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Abstract: Psychedelics belong to the oldest psychoactive drugs. They arouse recent interest due to
their therapeutic applications in the treatment of major depressive disorder, substance use disorder,
end-of-life anxiety,= and anxiety symptoms, and obsessive–compulsive disorder. In this review,
the current state of preclinical research on the mechanism of action, neurotoxicity, and behavioral
impact of psychedelics is summarized. The effect of selective 5-HT2A receptor agonists, 25I- and
25B-NBOMe, after acute and repeated administration is characterized and compared with the effects
of a less selective drug, psilocybin. The data show a significant effect of NBOMes on glutamater-
gic, dopaminergic, serotonergic, and cholinergic neurotransmission in the frontal cortex, striatum,
and nucleus accumbens. The increases in extracellular levels of neurotransmitters were not dose-
dependent, which most likely resulted from the stimulation of the 5-HT2A receptor and subsequent
activation of the 5-HT2C receptors. This effect was also observed in the wet dog shake test and
locomotor activity. Chronic administration of NBOMes elicited rapid development of tolerance,
genotoxicity, and activation of microglia. Acute treatment with psilocybin affected monoaminergic
and aminoacidic neurotransmitters in the frontal cortex, nucleus accumbens, and hippocampus but
not in the amygdala. Psilocybin exhibited anxiolytic properties resulting from intensification of
GABAergic neurotransmission. The data indicate that NBOMes as selective 5-HT2A agonists exert
a significant effect on neurotransmission and behavior of rats while also inducing oxidative DNA
damage. In contrast to NBOMes, the effects induced by psilocybin suggest a broader therapeutic
index of this drug.
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1. Introduction

Serotonergic hallucinogens might be the oldest psychoactive substances used by hu-
manity. These substances, known for inducing profound changes in perception, mood, and
cognitive processes, are often associated with therapeutic, religious, and recreational appli-
cations [1]. It is due to those properties that Humphrey Osmond coined the widely-used
name “psychedelic”, originating from the Greek words psukh
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1. Introduction 
Serotonergic hallucinogens might be the oldest psychoactive substances used by hu-

manity. These substances, known for inducing profound changes in perception, mood, 
and cognitive processes, are often associated with therapeutic, religious, and recreational 
applications [1]. It is due to those properties that Humphrey Osmond coined the widely-
used name “psychedelic”, originating from the Greek words psukh  é̄   , “mind”, and 
delos, “to reveal”. The modern era of psychedelic research began in the 19th century with 
the discovery of mescaline, the active ingredient of hallucinogenic Peyote cacti [2]. The 
next chapter opened in 1938 with synthesis and 5 years later the discovery of the psycho-
active properties of lysergic acid diethylamide (LSD) [3]. Due to its extreme potency, LSD 
quickly became the most intensely researched psychedelic compound, with more than 
1000 published articles by the end of the 1960s [4]. It was studied as a possible aid in 
psychotherapy, or otherwise explored as a potential treatment for substance abuse disor-
ders, anxiety, and mood disorders [5]. Unfortunately, alongside medical use, recreational 
use of these substances swept across the globe, resulting in the passage of the “Controlled 
Substances Act “ in 1970 where psychedelics were classified as “drugs with no currently 
accepted medical use and a high potential for abuse”. These circumstances made it diffi-
cult to continue research concerning psychedelic drugs and nearly all studies (with only 
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, “mind”, and delos, “to
reveal”. The modern era of psychedelic research began in the 19th century with the discov-
ery of mescaline, the active ingredient of hallucinogenic Peyote cacti [2]. The next chapter
opened in 1938 with synthesis and 5 years later the discovery of the psychoactive properties
of lysergic acid diethylamide (LSD) [3]. Due to its extreme potency, LSD quickly became the
most intensely researched psychedelic compound, with more than 1000 published articles
by the end of the 1960s [4]. It was studied as a possible aid in psychotherapy, or otherwise
explored as a potential treatment for substance abuse disorders, anxiety, and mood disor-
ders [5]. Unfortunately, alongside medical use, recreational use of these substances swept
across the globe, resulting in the passage of the “Controlled Substances Act “ in 1970 where
psychedelics were classified as “drugs with no currently accepted medical use and a high
potential for abuse”. These circumstances made it difficult to continue research concerning
psychedelic drugs and nearly all studies (with only a few exceptions) came to an abrupt
end, followed by several decades of hiatus in psychedelic research. However, in recent
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years, clinical trials have been conducted and several psychedelic drugs are indications for
the treatment of major depressive disorder and treatment-resistant depression, substance
use disorder, end-of-life anxiety, cancer-related depression and/or anxiety symptoms, and
obsessive–compulsive disorder [6].

In this work, we review the current state of preclinical knowledge about the mechanism
of action, receptor targets, and toxicity of psychedelics at the level of neurotransmission
and behavioral response. Specifically, the NBOMe class and psilocybin are chosen in this
review as these substances show different pharmacological properties and distinct medical
potential.

2. Classification of Psychedelics

All psychedelic compounds can be divided by their structure into two main cate-
gories: phenylalkylamines, e.g., mescaline (3,4,5-trimethoxyphenethylamine) or DOI (2,5-
dimethoxy-4-iodoamphetamine) [7] and indoleamines, e.g., DMT (N,N-dimethyltryptamine)
or LSD. Both of them bear a resemblance to endogenous compounds—either phenethy-
lamine or serotonin. While the former bind mainly to the 5-HT2 receptor family [8,9],
the latter demonstrate an affinity for several types of receptors and nearly all 5-HT recep-
tors [10].

The only hallucinogenic phenethylamine that exists in nature is mescaline, the active
compound of Peyote and Echinopsis cacti [11], while the biggest group being the “2C” se-
ries act primarily as stimulants, though in higher doses they exert hallucinogenic effects [12].
Hallucinogenic amphetamines cannot be found in nature and have to be obtained through syn-
thesis. Their best-known representatives are the 4-substituted-2,5-dimethoxyamphetamines,
with the most important being 2,5-dimethoxy-4-iodoamphetamine (DOI), 2,5-dimethoxy-4-
methylamphetamine (DOM), and 2,5-dimethoxy-4-bromoamphetamine (DOB) and (DOC).
Due to their high affinity (nanomolar or even subnanomolar) for the 5-HT2A receptor,
they have been used as radioligands to map the distribution of the aforementioned re-
ceptor in the brain [13]. A new class of serotonergic hallucinogens, N-(2-methoxybenzyl)-
2,5-dimethoxy-4-substituted phenethylamines, in short NBOMes, became very popular
as recreational drugs [4]. Many compounds belonging to this group have been synthe-
sized, differing in substituents on the phenyl ring at position 4. The addition of the
N-2-methoxybenzyl group significantly increased the affinity for the 5-HT2A serotonin
receptor subtype (Table 1). Quite like phenethylamines, indoleamines can also be further
differentiated into two subclasses: simple tryptamines like DMT or psilocin and ergolines
(lysergamides), which are tryptamine derivatives with more rigid conformation; they pri-
marily consist of LSD and its derivatives. Tryptamines are quite often encountered in
nature. DMT can be found in Ayahuasca, a brew made from the leaves of Psychotria viridis;
bufotenine (5-OH-DMT) is secreted by glands of Bufo alvarius, an American species of
toad; and the most common forms include psilocybin and its primary active metabolite
psilocin, the compounds originating from Psilocybe fungi, which can be found all around the
globe [1,14]. Tryptamines show affinity for a large number of 5-HT receptors. This includes
5-HT1A with the affinity for this receptor being sometimes almost as high as for 5-HT1B,
5-HT1D, 5-HT1E, 5-HT2A, 5-HT2B, 5-HT2C, 5-HT5A, 5-HT6, and 5-HT7 (Table 1) [10].
In high concentrations, they also bind to α-adrenergic receptors, dopaminergic receptors,
and serotonin transporters (SERT) [10]. Nevertheless, these compounds induce their hallu-
cinogenic effects via activation of the 5-HT2A receptor. Finally, ergolines are derivatives
of alkaloids secreted by the ergot fungi. Due to their tetracyclic structure, they happen
to be more rigid than the usual “simple” tryptamines [15]. Their history is inseparably
bound with their most famous representative—LSD. It is, up to this day, one of the most
potent psychedelics [11,16]. Similarly to tryptamines, ergolines exhibit high affinity for
5-HT1A, 5-HT1B, 5-HT1D, 5-HT1E, 5-HT2A, 5-HT2B, 5-HT2C, 5-HT5A, 5-HT5B, 5-HT6,
and 5-HT7 receptors (Table 1) [17]. What is more unique to them is that they also bind to
the dopaminergic D1 and D2 receptors and adrenergic α1 and α2 receptors [17–19].
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Table 1. Serotonin receptor interactions with some phenethylamine and indoleamine psychedelics
(according to [20,21]).

Compound/Receptor Subtype Ki ± SD (nM)

5-HT1A 5-HT2A 5-HT2B 5-HT2C

Phenethylamines

Mescaline 4600 ± 400 6300 ± 1800 >2000 17,000 ± 2000

25I-NBOMe 1800 ± 300 0.6 ± 0.2 130 ± 80 4.6 ± 2

25B-NBOMe 3600 ± 300 0.5 ± 0 10 ± 10 6.2 ± 2.2

Indoleamines

Psilocin 123 ± 20 49 ± 10 >20,000 94 ± 9

DMT 75 ± 20 237 ± 40 34 ± 32 424 ± 150

LSD 3 ± 0.5 4 ± 1 12,000 ± 400 15 ± 3

3. The Mechanism of Action of Psychedelics
3.1. 5-HT2A Receptor as a Primary Target for Psychedelics

Hallucinogens exert their psychoactive effects by acting as agonists for the cortical 5-
HT2A receptor [13,22–24]. The 5-HT2A receptor belongs to the G-protein-coupled receptor
(GPCR) family. It is coupled with the Gq/11 protein, and its activation leads to phospho-
inositide hydrolysis resulting in the formation of diacylglycerol and inositol triphosphate,
which leads to the mobilization of intracellular calcium and subsequent membrane de-
polarization [4]. Furthermore, the intensity of the psychedelic experience in humans is
correlated with the occupancy of the 5-HT2A receptor, mainly in the prefrontal cortex
(PFC) [25]. This activation of 5-HT2A receptors in the PFC launches a downstream cascade
of changes in connectivity and alterations in blood flow across multiple regions of the brain,
e.g., cingulate cortex, inferior parietal lobule, lateral temporal cortex, hippocampus (HP),
thalamus, amygdala, and claustrum [26–28] involved in cognition, emotional processing,
sensory perception, or even self-recognition and theory of mind processes [4,29]. What is
interesting is that even though psychedelics activate 5-HT2A receptors on glutamatergic
pyramidal neurons in the brain, this typically does not induce depolarization or generation
of action potentials. Instead, there is an increase in glutamate release from depolarized
neurons, resulting in recurrent activity [30]. Notably, Beique et al. [31] identified a subset of
large neurons in the deep cortical layers that exhibited significant sensitivity to 5-HT. These
neurons exhibited substantial membrane depolarizations, leading to spiking activity. Based
on these findings, Martin and Nichols [32] isolated a specific subset of psychedelic-activated
neurons from rat brains. They revealed that psychedelics directly stimulated only a minor
proportion of 5-HT2A receptor-expressing excitatory neurons, especially in crucial brain
areas, such as the PFC and claustrum. In particular, the psychedelic-responsive neurons
exhibit elevated gene expression for the 5-HT2A receptor, which likely underlies their
heightened sensitivity to psychedelics compared with other neurons. The authors postulate
that this distinct neuron group acts as a “trigger population”. The activation of these
neurons subsequently recruits other cell types including subpopulations of somatostatin or
parvalbumin inhibitory GABAergic interneurons or astrocytes [32].

3.2. The Impact of 5-HT2A Receptor Activation on Behavior

The 5-HT2A receptor is a key player in inducing the psychedelic experience in humans
and its activation is considered as a proxy for hallucinogenic effect in animal models [4]. The
head twitch response/wet dog shake (HTR/WDS) test is based on this mechanism, exhibit-
ing significant construct validity. The assay quantifies rapid, rhythmic head movements ob-
served in rodents post-administration of psychedelic 5-HT2A receptor agonists [33]. While
some false positives have been identified, such as fenfluramine, p-chloroamphetamine,
and 5-hydroxytryptophan, the test predominantly exhibits specificity for 5-HT2A receptor
agonists [15]. Furthermore, the HTR assay seems to be highly sensitive to 5-HT2A receptor
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agonists known to produce psychedelic effects in humans, proving its predictive validity.
This is evidenced by the fact that the non-psychedelic 5-HT2A receptor agonist, namely
lisuride, does not evoke the head twitch phenomenon [33]. Unfortunately, the face validity
of the assay is poor, as humans do not exhibit head-twitching behavior after administration
of psychoactive drugs.

4. NBOMes

N-2-methoxybenzyl substitution of 2-C compounds [11] drastically enhanced the
binding to the 5-HT2A receptor, which resulted in the synthesis of a number of NBOMe
agents differing in substituents on the phenyl ring at position 4. The examples of this group
(shown in Table 2) are called in short 25I-NBOMe, 25B-NBOMe, and 25C-NBOMe and have
in their molecule a substituent of halogens: iodine, bromine, or chlorine [34].

Table 2. Abbreviations and chemical names of some NBOMe compounds [35].

Abbreviation Chemical Name

25B-NBOMe 2-(4-bromo-2,5-dimethoxyphenyl)-N-(2-methoxybenzyl)ethanamine

25C-NBOMe 2-(4-chloro-2,5-dimethoxyphenyl)-N-(2-methoxybenzyl)ethanamine

25D-NBOMe 2-(2,5-dimethoxy-4-methylphenyl)-N-(2-methoxybenzyl)ethanamine

25I-NBOMe 2-(4-iodo-2,5-dimethoxyphenyl)-N-(2-methoxybenzyl)ethanamine

25N-NBOMe 2-(2,5-dimethoxy-4-nitrophenyl)-N-(2-methoxybenzyl)ethanamine

4.1. The Effects of NBOMes on Behavior Observed in Rodents

A study conducted on C57BL/6J mice demonstrated that 25I-NBOMe, administered
at doses of 0.1, 0.3, and 1 mg/kg, was 14 times more potent than its “parent” compound,
2C-I, in inducing HTRs, and that this effect was fully reversible using volinserin, a selective
5-HT2A receptor antagonist [36]. Escalating doses of 25B-NBOMe (0.1–10 mg/kg) caused a
hormetic response in the number of WDS episodes in Wistar Han rats [37], and this effect
was replicated in C57BL/6J mice and was reversed by the 5-HT2A receptor antagonist,
ketanserin [38].

A study by Gatch et al. [39] showed that 25I-, 25B-, and 25C-NBOMe dose-dependently
reduced animal locomotor activity. When administered subcutaneously, 25I-NBOMe
(0.03–3 mg/kg) produced a bell-shaped effect on C57BL/6J mouse activity [40]. In line
with this finding, the researchers have also shown that low (0.001–1 mg/kg) and moder-
ate (0.1–1 mg/kg) doses of 25I-NBOMe increase mobility, while a high dose (10 mg/kg)
causes a sharp decline in the spontaneous motor activity of male ICR mice [41]. Similarly,
25B-NBOMe inhibited the motor activity of Wistar Han rats measured in an open field
(0.3–3 mg/kg) [37]. This phenomenon is similar to the effects of another 5-HT2A recep-
tor agonist, DOI, which modifies locomotor activity via a 5-HT2A/5HT2C-dependent
mechanism. Low and moderate doses primarily activate the 5-HT2A receptors located on
pyramidal neurons, leading to neuronal excitation and stimulation of locomotor behavior.
As the plasma levels of the drug increase, it leads to the activation of the 5-HT2C recep-
tors located on GABAergic interneurons, which results in the suppression of locomotor
activity [42].

Some studies suggest the potentially addictive properties of the NBOMes. 25I-NBOMe
(0.3 mg/kg) induced place preference in the conditioned place preference (CPP) test and
increased vocalization frequency, in a similar way to methamphetamine, in male C57BL/6J
mice. On the other hand, those effects were not replicated in self-administration exper-
iments in Sprague Dawley rats (0.03 mg/kg/infusion) since this study reported weak
addictive properties compared with place preference studies [43]. 25B-NBOMe at a dose of
1 mg/kg induced place preference in the CPP test in male C57BL/6J mice. Moreover, it
produced statistically significant but weaker than those reported for methamphetamine
responses in the self-administration procedure at doses of 0.03–0.3 mg/kg/infusion [38].
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25N-NBOMe increased place preference in male C57BL/6J mice at a dose of 3 mg/kg and
also produced self-administration in Sprague Dawley rats (0.1 mg/kg/infusion) [44]. 25D-
NBOMe (1 mg/kg) induced CPP and was readily self-administered (0.03 mg/kg/infusion)
in rats [45].

The mechanism behind those behavioral symptoms seems to originate from a dopaminer-
gic mechanism. 25B-NBOMe [37], 25I-NBOMe [46], 25N-NBOMe [44], and 25D-NBOMe [45]
increased extracellular dopamine (DA) levels in the striatum (STR) and nucleus accumbens
(NAC), the structures involved in the reward system. Furthermore, the administration
of NBOMe compounds affected the protein levels of DA receptors, a hallmark of abuse
potential. 25B-NBOMe elevated D1 receptor expression and decreased D2 receptor ex-
pression in the mouse NAC. 25N-NBOMe reduced the expression of D2 receptors both
in NAC and dorsal STR. It also decreased the expression of DA transporter (DAT) in the
NAC, while increasing its phosphorylation in the NAC and dorsal STR. Furthermore,
the drug significantly reduced the expression of tyrosine hydroxylase (TH) in the NAC.
25D-NBOMe increased the expression of the dopamine receptor D1 while decreasing the
expression of the D2 receptor, and downregulated DAT [45]. Taken together, these changes
in dopaminergic activity, while not as potent as those induced by methamphetamine, may
originate from a similar mechanism. The excessive DA levels in NAC would stimulate the
D2 autoreceptors, which are involved in the regulation of DA release. Overstimulation of
D2 receptors would then lead to their downregulation and reduction in the activity of DAT
and TH [47].

4.2. The Effects of NBOMes Observed in Humans

NBOMes became available to drug users when they first appeared on the illicit drug
market in 2010 [48,49]. Similarly to LSD, they are most often sold on blotter paper; some-
times, they are even sold as LSD. They are administered either nasally or orally (either by
swallowing or sublingually) in small, sub-milligram doses [48]. The duration of action
varies for each route of administration [36]. The effects of ingestion are usually an outcome
of the activation of serotoninergic and adrenergic pathways and may include severe visual
and auditory hallucinations, agitation, aggressiveness, long-lasting seizures, tachycardia,
sweating, hypertension and hyperthermia, and psychotic/paranoid behavior [12,50–52].
Based on recent knowledge, the risk of NBOMes toxicity excludes these 5-HT2 receptor
agonists from the treatment of a range of psychiatric disorders.

4.3. The Effects Exerted on Neurotransmitter Release by a Single Exposure to NBOMes

While there is scientific consensus that the primary mechanism behind the psychedelic
effect of NBOMes is related to the increase in glutamatergic neurotransmission in the
PFC [4,53–55], the effects exerted on other neurotransmitters are not so consistent and
vary from drug to drug. The NBOMe class is reported to be extremely potent [55–58] in
elevating the extracellular levels of DA, 5-HT, and glutamate after acute administration of
25I-NBOMe, and numerous WDS episodes were also seen.

The effect of administration of 25B-NBOMe is consistent with these findings as an
increase in cortical extracellular glutamate levels was observed [37], and this effect was
more robust than the one exerted by 25I-NBOMe [55]. Furthermore, 25B-NBOMe induced a
similar number of WDS to 25I-NBOMe but with a three times smaller dose (0.3 mg/kg) [37].
Altogether, these findings confirm the stronger affinity and potency of 25B-NBOMe at the
5HT2A receptor, reported in vitro by Rickli et al. [20]. Like 25I-NBOMe [55], 25B-NBOMe
significantly increased the extracellular 5-HT levels [37]. This phenomenon may be the
reason for the serotonin syndrome reported in humans after ingestion of 25B-NBOMe [51].
Furthermore, it increased the volume of dopaminergic neurotransmission akin to 25I-
NBOMe. Those changes observed in NAC and STR suggest that it might exhibit reinforcing
properties [37].

The dose–response curve observed in microdialysis studies had an inverted “U” shape,
most likely resulting from the activation of the different subtypes of 5-HT receptors. The
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progressive elevation of extracellular levels of neurotransmitters except acetylcholine (ACh),
starting from the lowest dose (0.1 mg/kg) and reaching the plateau at 0.3 mg/kg, is a result
of the activation of 5-HT2A receptors located on pyramidal glutamatergic cells [53,55,59,60].
As the plasma levels of the drug increase, subsequent activation of the 5-HT2C receptor
located on cortical GABAergic interneurons occurs, leading to an increase in GABAergic
neurotransmission and attenuation of the observed effect (Figure 1).
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Both local [61] and systemic [62] administration of 5-HT2A/2C receptor agonists were
reported to induce a dose-dependent increase in extracellular levels of GABA. This effect
was further replicated when assessing hallucinogenic potency, with the WDS response curve
which acquired a similar shape reaching the peak at the dose of 0.3 mg/kg [37], similar
to 25I-NBOMe [55] and HTR in mice [38]. Furthermore, 25B-NBOMe reduced locomotor
activity and induced anxiety in animals; these effects are also akin to those induced by
25I-NBOMe [46] and other psychedelics [42]. Surprisingly, while being more active at the
5-HT2A receptor than 25I-NBOME and inducing a greater increase in extracellular levels
of neurotransmitters, 25B-NBOMe induced a very weak genotoxic effect evidenced by
oxidative DNA damage in the nuclei from rat PFC and HP when compared with the control
group [37] or when comparing it with the effect of 25I-NBOMe [63].

As reported by Quirion et al. [64], the 5-HT2A receptors are located on cortical cholin-
ergic terminals, suggesting their role in the stimulation of ACh release. Nair and Gudel-
sky [65] reported that activation of the 5-HT2A receptor by DOI or mescaline stimulated
ACh release in the PFC, and this effect was abolished by a 5-HT2A/B/C antagonist. In
contrast to these results, the study by Wojtas et al. [37] observed a decrease, no changes, or
increase in extracellular levels of cortical ACh after the administration of 25B-NBOMe, and
the effect varied depending on the dose. These results are hard to explain due to a lack of
data concerning the effects of psychedelics on cholinergic neurotransmission.

These results indicate that while being a powerful psychedelic capable of inducing
significant enhancement of neurotransmission, which results in changes in animal behavior
similar to those induced by other psychedelics, NBOMes might not be as toxic as other
representatives of its class.

4.4. The Consequences of Repeated Exposure to NBOMes

As mentioned earlier, 25B-NBOMe elevates extracellular levels of DA in NAC and
STR, which are elements of the reward system. Unlike other psychedelics, the NBOMes
have been reported to exhibit rewarding properties, inducing CPP in mice and self-
administration in rats [44,45]. Most importantly, a study by Custodio et al. [38] revealed
that 25B-NBOMe also exhibited these properties in CPP and self-administration, and the
effects were neutralized when using the D1 or D2 receptor antagonist, clearly suggesting
the involvement of the dopaminergic system. Furthermore, chronic administration of
25B-NBOMe induced changes in the expression of the D1 and D2 receptors, namely upreg-
ulation of the former and downregulation of the latter, which is a common phenomenon
induced by addictive compounds [38].
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As stated before, frequent exposure to psychedelic drugs leads to rapid induction
of tolerance [66,67], originating from the downregulation of the 5-HT2A receptor. This
was also reported for 25I-NBOMe in rats [46] and 25B-NBOMe in mice [38]. Repeated
administration of 25B-NBOMe completely suppressed its effect on cortical glutamatergic
and dopaminergic neurotransmission and significantly reduced the effect it induced on
extracellular serotonin levels [68]. This effect was more robust than the one elicited by
25I-NBOMe [46]. The influence of tolerance on the WDS response was similar to 25I-
NBOMe, starting with a rapid decline in the number of WDS episodes on the second day
of treatment. This effect can be explained by the downregulation of the 5-HT2A receptor,
which diminishes the enhancement of glutamatergic neurotransmission in the PFC, an
essential event needed for HTR/WDS to occur [4]. The observed decrease in locomotor
activity after chronic exposure to 25B-NBOMe in the open field test may also be a result of
tolerance. With the 5-HT2A receptor downregulation, the 5-HT2C receptor activation plays
a greater role in modulating animal behavior, thereby leading to suppression of locomotor
activity, as suggested by Halberstadt et al. [42].

The potency of 25B-NBOMe-induced increases in extracellular levels of the examined
neurotransmitters was also reduced in NAC and STR. It is important to notice that in the
NAC, the observed tolerance was much smaller [68]. Importantly, after a 7-day treatment,
the compound still increased extracellular levels of dopamine, which corresponds with
its effect on DA receptors in NAC reported in mice [38] and increased ∆-fosB expression.
Taken together, these findings suggest that 25B-NBOMe might exhibit addictive properties
like other representatives of its family. Nevertheless, it is worth noticing that these effects,
while significant, are much smaller than the addictive properties of other classes of drugs
of abuse, e.g., psychostimulants [38].

While acute administration of 25B-NBOMe resulted only in a minor genotoxic ef-
fect [37], it produced significant DNA damage in both PFC and HP after chronic treat-
ment [68], in a similar way to 25I-NBOMe [64]. Repeated administration of 25B-NBOMe
increased basal levels of glutamate, DA, and 5-HT, suggesting the appearance of maladap-
tive changes in neurotransmission. These increases might lead to genotoxicity directly
when elevated glutamate levels overstimulate ionotropic glutamatergic receptors, resulting
in DNA damage [69], and indirectly, when an excess of monoamines leads to disturbances
in their metabolism, thus increasing the production of free radicals [69,70]. Moreover,
phenethylamines may directly produce oxidative stress, which was shown by Xu et al. [71]
in in vitro studies. Nevertheless, the observed genotoxic effect did not translate into perma-
nent loss of brain tissue, measured as the volume of cortical and hippocampal regions [68].
Alongside the previous study, these results suggest that although it induces some DNA
damage, the toxicity of 25-NBOMe cannot be explained by this phenomenon and is most
likely a result of serotonin syndrome [72].

5. Psilocybin
5.1. History of Psilocybin

Psilocybin-containing mushrooms belong to a diverse group within the Basidiomycota
fungi, comprising over 200 species across genera, such as Psilocybe, Gymnopilus, and Panaeo-
lus, with the most prevalent genus being Psilocybe, with about 144 species [73]. Psychedelic
mushrooms have been consumed and revered as religious objects since prehistoric times by
many cultures, with evidence of such practices found in Europe, Africa, and most notably,
Mesoamerica [74–76].

The modern history of psilocybin starts with Albert Hofmann, the chemist who
discovered the psychedelic properties of LSD. In 1957, he received a sample of Psilocybe
Mexicana mushrooms from which he extracted two crystalline compounds. Through self-
experimentation, he confirmed their psychoactive effects, and by 1958, he had identified
these compounds as psilocybin and psilocin, which he synthesized in 1958 [77].
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5.2. Pharmacology of Psilocybin

After oral intake, psilocybin is quickly dephosphorylated in the stomach or by alkaline
phosphatase in the intestine, kidney, and potentially blood, forming psilocin, which easily
penetrates the blood–brain barrier [78–80]. Studies in rodents confirm the almost complete
conversion of psilocybin to psilocin before entering the bloodstream [81]. Both psilocybin
and psilocin have similar psychotropic effects on humans at equimolar concentrations.
Thus, psilocybin acts as a prodrug, with psilocin being the active agent responsible for its
in vivo effects [82]. Moreover, inhibition of alkaline phosphatase completely suppresses the
psychoactive effects of psilocybin administration [83], further supporting the hypothesis
that psilocin is the primary psychoactive agent in hallucinogenic mushrooms [84].

As psilocin is structurally akin to the neurotransmitter serotonin, it undergoes a
similar metabolism. It is further degraded in the liver by monoamine oxidase (MAO) or
aldehyde dehydrogenase, leading to various intermediates and end products [85,86]. This
is why MAO inhibitors are sometimes taken by users in an attempt to intensify psilocin’s
hallucinogenic effects. Furthermore, psilocin itself may competitively inhibit MAO, which
may lead to elevated brain 5-HT levels and a decrease in 5-hydroxyindoleacetic acid
(5-HIAA) levels [87].

Like all psychedelics, psilocin has a strong affinity for 5-HT receptors in the brain, pri-
marily acting as an agonist at the 5-HT2A, 5-HT2C, and 5-HT1A receptors. The psychedelic
effects of psilocin are largely nullified by ketanserin, a 5-HT2A receptor antagonist, indi-
cating the central role of the 5-HT2A receptor in its subjective effects [88–90]. The role of
5-HT1A receptors in the psychoactive effects of psilocin is yet to be examined. Further-
more, psilocin interacts with other serotonin receptors, including 5-HT1B, 5-HT1D, 5-HT2B,
5-HT5A, 5-HT6, and 5-HT7 [84].

The subjective and behavioral effects of psilocybin are influenced by interactions with
non-serotonergic receptors. Research suggests that psilocybin indirectly elevates DA levels
in the striatum, which is associated with depersonalization and euphoria [91]. Nonetheless,
the dopaminergic system plays only a partial role in the psychological effects of psilocybin,
as haloperidol, a nonselective DA receptor antagonist, reduces only about 30% of these
symptoms [90]. Contrary to LSD, which binds to D2 receptors, psilocybin exhibits no
affinity for dopamine D2 receptors [92,93]. While there is evidence suggesting that classical
psychedelics can elevate dopaminergic transmission in human striatal regions, they do not
significantly activate the NAC in positron emission tomography (PET) imaging studies.
This observation aligns with the absence of data linking classical psychedelics to substance
use disorder [90,91,94,95].

5.3. The Effects of Psilocybin Observed in Animal Studies

Both psilocybin and psilocin have been observed to evoke HTR and WDS in mice
and rats, respectively [96,97], and the effect was absent in 5-HT2A receptor knockout
mice [15]. Psilocybin fully substituted for psilocin, DOM, and LSD [98], and these effects
were abolished by coadministration of volinserin, further confirming that the primary
effects of psilocybin in HTR are mediated via the 5-HT2A receptor [98]. Psilocin dose-
dependently (1.25–5.0 mg/kg) reduced locomotor activity in rats [10] and mice [98]. What is
interesting is that the treatment with the selective 5-HT1A receptor antagonist, WAY-100635,
completely reversed the effects of psilocin on the locomotor activity of mice. Furthermore,
deletion of the 5-HT2A receptor gene did not affect the response induced by psilocin [42].
These findings suggest that the effect of psilocybin/psilocin on locomotor behavior may be
primarily mediated via the 5-HT1A receptor and not the 5-HT2A receptor.

To date, there are no animal studies suggesting that psilocybin exhibits addictive
properties. Fantegrossi et al. [99] reported no significant differences between psilocybin
and saline in self-administration in rhesus monkeys. A microdialysis study by Sakashita
et al. [100] demonstrated that psilocin elevated extracellular levels of DA in NAC in a slight
but significant way but did not affect them in the ventral tegmental area (VTA), which sug-
gests rather low reinforcing properties. Furthermore, psilocin inhibited methamphetamine-
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induced conditioned place preference formation during the acquisition phase [101]. It also
reduced intracranial self-stimulation [102], and this effect was only partially reduced by the
administration of volinserin, suggesting that other receptors, besides the 5-HT2A receptor,
may also contribute to this effect [103]. These experiments are consistent with the general
view that classic psychedelics lack reinforcing properties [4] and suggest a possible use of
psilocybin in the treatment of addictive disorders.

Acute administration of psilocin has been reported to either increase anxiety, mea-
sured as the center avoidance in mice [97], or exert no effect in this paradigm [104]. The
anxiogenic effect was also reported in rats, but it diminished with repeated exposure to the
experimental arena, suggesting that the anxiety is a result of drug-enhanced neophobia [15].
A recent study by Hibicke et al. [105] demonstrated the anxiolytic properties of psilocybin if
the animals were repeatedly exposed to the novel environment. Anxiety was not observed
in rats 24 h after psilocybin administration either in the open field or light/dark box (L/D)
paradigm [62]. Furthermore, psilocybin/psilocin facilitated fear extinction in rats [106,107].

Psilocybin tested acutely in Flinders Sensitive Line rats [108] and 24 h after admin-
istration in naive controls [62] did not exert an antidepressant effect in the forced swim
test (FST) but demonstrated a significant antidepressant effect 5 weeks after its adminis-
tration [105]. Furthermore, it attenuated learned helplessness in mice 24 h after the drug
administration [109] and reversed anhedonia in chronically stressed mice [110], while not
affecting the immobility time measured in the FST. These findings support the thesis that
(a) psilocybin/psilocin may exhibit antidepressant properties and (b) FST might not be
suitable for evaluating the antidepressant qualities of psychedelics.

5.4. The Effects of Psilocybin Observed in Humans

Psilocybin has demonstrated minimal toxicity in animals, with an LD50 in rodents be-
ing 2000 to 3000 times the standard human dose on a mg/kg basis [84]. When assessing the
acute toxicity, safety, and addictive potential of various psychoactive substances, psilocybin
is consistently ranked at the lower harm end while, in comparison, opioids, notably heroin,
are at the higher harm end [111–113]. Physiologically, psilocybin poses minimal risk to
humans, showing no association with major organ damage, carcinogenicity, teratogenicity,
enduring neuropsychological deficits, or overdose fatalities [76].

Oral psilocybin doses range from 0.045–0.429 mg/kg, with the psychedelic effect
observed with oral doses > 15 mg [114] or plasma psilocin levels of 4–6 ng/mL [80]. Doses
exceeding 25 mg orally are considered high but not dangerous [76]. After oral intake,
onset of action is 20–40 min, peaking at 60–90 min with effects lasting 4–6 h, and complete
cessation by 24 h [90,114].

Psilocybin administration results in dose-dependent effects: low doses produce drowsi-
ness and amplify pre-existing moods [114]; medium doses instigate a controllable altered
state of consciousness [82]; and high doses generate intense psychedelic experiences, char-
acterized by altered perception, dream-like states, illusions, hallucinations, synesthesia,
and alterations in the perception of time and space [95,114,115].

According to the Altered States of Consciousness scale (ASC) scale [116], when juxta-
posed with ketamine, psilocybin exhibits pronounced visual hallucinatory effects, whereas
ketamine more markedly disrupts physical integrity [93,117,118]. Pharmacological inter-
ventions have provided insights into the mechanism of action of psilocybin. Both ketanserin
(5-HT2A/C antagonist) and risperidone (mixed 5-HT2A/C and D2 antagonist) have been
observed to normalize psilocybin-induced alterations. Conversely, haloperidol, a D2 recep-
tor antagonist, only modulates euphoria, derealization, and depersonalization but fails to
influence visual hallucinations [90].

5.5. The Effects of Psilocybin as a Fast-Acting Antidepressant

While possessing distinct pharmacological targets, namely, the 5-HT2A receptor for
psychedelics and the NMDA receptor for ketamine, those drugs exhibit some overlapping
properties. Either stimulation of cortical 5-HT2A receptors located on pyramidal cells by
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psychedelics or inhibition of cortical GABAergic interneurons by ketamine is supposed to
result in a “glutamate surge”, which is a sudden elevation of cortical glutamate levels [119,
120]. Subsequently, this phenomenon leads to an increase in neuroplasticity, producing
an antidepressant effect [121,122]. The molecular mechanism underlying the neuroplastic
effects of psychedelics involves 5-HT2A receptor signaling initiated by increased Ca2+

influx in the dendritic compartment that drives the release of neurotrophic factors (e.g.,
brain-derived neurotrophic factor, BDNF), which act on tropomyosin receptor kinase B
(TrkB) receptors to stimulate mammalian target of rapamycin (mTOR) signaling crucial
to synapse formation [109,119,123]. Overall, in this model alterations in glutamate release
contribute to neuroplasticity. However, in addition to being agonists of the 5-HT2A receptor,
psychedelics are also agonists of the 5-HT2C and 5-HT1A receptors [4]. 5-HT1A and 5-
HT2A receptors are highly expressed and often co-expressed in PFC pyramidal neurons and
GABAergic interneurons. Almost 60% of cells in the PFC contain mRNA for 5-HT1A and
5-HT2A receptors, with co-localization of up to 80% [124–126]. Thus, the cellular response
is determined by the summation of 5-HT1A receptor-induced inhibition and 5-HT2A
receptor-induced excitation. The 5-HT1A receptor signaling at GABAergic interneurons
may inhibit this inhibitory control of pyramidal cells leading to their disinhibition. In this
way, psilocybin modulates local and downstream effects. Psilocybin could also activate
pyramidal neurons via 5-HT2C receptors expressed in layer V neurons of the PFC [127].
However, the depolarizing action of 5-HT in layer V pyramidal neurons of the PFC does
not seem to depend on 5-HT2C receptor activation since it was not blocked by the selective
antagonist SB 242084 [128]. According to the “bipartite” model proposed by Carhart-Harris
and Nutt [129], 5-HT1A and 5-HT2A receptors play a crucial role in psilocybin-induced
alterations in brain activity (Figure 2).
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psilocybin-induced alterations in brain activity [129].

On the global level, the administration of psychedelics [130,131] reduces the activity
of the default mode network (DMN), which is hyperactivated in depressive disorders.
As stated by Vollenweider and Kometer [93], this translates into partially overlapping
subjective experiences produced by psilocybin.

5.6. The Effect of Psilocybin Exerted on Cortical and Thalamic Neurotransmitters, Receptors,
and Behavior

As reported in other works regarding psychedelics [37,53,55], psilocybin elevated the
extracellular glutamate levels in the PFC, providing further evidence for the “glutamate
surge” hypothesis [82]. Furthermore, it elevated cortical levels of DA only at a smaller
dose, with the high dose being ineffective. This finding is in accordance with the work of
Sakashita et al. [100], who reported a slight but significant decrease in cortical DA after
administration of a similar dose (10 mg/kg) of psilocin. The authors explain this fact by the
activation of 5-HT2C receptors, which are reported to decrease DA activity in the PFC [132].
Psilocybin dose-dependently raised the extracellular levels of 5-HT in the PFC [62], which
was observed previously for psilocin by Sakashita et al. [100]. This effect might be mediated
via the 5-HT2A receptor, as local administration of 5-HT2A agonist (DOI) into the PFC
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elevated extracellular levels of cortical 5-HT and this effect was neutralized with 5-HT2A
receptor antagonist volinserin [133]. Furthermore, psilocybin dose-dependently increased
GABA in the PFC [62]. What is important to note is that this also happens in humans after
the administration of psilocybin, as stated by Mason et al. [134]. This could be explained by
either the activation of the 5-HT2C [124] or 5-HT2A [4,135] receptor. Both are located on
GABAergic interneurons in the PFC, and psilocin exhibits similar affinities for them [10].

As reported by Rodriguez et al. [136], 5-HT2A receptors exhibit high expression in
the reticular nucleus (RN) of the thalamus, which is composed mainly of GABAergic
interneurons. Vollenweider and Geyer [118] proposed that RN was responsible for filtering
the thalamic input into the cortex and that psychedelics enhanced its GABAergic activity,
disrupting the negative feedback. The observations of Wojtas et al. [62] seem to support this
hypothesis, as a dose-dependent increase in GABAergic neurotransmission was reported
while any significant effect on glutamatergic neurotransmission was not observed (Figure 3).
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Due to the release of glutamate induced by the administration of psilocybin, the
expression of GluN2A and GluN2B subunits of the NMDA receptor and GluA1 and GluA2
subunits of the AMPA receptor in the PFC 24 h after administration of psilocybin was
examined. No significant effect was observed, except for the increase in expression of
the GluN2A subunit when using the higher (10 mg/kg) dose of psilocybin [62]. These
results are hard to explain, and perhaps it would be useful to replicate this experiment
with different time points to evaluate if changes might happen earlier/later after the drug
was administered.

While it is generally acclaimed that classical psychedelics are physiologically safe to
use, a significant increase in glutamatergic activity in the PFC after high doses of psilocybin
was observed, which may result in genotoxicity. To examine this, the oxidative DNA
damage was assessed with the Comet Assay [62]. The 10 mg/kg dose of psilocybin
significantly harmed the DNA in both the PFC and HP, suggesting caution when using
high doses of this drug.

To investigate the long-lasting effect of psilocybin administration on rats’ behavior,
behavioral tests were conducted 24 h after drug administration to ensure that the injected
drug would leave the system. No effect on the locomotor activity was observed [62] when
measured in the open field test and only a slight drop in the distance traveled was seen in
the L/D box test after administration of 2 mg/kg of psilocybin. This suggests that after
24 h, the drug is washed out of the body and nearly no long-lasting effects are present,
supporting the hypothesis about its safety. Since it did not produce an antidepressant effect
in the forced swim test (FST), it is worth noticing that this assay may not be suitable for
testing fast-acting antidepressant drugs [108].
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5.7. The Limbic Response to Psilocybin

Alongside the PFC, the limbic system also exhibits maladaptive changes in depres-
sive disorders [137]. Both the HP and amygdala undergo hypotrophy during depression,
while NAC exhibits dysfunctional hypertrophy [137–139]. Recent studies have reported
that the administration of ketamine is able to reverse those changes in all aforementioned
structures [139,140], and these effects are correlated with antidepressant effect. The data con-
cerning the effect of psilocybin on the limbic system and limbic-related behavior are scarce.

As reported by Sakashita et al. [100] and Wojtas et al. [141], psilocin dose-dependently
increased extracellular DA levels in the NAC. This effect can be explained by the stimulation
of 5-HT2A receptors, as local administration of 5-HT2A agonists enhances DA release in
the NAC [142,143], while administration of 5-HT2A antagonists leads to inhibition of DA
release in the NAC [143]. Interestingly, while Sakashita and colleagues [100] observed
a slight but significant and dose-independent drop in the extracellular level of 5-HT in
the NAC after administration of psilocin, Wojtas et al. [141] reported a dose-dependent
increase. This effect might be explained by the stimulation of pyramidal cells, which send
their projections to the raphe nuclei, and subsequent stimulation of serotonergic neurons
projecting to the NAC [144].

Intriguingly, psilocybin decreased accumbal glutamate levels [141]. Previous studies
by Wojtas et al. [37] with a more selective 5-HT2A agonist, 25B-NBOMe, reported increases
in glutamatergic activity in the NAC. This suggests the involvement of other receptor
subtypes, as psilocin is a more promiscuous drug, but the 5-HT1A receptors located on
glutamatergic cells projecting into the NAC are the most probable target [145]. The observed
increase in the extracellular level of GABA might result from the stimulation of 5-HT2A
receptors located on GABAergic interneurons [146].

The opposing effect of lower and higher doses of psilocybin on extracellular levels of
glutamate in the HP is hard to explain; the dose-dependent increase in GABA excludes
the involvement of GABAergic interneurons [141]. Furthermore, psilocybin increased
extracellular levels of ACh in the HP, with the lower dose being more potent [141]. This
might be a result of subsequent activation of the 5-HT2A receptor, which stimulates ACh
release [65], and then the 5-HT1B receptor, which inhibits ACh release in the rat HP [147].
Perhaps the inhibition of glutamatergic activity by the lower dose of psilocybin results
from the elevated levels of ACh acting at M4 muscarinic receptors located on hippocampal
pyramidal cells [148].

Psilocybin did not affect extracellular levels of glutamate and GABA in the amyg-
dala [141]. 5-HT2A receptors are highly expressed on pyramidal cells and both parvalbumin
and somatostatin GABAergic interneurons in the amygdala, which suggests that the effect
of their activation may be mutually suppressive [149].

Despite the fact that psilocin is a 5-HT2A receptor agonist and it elevated the extracel-
lular levels of 5-HT in the NAC, it did not affect the expression of the 5-HT2A receptor. This
may be due to its low density in the NAC [150]. Changes were observed for the D2 receptor
when using a higher dose of psilocybin [141]. This may be a result of an interplay between
dopaminergic and serotonergic neurotransmission, as the administration of haloperidol
attenuates the psychotomimetic effects induced by psilocybin administration [82].

Both 5-HT2A and 5-HT1A receptors show high-density expression in the HP [149,151].
The observed decrease in 5-HT1A receptor density might be a result of their stimulation
either by psilocybin or the release of serotonin, but there is a lack of data regarding the
latter [141]. The decrease in 5-HT2A receptor expression induced by the lower dose of
psilocybin [141] may be a result of rapid downregulation, while the increase caused by the
higher dose might be a result of an increase in synapto- and neurogenesis [123].

Psilocybin exhibited a dose-dependent anxiolytic effect measured as a decrease in
center avoidance in the open field test both 1 and 24 h after the drug administration, and
this effect might result from intensification of GABAergic neurotransmission observed in
limbic structures [141].
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5.8. The Therapeutic Potential of Psychedelics

Besides being a non-toxic and well-tolerated drug, over the last decade, psilocybin
has been thoroughly examined as a potential fast-acting antidepressant drug. Carhart-
Harris et al. [152] reported that acute administration of psilocybin produced significant
effects in 67% of patients with treatment-resistant depression in the first week after the
treatment, with 47% of treated individuals staying in remission for 3-month and 6-month
periods [153]. A single dose of psilocybin was associated with a reduction in depres-
sive symptoms without serious adverse events in a randomized clinical study of Raison
et al. [154]. A study by Gukasyan et al. [155] reported long-lasting antidepressant effects of
psilocybin administration, with significant response to long treatment maintained in 75%
of participants and the remission rate was 58% at the 12-month follow-up. The drug also
withstands comparison with classical antidepressant treatment, as double administration
of psilocybin (separated by a 3-week interval) was as efficient as a 6-week chronic treatment
with escitalopram [156,157].

Besides depression, numerous clinical studies have shown the therapeutic potential
of psychedelics in treating disorders including addiction to alcohol [94,158] and nico-
tine [159–161], anorexia nervosa [162], distress and anxiety concerning death [163–166],
obsessive–compulsive disorder [167], and post-traumatic stress disorder (PTSD) [168].
Psilocybin significantly increased abstinence and decreased craving up to 36 weeks after
administration in alcohol-dependent participants [158] and elicited alterations in their
relationship with alcohol [94]. Administration of moderate (20 mg/70 kg) and high (30
mg/70 kg) doses of psilocybin was a potentially efficacious adjunct to current smoking
cessation treatment and promoted long-term smoking abstinence [159–161]. Classical
psychedelics including psilocybin alleviated symptoms of anorexia nervosa that relate
to serotonergic signaling and cognitive inflexibility [162]. Administration of low (1 or
3 mg/70 kg), moderate (0.2 mg/kg), or high (22 or 30 mg/kg) doses of psilocybin pro-
duced immediate, substantial, and sustained improvements in anxiety and depression in
patients with life-threatening cancer at 1 to 6 months after treatment [163–165]. A similar
reduction in anxiety was demonstrated in LSD-assisted psychotherapy [166]. Psilocybin in
single doses ranging from sub-hallucinogenic (100 µg/kg), medium (200 µg/kg), and high
(300 µg/kg) relieved symptoms of obsessive–compulsive disorder in a controlled clinical
environment [167]. Classical psychedelics such as psilocybin and LSD showed significant
potential for treating PTSD. However, their unpredictable psychological effects might not
make them the best candidates compared with MDMA [168].

Serotonergic hallucinogens, acting on 5-HT2A receptors, induce perceptual and be-
havioral alterations possibly related to psychotic symptoms. It is suggested that the psy-
chotomimetic properties of psychedelics are mediated by an alteration in thalamocortical
activity, which is the neurobiological basis of schizophrenia [169,170]. Given the enhancing
effect of psychedelics on neural plasticity and their effects on inflammatory processes, it
is possible that psychedelics could have a role in treating cortical atrophy and cell loss in
schizophrenia and the negative symptoms associated with this illness. It is thus possible
that microdosing, in which psilocybin is taken in one-tenth of the typical psychedelic dose,
has no psychosis-inducing effects while it may have positive effects on mood, may alleviate
depression and anxiety, and improve cognitive function [171].

6. Conclusions and Future Questions

The presented data support the hypothesis about a greater risk associated with the use
of Novel Psychoactive Substances (i.e., NBOMes) in comparison with naturally occurring
psychedelics. Therefore, the potential efficacy of these substances for medical treatment
is ambiguous or low in comparison with psilocybin. The reviewed studies allow for
the characterization of the effects of selective 5-HT2A/C receptor agonists on excitatory
neurotransmitter systems and establish how those changes may translate into behavior and
damage inflicted upon the central nervous system.
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A similar approach was then applied to a compound with a broader receptor profile
(psilocybin), uncovering its subtler effects resulting from the interplay of 5-HT1A and
5-HT2A receptors, with possible beneficial influence (i.e., lasting anxiolytic effect).

Mechanistically, psychedelics induce changes in neuronal structure that activate
BDNF/TrkB/mTOR signaling crucial to synapse formation by stimulating 5-HT2A re-
ceptors [122,123]. The localization of 5-HT2A receptors highly expressed on layer V pyra-
midal neurons of the PFC could explain why psychedelics do not promote plasticity in
the mesolimbic pathway and are not addictive. However, it is important to consider the
potential risks associated with excessive release of glutamate leading to excitotoxicity and
cell atrophy. Another question that needs to be resolved is whether the subjective effects
of psychedelics are a critical component of their therapeutic mechanism. The develop-
ment of non-hallucinogenic compounds such as analogs of 5-MeO-DMT, 6-MeO-isoDMT
or tabernanthalog (TBG), which exhibit reduced hallucinogenic potential while retain-
ing psychoplastogenic potency, may greatly improve the accessibility of therapy with
psychedelics [172]. The recent discovery of linking intracellular 5-HT2A receptors with
the induction of plasticity by molecules having lipophilic properties can lead to new drug
discovery [173].
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