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Abstract: Cotton growth and yield are severely affected by abiotic stress worldwide. Mepiquate
chloride (MC) and melatonin (MT) enhance crop growth and yield by reducing the negative effects
of abiotic stress on various crops. Numerous studies have shown the pivotal role of MC and MT
in regulating agricultural growth and yield. Nevertheless, an in-depth review of the prominent
performance of these two hormones in controlling plant morpho-physiological activity and yield in
cotton under abiotic stress still needs to be documented. This review highlights the effects of MC
and MT on cotton morpho-physiological and biochemical activities; their biosynthetic, signaling, and
transduction pathways; and yield under abiotic stress. Furthermore, we also describe some genes
whose expressions are affected by these hormones when cotton plants are exposed to abiotic stress.
The present review demonstrates that MC and MT alleviate the negative effects of abiotic stress in
cotton and increase yield by improving its morpho-physiological and biochemical activities, such as
cell enlargement; net photosynthesis activity; cytokinin contents; and the expression of antioxidant
enzymes such as catalase, peroxidase, and superoxide dismutase. MT delays the expression of NCED1
and NCED2 genes involved in leaf senescence by decreasing the expression of ABA-biosynthesis
genes and increasing the expression of the GhYUC5, GhGA3ox2, and GhIPT2 genes involved in indole-
3-acetic acid, gibberellin, and cytokinin biosynthesis. Likewise, MC promotes lateral root formation
by activating GA20x genes involved in gibberellin catabolism. Overall, MC and MT improve cotton’s
physiological activity and antioxidant capacity and, as a result, improve the ability of the plant
to resist abiotic stress. The main purpose of this review is to present an in-depth analysis of the
performance of MC and MT under abiotic stress, which might help to better understand how these
two hormones regulate cotton growth and productivity.

Keywords: mepiquate chloride; melatonin; abiotic stress; morpho-physiological activity; yield;
cotton genes

1. Introduction

Cotton is a cash crop cultivated for the textile industry, accounting for 35% of global
fiber consumption [1]. Major cotton-producing countries include the United States, China,
India, Pakistan, and Brazil [2]. Cotton’s growth and productivity are severely impacted by
abiotic stress, which decreases lint yield and fiber quality [3,4]. Abiotic stress, caused by a
variety of adverse environmental conditions, such as cold, salt, heavy metals, drought, and
high temperature, leads to a series of morpho-physiological, biochemical, and molecular
changes in plants that adversely affect plant growth and yield [1]. China is the world’s
largest cotton producer; however, some parts of the country, like Xinjiang, are frequently
impacted by cold stress, which persists for more than half of the cotton growth season [5].
Current research and long-term production practices worldwide, particularly in Xinjiang,
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reveal that cold damage significantly impacts cotton growth and yield during the seedling
stage [6]. Therefore, it is essential to study cotton morpho-physiological, biochemical, and
molecular responses during seedling growth under low temperatures and to introduce new
methods for promoting abiotic tolerance in cotton [7].

Different crops, such as cotton (Gossypium hirsutum L.), maize (Zea mays L.), soybean
(Glycine max L.), rice (Oryza sativa L.), and tomato (Solanum lycopersicum L.), cannot adapt
to their environment when confronted with abiotic stress [8–10]. Plants have evolved
complex mechanisms by incorporating plant transcription factors to cope with the adverse
effects of abiotic stress [11,12]. Plants have coping mechanisms that integrate biochemical,
physiological, and molecular systems and stress detection, endogenous hormones, signal
transduction pathways, and gene identification to protect or mitigate the adverse effects of
cellular oxidative damage [13].

The study of cotton abiotic stress tolerance regulation has significantly increased in
recent years. The hormones MT and MC have been recently found to be among cotton’s
most efficient abiotic stress signaling regulators [1,14]. As a result of suppressing gibberellin
(GA) production in plants, it has been shown that MC improves cotton yield by reducing
leaf area and plant height and reducing the length of shoots and fruit branches [15–17].
Applying MC affects the physiological characteristics of cotton leaves [18]. Cotton plants
treated with MC had higher leaf weights, thicker leaves, chlorophyll content, and net pho-
tosynthetic activity [19]. In cotton, MC increased the number of photoassimilates produced
by the leaves, altered the source–sink relationship, decreased ribulose 1,5-bisphosphate
carboxylase/oxygenase (RuBisCO) activity, and increased stomatal conductivity [20]. MC
application has been shown to increase the functional stage of cotton leaves by expanding
the content of active cytokinin (CK) in the middle and final phases of leaf growth, decreas-
ing GA synthesis, delaying the peak time of abscisic acid (ABA) and ethylene (ET), and
delaying leaf senescence [21]. However, the role of MC in these morpho-physiological
activities of cotton during abiotic stress remains unknown.

Most animals and plants also produce MT in their mitochondria and chloroplasts [22].
As a result, cotton seeds are predicted to contain endogenous MT [23]. Previous research
has shown that MT possesses excellent antioxidant properties and can improve crop re-
sistance through signal modulation under abiotic stress [24]. MT is engaged in various
processes in plants, including root and flower growth, leaf senescence, fruit ripening,
photosynthetic activity, and stress-induced oxidative damage elimination [25–27]. MT
enhances the expression of superoxide dismutase (SOD), catalase (CAT), glutathione perox-
idase (GSH-PX), glutathione reductase (GSSG-R), and ascorbate peroxidase (APX), which
scavenge free radicals and provide cold resistance in cotton [28]. MT metabolites also
scavenge the overproduction of reactive oxygen species (ROS) and reactive nitrogen species
(RNS), distinguishing them from most other antioxidant enzymes [29]. Under cold stress,
MT enhances antioxidant activity by enhancing gene expression and redox status [9,30].
Moreover, MT enhances cold resistance by increasing electron transport and antioxidant
activity and by degrading starch [31]. Several MT functions have been demonstrated, many
of which contribute to stress tolerance in different crops [32]. For example, MT application
substantially reduced electrolyte leakage in tomatoes under cadmium stress (Cd) but had
no effect under normal conditions [33]. The appropriate rate of MT not only accumulated
and promoted the total protein content in Malus hupehensis but it also accumulated the
total protein content in kiwifruit leaves while boosting cell fluid concentration and stress
resistance [34,35]. Exogenous MT promoted soybean growth and increased protein content
under salt stress [36].

Different studies have shown that MC- and MT-treated plants and their relevant genes
could alleviate the detrimental effects of abiotic stress, thus indicating that these hormones
are beneficial for agricultural yield (Table 1). Nevertheless, the performance of MC and MT
in enhancing these mechanisms under abiotic stress, especially in cotton crops, is still far
from clear. Therefore, the primary purpose of this investigation is to provide an in-depth
analysis of the impact of MC and MT on morpho-physiological and biochemical activities



Int. J. Mol. Sci. 2024, 25, 235 3 of 18

of plants and their relevant genes under abiotic stress in cotton, as well as their respective
functions, signaling, and transduction pathways.

Table 1. MC and MT mitigate the negative effects of abiotic stress in cotton.

Hormones Dose of MC
and MT Crops Abiotic Stress References

MC 50–150 g ha−1 Cotton

Enhanced salt tolerance [37]
Enhanced cold tolerance [38]

Heat stress [39]
Drought stress [39]

Enhanced drought tolerance [40]

MT 50 µM to 100 µM Cotton

Enhanced cold tolerance [28,41]
Enhanced Cd tolerance [42]
Enhanced Cd tolerance [43]

Enhanced cold tolerance [44]
Enhanced drought tolerance [44,45]

Enhanced salt tolerance [41,46,47]
Enhanced salt tolerance [30,48]

Ultraviolet stress [49]
Heavy metal stress [49,50]

2. Biosynthesis, Signaling, and Transduction Pathways of MC and MT
2.1. Synthetic Pathway of MC

MC is a compound used to regulate plant growth and development because it is
absorbed by the plant’s leaves and then distributed to the other parts of the plant [51]. MC
is a water-soluble exogenous hormone that may be supplied by soaking seeds or spraying
leaves [52]. Previous research demonstrated that MC controls plant growth by inhibiting
GA biosynthesis [53]. GA is a hormone that promotes the growth of internodes and stems
by cell division and expansion [54]. MC blocks the ent-copy diphosphate synthase (CPS)
and ent-kaurene synthase (KS) during the initial stages of GA metabolism [52]. Moreover,
the impact of MC on GA biosynthetic genes is caused by either interacting with the GA
biosynthesis pathway or by upregulating the GA repressor, DELLA [55]. MC treatment
resulted in the downregulation of cell-loosening genes, like GHEXP and GhXTH2, which led
to a considerable decrease in the endogenous level of bioactive GAs like GA3 and GA4 [16].
The reduction in the bioactive content of GAs is related to the MC-induced downregulation
of GA biosynthetic genes, including GhGA3ox, GhGA20ox, GhCPS, and GhCPS [56]. A
previous study on cotton seedlings found that MC reduced the gene expression involved in
GA metabolism and signaling pathways, decreased the contents of GA, and hindered cell
elongation [57]. Nevertheless, the entire transcriptional regulatory mechanism underlying
MC-mediated growth inhibition is still unclear [16].

MC regulates a wide range of biological activities in various crops [58]. In response to
abiotic stresses, MC decreased vegetative growth while increasing crop yield in soybean
and cotton under drought stress [40,59]. Exogenous MC treatment in cotton can enhance
fiber growth and production while reducing the leaf area, stem elongation, and plant
height [60]. Previous research has shown that compared to other crops, including maize,
wheat, and soybean, cotton is more susceptible to MC for unknown reasons [56,61]. Hence,
MC is often used in cotton to control cotton development, such as by reducing the internode
length and leaf area while increasing the fiber quality and yield [19,62,63]. MC treatment
has become one of the most essential agronomic strategies in commercial cotton production
due to its beneficial effect on plant growth and yield. In this regard, more research is needed
to better understand the effects of MC on cotton growth and fiber yield, its association with
GAs, and its essential genes in cold-stressed cotton plants.
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2.2. The Signaling and Transduction Process of MC

MC increases the growth and yield of cotton via signal transduction [52]. MC applica-
tion slowing GA activity involved in cell elongation restricts signaling and transduction
pathways activation, hinders vegetative development, and alters GA homeostasis by ac-
tivating site-specific genes, reducing plant height ([55], Figure 1). MC inhibited soybean
growth by decreasing the concentrations of GA, brassinolide, zeatin, and other plant hor-
mones and signaling pathway-related genes [40]. MC affects the signaling of various
hormones [16]. This variation has a more significant effect on sensitive crop varieties. For
example, a previous study demonstrated that numerous tryptophan metabolism genes and
all genes in the auxin-responsive GH3 gene family are downregulated in the HN65 drought-
resistant soybean variety [64]. The GH3 gene family controls plant and cell growth in
different crops. During the inhibition of cell division and zeatin production, the expressions
of the first few genes were downregulated and the genes responsible for GA and brassinos-
teroid biosynthesis were suppressed. The downregulation of GA and brassinosteriod gene
expression may significantly decrease crop growth and yield [64].

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 4 of 18 
 

 

production due to its beneficial effect on plant growth and yield. In this regard, more re-
search is needed to better understand the effects of MC on cotton growth and fiber yield, 
its association with GAs, and its essential genes in cold-stressed cotton plants. 

2.2. The Signaling and Transduction Process of MC 
MC increases the growth and yield of cotton via signal transduction [52]. MC appli-

cation slowing GA activity involved in cell elongation restricts signaling and transduction 
pathways activation, hinders vegetative development, and alters GA homeostasis by acti-
vating site-specific genes, reducing plant height ([55], Figure 1). MC inhibited soybean 
growth by decreasing the concentrations of GA, brassinolide, zeatin, and other plant hor-
mones and signaling pathway-related genes [40]. MC affects the signaling of various hor-
mones [16]. This variation has a more significant effect on sensitive crop varieties. For ex-
ample, a previous study demonstrated that numerous tryptophan metabolism genes and 
all genes in the auxin-responsive GH3 gene family are downregulated in the HN65 
drought-resistant soybean variety [64]. The GH3 gene family controls plant and cell 
growth in different crops. During the inhibition of cell division and zeatin production, the 
expressions of the first few genes were downregulated and the genes responsible for GA 
and brassinosteroid biosynthesis were suppressed. The downregulation of GA and brassi-
nosteriod gene expression may significantly decrease crop growth and yield [64]. 

Due to the acceleration of IAA conjugate hydrolysis and the consistent upregulation 
of GhLBD18-1, GhLBD18-2, GhARF19, GHLBD18-1, and GhARF7 gene expression in the 
roots of cotton seedlings, the MC treatment of cotton seeds could increase the content of 
IAA and, as a result, increase the number of lateral roots (LRs) [65]. IAA is pivotal in con-
trolling pericycle cell priming and growth [66]. It may be produced in cell biofilms, en-
hancing the plant’s antioxidant defense system and scavenging the ROS free radicals in 
plants during abiotic stress [67]. 

Numerous studies have shown that MC increases stress resistance by enhancing the 
physiological and metabolic processes of plants, such as protein, sugar, and chlorophyll 
activity, accumulating free amino acids, SOD, CAT, and POD, and decreasing MDA activ-
ity in sunflower leaves [68]. Increases in the concentrations of enzymes such as CAT, POD, 
and SOD, osmotic adjustment (soluble sugar and proline) in the leaves, and ABA accumu-
lation (which mitigates the harmful effects of cold stress) are all evidence that exogenous 
MC improves the growth and cold tolerance of sweet pepper and cotton [38,55]. Stress 
resistance increased significantly due to an increase in ABA content. However, the perfor-
mance of MC in these mechanisms in cotton under abiotic stress is still unknown. 

 
Figure 1. MC affects the GA activity involved in cell elongation and inhibits the signaling and trans-
duction activation mechanism, which hinders vegetative development and GA homeostasis and, as 
a result, reduces plant height. MC affects the signaling of different hormones. In soybean variety 

Figure 1. MC affects the GA activity involved in cell elongation and inhibits the signaling and
transduction activation mechanism, which hinders vegetative development and GA homeostasis and,
as a result, reduces plant height. MC affects the signaling of different hormones. In soybean variety
HN65, during zeatin production, the expression of several genes, such as GH3, is downregulated. The
genes responsible for GA and brassinosteroid biosynthesis are suppressed, which, as a result, control
cotton growth and yield. MC affects the signaling of other hormones, such as IAA. IAA plays an
essential role in pericycle cell priming and growth. IAA increases the number of lateral root growth,
enhances plant antioxidants, and scavenges ROS under abiotic stress.

Due to the acceleration of IAA conjugate hydrolysis and the consistent upregulation of
GhLBD18-1, GhLBD18-2, GhARF19, GHLBD18-1, and GhARF7 gene expression in the roots
of cotton seedlings, the MC treatment of cotton seeds could increase the content of IAA
and, as a result, increase the number of lateral roots (LRs) [65]. IAA is pivotal in controlling
pericycle cell priming and growth [66]. It may be produced in cell biofilms, enhancing the
plant’s antioxidant defense system and scavenging the ROS free radicals in plants during
abiotic stress [67].

Numerous studies have shown that MC increases stress resistance by enhancing the
physiological and metabolic processes of plants, such as protein, sugar, and chlorophyll
activity, accumulating free amino acids, SOD, CAT, and POD, and decreasing MDA activity
in sunflower leaves [68]. Increases in the concentrations of enzymes such as CAT, POD, and
SOD, osmotic adjustment (soluble sugar and proline) in the leaves, and ABA accumulation
(which mitigates the harmful effects of cold stress) are all evidence that exogenous MC
improves the growth and cold tolerance of sweet pepper and cotton [38,55]. Stress resistance
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increased significantly due to an increase in ABA content. However, the performance of
MC in these mechanisms in cotton under abiotic stress is still unknown.

2.3. The Biosynthetic Pathway of MT

Plants, bacteria, and mammals all produce MT, a biogenic amine. The “phytomela-
tonin” was first introduced by [69] to refer to the substance’s plant origins after it was
first detected in higher plants in the 1990s. MT was identified and quantified in over
20 monocotyledonous and dicotyledonous crops [70,71]. According to numerous research
investigations, tryptophan has been identified as the primary substrate involved in the
first stages of MT production. Tryptamine 5-hydroxylase, tryptophan hydroxylase, N-
acetylserotonin methyltransferase, serotonin N-acetyltransferase, tryptophan decarboxy-
lase, and caffeic acid 0-methyl transferase are six enzymes involved in the four-step en-
zymatic process [49,72]. In the first two steps, tryptophan decarboxylase catalyzes the
breakdown of tryptophan to generate tryptamine.

Furthermore, tryptamine-5-hydroxylase (T5H) catalyzes the conversion of tryptamine to
serotine; serotine is the most critical step in MT synthesis [73]. Serotonin N-acetyltransferase
catalyzes the conversion of serotine to N-acetylserotonin, which N-acetylserotonin methyl-
transferase then converts into MT. Zhang et al. [46] found that exogenous MT controlled
52 SNAT genes in the Gossypium hirsutum genome and a subset of GhSNATs under salt
stress. The GhSNAT3D gene-silenced plants had lower endogenous amounts of MT, Ca2+,
and antioxidant enzymes and decreased salt tolerance. Exogenous MT-silenced plants had
increased endogenous levels of MT, Ca2+, and antioxidant enzymes and improved the salt
resistance of GhSNAT3D genes. GhSNAT3D genes may further interact with GhSNAT25D
and N-acetylserotonin methyl-transferase to regulate MT synthesis in cotton under salt
stress [46]. However, the underlying molecular mechanism in cotton under abiotic stress
remains unclear.

Additionally, HsFA1a overexpression in tomatoes boosted endogenous MT accumu-
lation and the expression of the MT biosynthesis gene caffeic acid O-methyltransferase1,
which resulted in an increase in Cd stress [74]. MT is essential for growth control, serotonin
production, and abiotic stress tolerance [75]. More research is required on the performance
of MT in serotonin in plants, especially in cotton, even though the existence and function
of MT in serotonin is a prominent developing research topic. The first stage in the MT
biosynthesis process in transgenic rice is the decarboxylation of tryptophan catalyzed by
tryptophan decarboxylase [76]. The T5H genes are required for serotonin production. The
expression of T5H genes increases the MT amount in transgenic rice, indicating that the MT
amount in plants is not dependent on serotonin [72]. Exogenous MT increases the amount
of endogenous MT in cotton under salt stress and decreases the T5H gene expression
responsible for serotonin production in rice. However, the increment in the MT amount
and the upregulation or downregulation of T5H in cotton under other abiotic stresses are
still unknown.

2.4. The Signaling and Transduction Pathway of MT

MT is a signaling compound that mitigates the negative effects of abiotic stress by
activating the CK, ET, salicylic acid (SA), ABA, and GA signaling pathways to induce
several defense genes ([22], Figure 2). GA and ABA are pivotal plant hormones that play
a vital role during abiotic stress. Under salt stress, MT-treated Limonium bicolor seeds
significantly increase seed germination because of increased endogenous MT, GA, and ABA
contents [30]. MT increases these hormones, particularly ABA production, under salt stress,
activating several signaling pathways and upregulating transporter genes, such as HKT1,
AKT1, and NHX1 [77]. MT treatment improves the expression of SOS1 in NaCl-treated
roots, which may help to facilitate sodium (Na+) export from the roots and store it in stems,
preventing Na+ from reaching the photosynthetic leaf tissue [78].
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Figure 2. MT signaling mitigates the negative effects of abiotic stress. MT reduced abiotic stress
by activating the signaling pathways of CK, ET, SA, ABA, and GA to induce several defense genes.
An exogenous supply of MT reduces salt stress in Limonium bicolor by increasing GA and ABA
concentrations and increasing seed germination. Likewise, MT reduced the negative effect of cold
stress by scavenging ROS and RNS and improving endogenous MT. Moreover, MT acts as a sig-
naling molecule at the plasma membrane, causing cytosolic Ca2+ to increase and signaling H2O2

accumulation through NADPH oxidase enzyme activity to scavenge ROS and RNS.

MT also enhances plant antioxidant capacities that scavenge the production of ROS
and RNS [50]. MT at the plasma membrane causes cytosolic Ca2+ to increase and signals
hydrogen peroxide (H2O2) accumulation through nicotinamide adenine dinucleotide phos-
phate (NADPH) oxidase to scavenge ROS and RNS [36]. In tomato fruit, signaling H2O2
accumulation treated with MT for seven days under cold stress may serve as a defense
response to cold stress by promoting the endogenous accumulation of MT. Furthermore,
reducing harmful H2O2 accumulation after seven days of cold stress in tomato fruits treated
with MT alleviates oxidative stress, possibly resulting from endogenous MT accumulation
with enhanced ROS scavenging properties [79]. In contrast to tocopherols, glutathione
antioxidants, and ascorbic acid, which can only scavenge one ROS per molecule, MT shows
a ROS scavenging cascade, allowing one MT molecule to scavenge up to 10 ROS [79].
This confirms that MT signaling improves the crop morpho-physiological and antioxidant
activity under abiotic stress by different plant processing. However, the performance of MT
signaling via this process needs to be further investigated in cotton under abiotic stress.

3. Role of MC and MT in Plant Growth, Biochemistry, and Yield under Abiotic Stress
in Cotton
3.1. Role of MC in Cotton Growth, Physiology, and Yield

MC is a plant growth regulator that affects plant structure and function by using
multiple biochemical functions and modes of action to influence crop growth and devel-
opment [55,80]. MC decreased the internode length, number of nodes, canopy, leaf area,
and plant height but increased light interception and, as a result, increased yields ([60],
Figure 3). The reduction in morpho-physiological activity is triggered by a decrease in
the GA concentration caused by MC application in plants; as a consequence, MC disrupts
cellular movements due to decreased cell wall relaxation and increases cell wall stiffness
and plasticity [55]. GA content inhibits cell elongation, which restricts the stem’s vertical
growth [81]. MC impacts cotton plants in ways such as decreasing the stem and leaf growth
but increasing the maturity [21]. The MC treatment balances vegetative and reproductive
development in cotton, improving the fiber quality and yield [82].
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Figure 3. MC affects plant morpho-physiological activity under abiotic stress. MC application
decreases plant height, internode length, leaf area, and plant canopy but increases light interception
by inhibiting endogenous GA and disturbing cellular movements. MC lowers photosynthetic activity
by decreasing the activity of RuBisco enzymes, which are involved in CO2 fixation during net
photosynthesis. In addition, exogenous MC reduces salt stress in cotton and cold stress in sweet
pepper by improving the ABA, sugar, and proline content and, as a result, improves plant yield.

MC treatment affects the physiological activity of cotton leaves [83]. Cotton plants
had enhanced net photosynthetic activity by producing thicker weight leaves with higher
chlorophyll activity [21]. The most crucial metabolic activity influencing plant growth and
yield is photosynthesis. The reduction in photosynthetic activity under MC application
depends on stomatal and non-stomatal restriction. However, non-stomatal factors have a
higher role in restricting photosynthetic activity [84]. During net photosynthesis, Rubisco
plays an indispensable performance in regulating the Calvin cycle and fixing carbon
dioxide (CO2) [85]. The exogenous MC affects the activity of Rubisco enzymes. Reddy
et al. [19] demonstrated that MC treatment reduced the activity of Rubisco, which was
strongly associated with decreased photosynthetic activity. Other studies have shown that
MC application suppressed the activity of Rubisco enzymes because of the drop in CO2
fixation, which caused a decrease in the net photosynthetic activity [86,87]. According
to different research, MC application inhibited the activity of the Rubisco enzyme and
hindered photosynthetic activity. However, the current investigation shows that the effects
of MC on the Rubisco enzyme and its relationship with the net photosynthetic activity in
cotton under abiotic stress are still unknown.

The timing and dose of MC directly influence the cotton fiber quality and yield [60].
Depending on the application timing, genotypes, MC application dose, environmental con-
ditions, and other management practices, MC may have decreased [88,89], increased [90],
or not affected the cotton yield [91,92].

Different research has been introduced to identify the stress tolerance mechanism in
cotton. Different research has determined whether MC alleviates the detrimental effects
of various abiotic stresses. For instance, according to [37], cotton growth and productivity
increased using MC as a seed pretreatment agent when exposed to salt stress. Similarly,
MC application increased cotton’s solvent protein, free proline, and chlorophyll pigments
but reduced its MDA contents and, as a result, improved its pressure resistance [55]. MC
treatment dramatically increased sweet pepper growth by enhancing ABA accumulation
and increasing the amount of osmotic-regulating compounds, including soluble sugar and
proline, under cold stress [38]. MC reduced the adverse effect of drought stress by improv-
ing the expression levels of flavonoid differential metabolite in soybeans [64]. Different
studies have shown that MC reduces the adverse effects in different crops via improving
plant morpho-physiological activity under abiotic stress. However, the significance of
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MC in the morpho-physiological activity and yield of cotton under cold stress remains
unknown. Furthermore, it is unknown how MC regulates the growth and productivity of
cotton under cold stress at the molecular level.

3.2. Role of MT in Cotton Growth, Physiology, and Yield under Abiotic Stress

Plants are frequently subjected to abiotic stresses [49]. For example, cold stress inhibits
average plant growth and, as a result, decreases crop yields ([13], Figure 4). There are
numerous methods for decreasing the detrimental effects of cold stress on corps. Exogenous
MT is one of the most prominent techniques that reduce the adverse impact of cold stress in
various crops [50]. MT has made significant contributions to the current agriculture systems.
However, MT has generated some adverse effects on our natural environment. Therefore, it
is crucially important to thoroughly explain the specific mechanism of exogenous hormones
in cotton to prevent the natural environment from increasing cold stress harm.
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Figure 4. Abiotic stress affects plant morpho-physiological activity. Cold stress increased electrolyte
leakage, MDA, and lipid peroxidation and reduced photosynthetic efficiency and the imbalance of
nutrients. Exogenous MT decreased MDA formation, electrolyte leakage, and lipid peroxidation and
increased the photosynthetic capacity and uptake of balanced nutrients. MT reduced salt stress in
watermelons, drought stress in Moringa oliguria, cold stress in cucumbers, and Cd stress in cotton by
improving the seedling biomass, root growth, root biomass, cell enlargement, leaf photosynthetic
activity, osmotic stress, and transporter genes LOC107894197, LOC107955631, and LOC107899273 and,
as a result, improved the crop yield.

Cold stress severely reduces crop yield by causing significant decreases in plant
physiological activity, such as low photosynthetic efficiency and an imbalance of mineral
nutrition [93]. Cold stress significantly increases lipid peroxidation, electrolyte leakage, and
malondialdehyde (MDA) [94]. However, the treatment of MT significantly decreases MDA
formation and ROS deterioration on the cellular membrane of cold-stressed rice seedlings
and, as a result, improves plant growth and productivity [95]. MT is an essential compound
that improves crop development and yields by alleviating the harmful effects of abiotic
stress [96,97]. Different studies have demonstrated that exogenous MT could reduce the
detrimental effects of salt stress in watermelons, drought stress in Moringa oliguria, and cold
stress in cucumbers [78,98,99]. New research on cotton seedlings showed that exogenous
MT controlled leaf photosynthesis activity, leading to considerably greater fresh and dry
weights than control under Cd stress [42]. The improvement in the growth and functioning
of the leaf was strongly associated with the MT-induced regulation of Cd transporter genes
in cotton roots, such as LOC107894197, LOC107955631, and LOC107899273. This indicates
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that MT causes the Cd transporter genes to downregulate to prevent Cd ion transfer into
the leaf tissue [42]. Similarly, Xu et al. [100] showed that treating radish plants with MT
mitigated Cd-induced toxicity via modulating Cd transporter genes and heavy metal stress
to scavenge harmful ROS.

MT regulating plant growth and yield in barley, oat, and wheat showed that MT
increased coleoptiles by 10 to 55% [101]. Additional studies on MT in transgenic rice plants
revealed that it enhances seedling biomass, root development, and root biomass at early
stages, contributing to higher yields [102]. Applying MT might improve growth traits and
yield by promoting cell expansion, decreasing osmotic stress, and retaining water contents
in the shoots [103]. Likewise, [104] showed that exogenous MT could remove the negative
effects of cold stress and enhance plant growth and productivity. Different research has
demonstrated that MT treatment improves growth characteristics and yield in plants due to
enlargement in the cell, decreases the effect of osmotic stress, maintains the relative water
contents in shoots under cold stress, and regulates plant photosynthetic activity under
Cd stress due to the downregulation of Cd transporter genes by inducing more Cd ion
transporters towards the cotton leaf tissue. However, the process by which MT improves
these outcomes in cotton under abiotic stress is still poorly understood.

3.3. Role of MC in Plant Defense Systems

Soluble protein and sugar are critical components of plant defense mechanisms under
cold stress [105]. Due to their higher water absorption, soluble protein and sugar are
essential osmotic regulatory substances that may control crop growth and productivity
by lowering the chilling stress level in cell liquids and reducing the water loss capacity
of the protoplasm [106]. MC enhances soluble protein and sugar content in cotton leaves.
Nevertheless, the performance of MC in increasing these osmotic regulatory chemicals
under cold stress in cotton still needs to be clarified.

Plants under cold stress can trigger the removal of excessive excitation energy via
self-regulation [107]. However, due to the limitations of self-regulation, there is still a
percentage of excitation energy that cannot be efficiently used or dispersed. Some of
this energy converts to electric energy, which causes an excessive amount of ROS to be
produced [108]. Higher ROS react with the plasma membrane to create MDA, which affects
different physiological processes, such as the Calvin cycle, and damages plant membranes,
DNA, protein degradation, enzyme passivation, and chloroplasts or causes other organ
deformation [109]. MC may successfully reduce the production of ROS caused by different
stresses in cotton, including salt, Cd, and drought stress [37,109]. Previous research has
shown that MC increases plant defense by increasing the antioxidant enzyme activity
and lowering MDA formation in cold-stressed tomato plants [109]. However, further
investigation into the biochemical and molecular processes of MC in crop production is
necessary to alleviate abiotic stress in cotton.

3.4. Role of MT in Plant Defense Systems

As an internal sensor of oxidative damage, MT is considered the first line of defense
in crops [110]. Endogenous MT not only neutralizes RNS and reactive ROS but it also
activates plant antioxidant enzymes and increases the antioxidant capacity of the plant [111].
Exogenous MT increases the activity of plant antioxidant enzymes, such as SOD, CAT,
POD, and APX, which improves the capacity of plant antioxidant enzymes and mitigates
the adverse effects of cold stress in cotton, cucumber seedlings, and tea trees [31,112].
Previous research has demonstrated that exogenous MT increased plant photosynthetic C
assimilation by improving the antioxidant activity of organelles under cold and drought
stress in cotton and barley [44,112]. MT may improve plant life by increasing starch
metabolism and energy supply in response to ROS damage during cold stress [113].

MT regulates higher ascorbic acid (AsA) and GSH content and reduces oxidized
glutathione (GSSG) and dehydroascorbic acid (DHA) content in cotton crops, which delays
leaf senescence under dark conditions [23]. GSH and AsA are key reducing chemicals
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that protect plants against membrane lipid peroxidation. The AsA-GSH cycle system has
successfully scavenged free radicals in different crops [114]. Under abiotic stress, it is
crucial to increase the antioxidant defense system in plants through MT application [115].
MT has been shown to increase plant development and growth by increasing its antioxidant
defenses against abiotic stress. Nevertheless, the pivotal performance of MT in improving
the antioxidant defense system in cotton crops under abiotic stress is still unclear.

4. MC and MT Relevant Gene Involved in Cotton Growth
4.1. MC Relevant Genes Involved in Cotton Growth

MC application inhibited cell elongation in cotton plants by downregulating the
GhEXP and GhTH2 genes due to a decrease in the endogenous GA3 and GA4 levels in the
elongation internode, resulting in a reduction in plant height ([116], Figure 5). Within 2 to
10 days after MC treatment, the GA metabolic and biosynthetic genes were dramatically
suppressed, downregulating the expression of DELLA-like genes [116]. GAs affect cell
division and elongation to control the stem and internode lengths. GAs increase plant
growth by promoting DELLA protein degradation under cold stress, which are important
repressors of GA signaling, by interacting with the gibberellin insensitive dwarf1 (G1D1)
receptor via the ubiquitin proteasome pathway [117,118]. When the GA concentration is
reduced, DELLA proteins interact with transcription factors (TFs) to inhibit their target
gene expressions and promote cell division and expansion under abiotic stresses, such as
drought, salt, and high-temperature stress [16,119,120].
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Figure 5. MC affects crop growth and yield by regulating gene expression. MC reduces the plant
height by inhibiting GA3 and GA4. GAs interact with the G1D1 (gibberellin insensitive dwarf1)
receptor via the proteasome pathway. GAs stimulate plant growth by increasing the degradation
of DELLA protein (the key repressor of GA signaling). When the active GA content is reduced,
DELLA proteins interact with transcription factors (TFs) to inhibit the upregulation of target genes,
which suppresses cell division and expansion in cotton plants. Moreover, MC induces lateral root
development by regulating endogenous GA. MC upregulates GA catabolism genes, such as GA20x,
and downregulates expression genes, such as GA30x, GA2oox, and CPS in GA biosynthesis. The GA
receptor GA1D1 causes DELLA protein degradation, which controls the production of the XERICO
gene (a stimulator of ABA biosynthesis). MC decreases the endogenous level of ABA. The reduction
in ABA promotes root development by upregulating auxin transporter genes, such as PIN1, PIN3,
PIN5, PIN7, and AUX1.

MC induces lateral root formation, which enhances root development. MC facilitates
the growth of lateral roots, possibly by controlling the endogenous GA [52]. The results
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of an RNA-seq study showed that MC upregulates the expression of the GA catabolism
gene GA20x while downregulating the expressions of GA30x, GA2oox, and CPS, which are
involved in GA biosynthesis [52]. Consistently, the concentration of GA in the root was
significantly lower in the MC-treated seeds as compared to the control. The GA receptor,
GA1D1, causes DELLA protein degradation and further controls the XERICO gene’s
production, a stimulator of ABA biosynthesis [121]. This suggests that MC application
during the seed’s developmental stage might decrease the endogenous levels of ABA due
to DELLA protein degradation under drought stress, which controls the production of the
XERICO gene [122]. Similar results were demonstrated by [52], who reported that MC
application significantly increased the auxin concentration, reduced the ABA content in the
root tissue, and increased later root growth under abiotic stress [123]. It was demonstrated
that higher ABA concentrations suppressed the upregulation of auxin transporter genes,
such as PIN1, PIN3, PIN5, PIN7, and AUX1, in the roots by decreasing auxin concentrations,
resulting in root growth inhibition [124]. Nevertheless, the underlying molecular process
of this phenomenon in cotton under other abiotic stresses is still unknown.

4.2. MT Relevant Genes Involve in Cotton Growth

Cotton’s photosynthetic activity decreases as a result of leaf senescence, which has
a significant influence on fiber growth and production under salt stress ([125], Figure 6).
Previous research has shown that exogenous MT helps to prevent leaf senescence un-
der drought stress conditions [112]. The chlorophyll degradation-related genes, such as
GhNAC12 and GhWRKY27/71, were dramatically downregulated by MT application [126].
Interestingly, by interacting with other plant hormones, MT plays an indispensable role
in maturing under abiotic stress, including cold stress in different crops [127]. A previous
study demonstrated that ABA is the primary hormone that promotes leaf senescence under
abiotic stress in different crops [128]. The content of ABA and its biosynthesis genes gradu-
ally increased during leaf senescence in cotton plants [58]. MT reduced the upregulation of
ABA biosynthesis genes, NCED1 and NCED2, and their accumulation in cotton [129]. Simi-
larly, exogenous MT delayed leaf senescence via the upregulating genes involved in IAA,
GA3, and CTK biosynthesis, such as GHIPT2, GhYUC5, and GhGA3ox2, thereby increasing
the endogenous levels of IAA, GA3, and indole-3-propionic acid (iPA) in different plants
under drought stress [126].
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to abiotic stress. The contents of ABA and its biosynthesis genes, such as NCED1 and NCED2, increase
during leaf senescence in cotton. The supply of MT reduces the expression of these genes and their
accumulation in cotton. Moreover, under drought stress, MT application delays leaf senescence
by upregulating IAA, GA3, and CTK biosynthesis-related genes, such as GhYUC5, GhIPT2, and
GhGA3ox2, which increases the endogenous levels of iPA, GA3, and IAA. Moreover, MT regulates
HMA2, HMA3, HMA4, IRT1, and Nramp1 genes to transport Cd stress from root vacuoles to xylem to
mitigate the adverse effects of cadmium toxicity.

Moreover, MT regulates the HMA2, HMA3, HMA4, IRT1, and Nramp1 genes to mitigate
the negative effects of Cd toxicity [43]. Adenosine triphosphate (ATP)-binding cassette
(ABC) may facilitate the transfer of Cd stress to the xylem via the apoplast [130]; these
genes may promote Cd sequestration in root vacuoles and stimulate its absorption and
transfer to the xylem [130,131]. MT-upregulated and -downregulated genes are essential
in cotton crops to mitigate the negative impacts of drought and Cd stress. However, the
regulation of leaf senescence and ion transport in cotton under abiotic stress by these genes
in response to MT application is still unclear.

5. Conclusions and Future Recommendations

The impact of abiotic stress on plant growth and yield severely threatens agricultural
production, particularly cotton productivity. To alleviate the negative effects of abiotic
stress on cotton, the plant uses a variety of biochemical, physiological, biochemical, and
molecular responses [49].

Hormones such as MC and MT can decrease or alleviate the harmful effects of cotton
under abiotic stress. The exogenous supply of both hormones is crucial for plant develop-
ment and yield under abiotic stress conditions. Both hormones play indispensable roles
in regulating crop metabolism and the complex processes of plant function; nevertheless,
the roles of both hormones in the underlying processes of abiotic stress in cotton are still
poorly understood.

It is confirmed that MC improves the functional phase of cotton leaves by increasing
the CK contents during the middle and late stages of leaf development, decreasing GA
production, and delaying the concentrations of ABA and ET. However, MC interference
with CK, GA, ABA, and ET during the functional phase of leaves and its response to cold
stress are attractive targets in cotton molecular research.

MC inhibits the activity of RuBisCo due to CO2 restriction, resulting in a decrease in
photosynthesis. MC inhibits RuBisCo activity, limiting the photosynthetic activity and, as a
consequence, yield. However, the effects of MC on this morpho-physiological activity in
cotton during abiotic stress are unclear.

It has been confirmed that MC treatment increases endogenous ABA and auxin levels
during the up-and downregulation of genes such as GA2Ox, GA30x, GA2oox, and CPS
in root tissue. However, the underlying chemical process in cotton under abiotic stress
remains unknown.

In response to drought stress, plants treated with MC may increase the expressions
of genes involved in ABA synthesis and signaling. The increase in ABA content is related
to an increase in stress resistance. However, the performance of MC on the underlying
mechanism in cotton under various stresses is still unknown.

MT improves plant morpho-physiological activity via cell enlargement and osmotic
stress reduction and by maintaining the water content in shoots, improving plant antioxidants,
and regulating plant photosynthesis activity under Cd stress via the downregulation of Cd
transporter genes, such as LOC107894197, LOC107955631, and LOC107899273 in cotton.

It has been confirmed that MT decreases the negative effects of drought and Cd
stress via the up- and downregulation of specific genes, such as NCED1, NCED2, GhYUC5,
GhGA3ox2, GhIPT2 HMA2, HMA3, HMA4, IRT1, and Nramp1. However, the function of
these genes in regulating leaf senescence and ion transport in cotton under other stresses is
still unknown under MT application.
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