIH Iron-Dextran - Human lung cancer
NCI-H460 cells [102]

DR RIH Iron oxide Liposome@gold Doxorubicin A549 [101]

DR RIH Silica NIPAM
copolymer Doxorubicin HeLa and HEP2 cells [103]

Melanoma DR UIH Yb3+/Er3+

Zeolite
FA-PEG Doxorubicin B16-F0, 4T1, HBE,

and U937 cell lines [111]

Ovaries
Manual

Temperature
Swift

Gold Liposome Doxorubicin SK-OV-3 [76]
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Table 2. Cont.

Tumor Model Method Core Material Coating Cargo Cell Line References

Prostate MIH MnZnFe3O4 PEG-PCL -

DU145 human
prostate carcinoma

cell line and HEK-293
human embryonic

kidney cell line

[104]

Pancreas MIH γ-Fe2O3 Dextran Gemcitabine PANC-1, BxPC-3,
and MIA Paca-2 [105]

Sarcoma
DR RIH C60@Au-HBA PEG Doxorubicin MCF-7 cells [107]

PIH MnFe2O4
Red Blood Cell

Membrane - S180 [106]

Skin PIH Gold DNA &
Cytochrome C - B16 F10 mouse

melanoma cells [108]

6. Future Applications and Challenges

The use of hyperthermia paired with nanoparticle-mediated medication delivery has
an upward trajectory in cancer therapy. Preclinical data have demonstrated that the use of
nanoparticles as carriers facilitates targeted delivery by increasing blood vessel permeabil-
ity and allowing controlled chemotherapy release at the tumor [51]. Heterogenous blood
perfusion prevents an even temperature distribution within cancerous tissues. A recent
study suggests a modified Pennes bioheat equation that integrates perfusion differentiation
to detail local variations within the same tumor that was obtained using imaging tech-
niques [112]. This model facilitates treatment planning by clarifying the thermal properties
of tissues.

Furthermore, a differentiation in the tumor accumulation of NPs has been described
since macrophages and fibroblasts within the tumor microenvironment can affect the
nanoparticle distribution [113]. Cell necrosis-induced diffusivity changes and porosity
enhancement are two distinct mechanisms that also stimulate nanoparticle migration [29].
It is hypothesized that the NP trajectory is influenced by heat transfer, and thermal damage
additionally boosts NP re-distribution within the cancerous tumor [114]. Several heating
protocols based on MRI imaging have studied the blood supply of cancerous tumors.
These methods have directly linked heating parameters, such as dosage and duration, in
an attempt to avoid harming the surrounding normal cells [115]. Recent mathematical
developments integrate bioheat and kinetic models in order to combine (i) tissue regen-
eration under thermal damage and (ii) NP migration and to provide insight into clinical
applications of NP-mediated hyperthermia [116].

Moreover, HT further sensitizes cancer cells to chemotherapy, having the advantages
of minimal systemic toxicity. Some studies suggest that cancer stem cells are sensitized to
radiation therapy by nanoparticle-mediated HT [117], while there is also evidence that hy-
perthermia can trigger immune-mediated responses in the cancer microenvironment [118].

The integration of hyperthermia into nanoparticle-mediated drug delivery holds great
promise as a future strategy for cancer treatment. The optimal dose of magnetic nanopar-
ticles prior to radical prostatectomy or cystoprostatectomy in the treatment of prostate
or bladder cancer, respectively, is being currently investigated in the MAGNABLATE I
study (NCT02033447). Another ongoing clinical trial investigates the use of hyperthermic
intraperitoneal chemotherapy combined with systemic chemotherapy with nab-paclitaxel
or cisplatin in pancreatic cancer patients with peritoneal metastasis (NCT04858009).

However, careful observation of the existing data shows substantial variability in
tissue and cell line responses to diverse treatment modalities (Tables 1 and 2). Differences
between neoplastic lesions, heterogeneity within the same tissue type, and differences
between in vivo studies require further elaboration [119]. Moreover, it is unclear what
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occurs when NP-mediated HT treatment is administered to humans. While most in vivo
studies have evaluated hyperthermia in subcutaneous xenograft models, administering
hyperthermia in deep tissues, such as human organs, did not yield consistent findings.
On the other hand, the low penetration of the magnetic field narrows the efficacy of the
method. However, data from in vitro and animal model studies should be further tested
in terms of consistency in humans, as differences in biologic characteristics, as well as the
complexity of the human immune and genetic systems, can alter treatment results.

Open questions remain regarding the biocompatibility and/or the possible toxicity
that may rise from injecting nanoparticles in healthy tissues. Thus, the evaluation under
standard protocols that ensure biosafety must be held in practice [120]. The ISO testing
requirements suggest standardized testing methods to evaluate the baseline toxicity of any
medical treatment, including assessments of genotoxicity, cytotoxicity, hemocompatibility,
tissue tolerance, and pyrogenicity. Indeed, most nanoparticles have been shown to be
relatively nontoxic at the required therapeutic doses. For example, gold has been used for
many years in the treatment of various medical conditions. Expanding NP-mediated HT
research in clinical settings highlights another problem associated with the consistency of
large-scale NP production compared with small batches [121]. Moreover, in addition to the
appropriate size of nanoparticles being a challenge in manufacturing, high cost is another
issue to be mentioned.

In addition, the diversity in NP biodistribution poses challenges that need further
clinical interpretation. For example, once in systemic circulation, NPs can be delivered
both to the tumor site as well as other human organs. Moreover, the poor vasculature of
some cancerous tissues prevents a uniform distribution in tumor core temperature when
applying NP-mediated hyperthermia [122]. Thus, both NP delivery and distribution in
tumor sites are also two main issues that require further investigation.

Repeatability and standardization of the experimental methods used to investigate
the impact of HT should also be further assessed since contradictory results exist in the
available literature. Standardized protocols for NP testing, including incubation times, NP
concentrations in cells, and radiation parameters, are also pending. Furthermore, dedicated
studies assessing pharmacokinetic and pharmacodynamic parameters in addition to safety
and efficacy should be designed and carried out.

Finally, one should take into account the ethical and practical considerations that arise
from the use of nanotechnology in the treatment of cancer. In addition to nonmaleficence,
the potential risks in such work environments should to be further addressed. Moreover,
the accumulation and release of nanomaterials could also lead to environmental problems.
A further concern before obtaining patient consent relates to the lack of sufficient data to
inform participants. Another issue may also be the limited access of some patients to such
innovative treatments due to geographical or financial restrictions [123].

7. Concluding Remarks

Conventional therapeutic approaches are facing challenges due to tumor aggressive-
ness and resistance to treatment, leading to a pressing need for novel treatment modalities.
Hyperthermia has emerged as a potential candidate, although its use as a single modality is
limited. However, it seems that the combination of chemotherapeutic agents delivered us-
ing nanoparticle carriers results in synergistic anti-cancer effects and outcomes according to
the existing preclinical data. Future studies will highlight the possible clinical applications
of this approach and its implementation in everyday clinical practice.
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