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Abstract: Cryopreservation of human testicular tissue, as a key element of anticancer therapy,
includes the following stages: saturation with cryoprotectants, freezing, thawing, and removal of
cryoprotectants. According to the point of view existing in “classical” cryobiology, the thawing mode
is the most important consideration in the entire process of cryopreservation of any type of cells,
including cells of testicular tissue. The existing postulate in cryobiology states that any frozen types
of cells must be thawed as quickly as possible. The technologically maximum possible thawing
temperature is 100 ◦C, which is used in our technology for the cryopreservation of testicular tissue.
However, there are other points of view on the rate of cell thawing, according to how thawing
should be carried out at physiological temperatures. In fact, there are morphological and functional
differences between immature (from prepubertal patients) and mature testicular tissue. Accordingly,
the question of the influence of thawing temperature on both types of tissues is relevant. The purpose
of this study is to explore the transcriptomic differences of cryopreserved mature and immature
testicular tissue subjected to different thawing methods by RNA sequencing. Collected and frozen
testicular tissue samples were divided into four groups: quickly (in boiling water at 100 ◦C) thawed
cryopreserved mature testicular tissue (group 1), slowly (by a physiological temperature of 37 ◦C)
thawed mature testicular tissue (group 2), quickly thawed immature testicular tissue (group 3), and
slowly thawed immature testicular tissue (group 4). Transcriptomic differences were assessed using
differentially expressed genes (DEG), the Kyoto Encyclopedia of Genes and Genomes (KEGG), gene
ontology (GO), and protein–protein interaction (PPI) analyses. No fundamental differences in the
quality of cells of mature and immature testicular tissue after cryopreservation were found. Generally,
thawing of mature and immature testicular tissue was more effective at 100 ◦C. The greatest difference
in the intensity of gene expression was observed in ribosomes of cells thawed at 100 ◦C in comparison
with cells thawed at 37 ◦C. In conclusion, an elevated speed of thawing is beneficial for frozen
testicular tissue.

Keywords: human; testicular tissue; cryopreservation; thawing; RNA sequencing; transcriptomics;
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1. Introduction

Fertility protection of humans and endangered species has always been a hot topic,
and spermatozoa cryopreservation has always been a standard method for the preservation
of male and animal fertility [1]. However, this technique is not suitable for adolescents
and prepubertal individuals who have not yet fully developed gonads. Because they
cannot produce mature spermatozoa, testicular tissue cryopreservation is a better fertility
preservation technique. For children diagnosed with cancer, the 5-year survival rate has
increased to 80%; however, 25% of male survivors still have azoospermia, and testicular
tissue cryopreservation is very important for these patients [2–4]. Some adult males
require gonadotoxic treatment due to cancer, autoimmune diseases (e.g., systemic lupus
erythematosus and systemic sclerosis), and genetic disorders (sickle cell disease thalassemia
and idiopathic medulla aplasia). Cryopreservation of testicular tissue for these patients is
also an alternative to spermatozoa cryopreservation [5].

Conventional cryopreservation (slow or programmable freezing) is the most com-
monly used method for testicular tissue preservation [6]. Spermatogenesis is not only
related to testicular germ cells but also to testicular somatic cells (e.g., Sertoli cells and
Leydig cells) and even the extracellular matrix. The testicular transcriptome represents
the sum of all transcripts expressed by different cell groups in testicular tissue. Therefore,
RNA sequencing provides the ability to study the entire process of spermatogenesis and
the development of testicular cells. Previously published results, including sequencing
data, showed that the testis is the organ with the most tissue-specific genes [7,8]. However,
there are relatively few RNA sequencing reports on cryopreserved testicular tissue, and
only reports on cryopreserved testicular tissue of mice and cats [9,10] are published.

Cryopreservation of human testicular tissue includes the following stages: saturation
of cells with permeable cryoprotectants, freezing, thawing, and removal of these cryopro-
tectants from the cells. As per the perspective prevalent in “classical” cryobiology, the
thawing mode holds crucial importance in the cryopreservation technique for all cell types,
including testicular tissue cells.

The existing postulate in cryobiology states that any frozen types of cells must be
thawed as quickly as possible. The technologically maximal possible thawing rate can be
realized with the thawing of cells in boiling water (at 100 ◦C). This mode of thawing was
used in our experiments in comparison with the thawing at physiological temperature
(37 ◦C).

However, there are other points of view on the rate of cell thawing, according to which
thawing should be carried out at physiological temperatures. In fact, there are morphologi-
cal and functional differences between immature (from prepubertal patients) and mature
testicular tissue. Accordingly, the question of the influence of thawing temperature on both
types of tissues is relevant.

The purpose of this study is to explore the transcriptomic differences of cryopre-
served mature and immature testicular tissue subjected to different thawing methods by
RNA sequencing.

2. Results

Following the appropriate thawing and removal of cryoprotectants (Figure 1), the cell
viability was assessed.

2.1. Differentially Expressed Genes (DEG)

At the beginning of the described research, volcano maps were drawn to compare
up- and down-regulated differentially expressed genes in tissues of different groups. In
comparison with cells of group 2 (slowly thawed mature), 219 differentially expressed
genes (DEG) in cells of group 1 (quickly thawed mature) were up-regulated, and 437 DEGs
were down-regulated (Figure 2A). At the same time, in comparison with group 2 (slowly
thawed mature), the expression of 1073 DEGs in cells of group 4 (slowly thawed immature)
was increased, and the expression of 2942 DEGs was decreased (Figure 2B). In comparison
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with cells of group 1 (quickly thawed mature), 4976 DEGs in group 3 (quickly thawed
immature) were up-regulated, and 6071 DEGs were down-regulated. Group 3 has the most
intensive DEG expression (Figure 2C). In cells of groups 3 (quickly thawed immature) and
4 (slowly thawed immature), cells which had no significant changes, only one up-regulated
and down-regulated DEG was found (Figure 2D).
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Figure 1. Fragments of mature and immature testicular tissue after cryopreservation. (A) Fragment of
mature testicular tissue of patient B. from the tunica albuginea side (“outer” layer) after cryopreserva-
tion. (A1) The same fragment of tissue of patient B. from the seminiferous tubules side (“inner” layer).
(B) Fragment of mature testicular tissue from patient D. in a hypertonic solution (0.5 M sucrose)
during removal of cryoprotectants shows tissue compaction as a result of cell dehydration. (B1) The
same fragment of testicular tissue of patient D. in isotonic solution after removal of cryoprotectants.
(C) Fragment of immature testicular tissue from patient C. after cryopreservation. (C1) Demonstration
photographs: the same dehydrated fragment on filter paper of immature testicular tissue from patient
C. after cryopreservation. (D–F) Demonstration photographs: dehydrated fragments on filter paper
of mature testicular tissue from patients K., P., and M. after cryopreservation. Scale Bar = 1 mm.
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Figure 2. Volcano map of differentially expressed genes (DEG) after different regimes of thawing.
(A) DEG volcano map: cells of group 1 (quickly thawed mature) vs. cells of group 2 (slowly thawed
mature). (B) DEG volcano map: cells of group 4 (slowly thawed immature) vs. cells of group 2 (slowly
thawed mature). (C) DEG volcano map: cells of group 3 (quickly thawed immature) vs. cells of group
1 (quickly thawed mature). (D) DEG volcano map: cells of group 3 (quickly thawed immature) vs.
cells of group 4 (slowly thawed immature). (E) DEG volcano map: cells of group 3 (quickly thawed
immature) + group 4 (slowly thawed immature) vs. cells of group 1 (quickly thawed mature) + group
2 (slowly thawed mature).
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In contrast with cells of “mature” groups 1 (quickly thawed) and 2 (slowly thawed),
cells of “immature” groups 3 (quickly thawed) and 4 (slowly thawed) had 3919 up-regulated
DEGs and 6461 down-regulated DEGs (Figure 2E).

2.2. Differentially Expressed Genes (DEG) through Enrichment Analysis of Kyoto Encyclopedia of
Genes and Genomes (KEGG) Pathways

In comparison with cells of group 2 (slowly thawed mature tissue), cells of group 1
(quickly thawed mature) are mainly enriched in ribosomes, coronavirus disease COVID-19,
rheumatoid arthritis, leishmaniasis, and phagosomes (Figure 3A). Compared to group
2, DEGs in group 4 (slowly thawed immature cells) are mainly enriched in ribosomes,
coronavirus disease COVID-19, oocyte meiosis, progesterone-mediated oocyte maturation,
and glycolysis/gluconeogenesis (Figure 3B). DEGs in cells of groups 1 and 3 (quickly
thawed immature) are mainly enriched in ribosomes, coronavirus disease COVID-19, oocyte
meiosis, cellular senescence, and progesterone-mediated oocyte maturation (Figure 3C).

KEGG enrichment analysis of cells from these groups was similar, with ribosomes and
COVID-19-related pathways ranked in the top two. DEGs in groups 3 and 4 were mainly
enriched in pathways related to oxidative stress, including the NF-κB signaling pathway,
the fox O signaling pathway, the p53 signaling pathway, and apoptosis (Figure 3D). Finally,
cells from “immature” groups 3 and 4 and from “mature” groups 1 and 2 showed different
KEGG pathways, ribosomes, cell cycle, coronavirus disease–COVID-19, glycosaminoglycan
degradation, and oocyte meiosis (Figure 3E).

2.3. Differentially Expressed Genes (DEG) through Gene Ontology (GO) Enrichment Analysis

Compared to cells from group 2 (slowly thawed mature), cells of group 1 (quickly
thawed mature) are mainly enriched in cytoplasmic translation, SRP-dependent cotrans-
lational protein targeting to membrane, viral transcription, nuclear-transcribed mRNA
catabolic process, nonsense-mediated decay, and translational initiation (Figure 4A). The
main differences between the GO pathway in cells of group 2 (slowly thawed mature) and
group 4 (slowly thawed immature) are spermatogenesis, SRP-dependent co-translational
protein targeting to membrane, cytoplasmic translation, nuclear-transcribed mRNA catabolic
process, nonsense-mediated decay, and viral transcription (Figure 4B). Compared to cells
from group 1 (quickly thawed mature), the GO pathway in cells of group 3 (quickly
thawed immature) is mainly reflected in spermatogenesis, cytoplasmic translation, SRP-
dependent co-translational protein targeting to membrane, cell cycle, and viral transcription
(Figure 4C).

GO analysis of cells from these three groups is relatively similar. The GO pathway
in cells of group 3 (quickly thawed immature) and group 4 (slowly thawed immature)
demonstrated obsolete activation of MAPKKK activity, chromatin silencing, heterochro-
matin formation, positive regulation of p38MAPK cascade, and negative regulation of
protein kinase activity (Figure 4D).

GO pathways between cells from “immature” groups 3 (quickly thawed immature) +
4 (slowly thawed immature) and cells from “mature” groups 1 (quickly thawed mature) + 2
(slowly thawed mature) include spermatogenesis, cytoplasmic translation, SRP-dependent
co-translational protein targeting to membrane, viral transcription, nuclear-transcribed
mRNA catabolic process, and nonsense-mediated decay (Figure 4E). The biological process
of spermatogenesis is the most enriched, indicating that spermatogenesis in testicular tissue
at different developmental stages is more important than the stress caused by different ways
of thawing (Figure 3B,C,E). The cellular component and molecular function enrichment of
the GO pathway are presented in the Supplementary Materials.
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Figure 3. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment bubble chart of
Differentially Expressed Genes (DEG). (A) KEGG pathway chart of DEG in cells of groups 1 (quickly
thawed mature) and 2 (slowly thawed mature). (B) KEGG pathway chart of DEGs in cells of groups 2
(slowly thawed mature) and 4 (slowly thawed immature). (C) KEGG pathway chart of DEGs in cells
of groups 1 (quickly thawed mature) and 3 (quickly thawed immature). (D) KEGG pathway chart of
DEGs in cells of groups 3 (quickly thawed immature) and 4 (slowly thawed immature). (E) KEGG
pathway chart of DEGs in cells of groups 3 (quickly thawed immature) + 4 (slowly thawed immature)
and groups 1 (quickly thawed mature) + 2 (slowly thawed mature).
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(B) GO enrichment bubble chart for groups 2 (slowly thawed mature) and 4 (slowly thawed immature).
(C) GO enrichment bubble chart for groups 1 (quickly thawed mature) and 3 (quickly thawed immature).
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(D) GO enrichment bubble chart for groups 3 (quickly thawed immature) and 4 (slowly thawed
immature). (E) GO enrichment bubble chart for groups 3 (quickly thawed immature) + 4 (slowly
thawed immature) and groups 1 (quickly thawed mature) + 2 (slowly thawed mature).

2.4. Protein–Protein Interactions (PPI) Network

In cells of groups 1 (quickly thawed mature) and 2 (slowly thawed mature), the
ribosome-related protein family has more link nodes; the most important is RPS27A, with a
total of 28 link sites, and the remaining RPS14, RPS3A, RPS4X, and RPS6 are also important.
PRM2, SPATA3, TNP1, SPATA16, and TNP2 are the more prominent proteins in comparison
between cells of groups 2 (slowly thawed mature) and 4 (slowly thawed immature). In
the PPI network of cells from groups 1 (quickly thawed mature) and 3 (quickly thawed
immature), CSF1R with 22 link sites is the most prominent, and TYROBP, RPS27A, STAT1,
and RPS14 are also important (Figure 5).
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mature) and 4 (slowly thawed immature). (C) PPI network for cells of groups 1 (quickly thawed
mature) and 3 (quickly thawed immature).

3. Discussion

At present, relevant sequencing studies have been conducted on human cryopreserved
spermatozoa, proving that cryopreservation of spermatozoa is a genetically safe fertility
preservation method. Moreover, cryopreservation by direct plunging into liquid nitro-
gen (vitrification) may reduce negative biological changes in spermatozoa in comparison
with traditional controlled (conventional) freezing [11]. In our research, RNA sequenc-
ing was used to analyze the transcriptional differences produced by different thawing
methods in cryopreserved mature and immature testicular tissue in order to optimize the
cryopreservation protocol.

3.1. Differentially Expressed Genes (DEG)

It was established that DEG expression in cells from group 3 (quickly thawed imma-
ture) was less compared to cells from group 4 (slowly thawed immature). The up-regulated
genes were H2AC19, and the down-regulated were GADD45B. This indicates that the
immature testicular tissue had less of a response to both different protocols of thawing
(slow and quick). H2AC19 is a member of the histone H2A family; its related biochemical
processes include the regulatory mechanisms of RNA polymerase I promoter opening
and telomere end packaging [12,13]. Recent studies have shown that ubiquitination and
acetylation of histone H2A may lead to spermatogenesis disorders in males [14]. The same
difference in H2AC19 expression was also observed in cells of groups 2 (slowly thawed
mature) and 4 (slowly thawed immature). GADD45B belongs to the growth arrest and DNA
damage-induced 45 (GADD45) gene family, whose family members also include GADD45A
and GADD45G. These genes are related to physiological and environmental stress and
mainly regulate cell proliferation, apoptosis, and DNA damage [15,16]. GADD45B plays
a biological role by binding and activating MTK1/MEKK4 kinase and then affecting the
p38/JNK pathway [17]. It was reported that stress of epithelial cells due to storage at
different temperatures causes changes in GADD45B expression [18].

For quick and slow thawing, the expression of DEGs in cells from groups 1 (quickly
thawed mature) and 3 (quickly thawed immature) was much more intensive than that in
cells from groups 2 (slowly thawed mature) and 4 (slowly thawed immature), with the
number of DEGs being 11,047. It shows that by the quick thawing, the transcriptomic
changes of immature cells are more expressed than those of mature cells.

3.2. Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathways

The KEGG pathway enrichment in cells of groups 3 (quickly thawed immature) and 4
(slowly thawed immature) with few DEGs showed that the NF-κB signaling pathway was
highly enriched. This pathway is mainly involved in inflammatory and immune responses,
and its family members are NF-κB1, NF-κB2, Rel A, Rel B, and c-Rel [19]. During the stress
of testicular tissue, NF-κB in Sertoli cells is activated, leading to germ cell apoptosis [20].
Ranked second in KEGG pathway enrichment is the Fox O signaling pathway, which is
also mainly involved in apoptosis and oxidative stress. During oxidative stress, such as
increased reactive oxygen species, activation of c-Jun N-terminal kinase (JNK) is induced,
which leads to translocation of Fox O phosphorylation in the cytoplasm, ultimately affecting
downstream targets [21,22]. KEGG analysis showed that cryopreserved immature testicular
tissue is intolerant to quick thawing compared to slow thawing.

Except for cells from groups 3 (quickly thawed immature) and 4 (slowly thawed
immature), which have fewer DEGs, KEGG pathway enrichment analysis of cells showed
that the changes in the ribosome pathway were the most observed. Ribosomes are the site
of protein synthesis within the cell, translating specific genetic information into proteins via
messenger RNA. The ribosome-associated pathway includes ribosomal components as well
as small nucleolar RNA (snoRNA), ribosomal proteins, and non-ribosomal proteins. The
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ribosome pathway can cause reproductive toxicity by regulating gene expression, leading
to spermatogenesis disorders [23,24]. In addition to occurring during protein synthesis,
ribosome collisions often occur when cells are under stress. When cells are subjected to
different stresses, it will also cause ribosomes to collide with each other [25]. Current
research shows that when cells are subjected to moderate stress, ribosome collision causes
the activation of the GCN2-mediated integrated stress response (ISR) signaling pathway.
When cells are subjected to high-intensity stress, high-intensity ribosome collisions will
activate the p38/JNK-guided signaling pathway [26,27]. However, it is not yet clear which
signaling pathway will be activated by cellular stress caused by the different thawing
methods used in our research.

The second pathway with significant changes is coronavirus disease (COVID-19).
Because some tissue samples were collected during the COVID-19 epidemic, it is uncertain
whether the patient was already infected when the sample was collected or whether
there was a possibility of contamination during cryopreservation. COVID-19 causes lung
damage in patients by binding to the high-affinity angiotensin-converting enzyme 2 (ACE-2)
receptors [28]. However, ACE-2 is also abundantly expressed in testicular tissue, especially
Leydig cells and spermatogonia. The most abundant protein in Leydig cells is insulin-like
factor 3 (INSL3), and its expression was also found to be most significantly decreased in the
testicular tissue of infected patients [29]. Pathological examination of testicular tissue of
patients who died of serious illness found that the seminiferous epithelium became thinner
and the number of apoptotic cells in the seminiferous tubules increased, indicating that
infection with COVID-19 can cause spermatogenesis disorders in patients [30].

3.3. Gene Ontology (GO)

Overall, the GO analysis showed that the highest enrichment of spermatogenesis was
due to different developmental stages of testicular tissue. The remaining most abundant
factor is cytoplasmic translation, which is a reaction in which ribosomes mediate protein
formation in the cytoplasm. To ensure the stability of the protein state, control mechanisms
of the cell’s co-translational quality are completed by regulating related mRNA, recycling
ribosomes, and degrading nascent polypeptide chains [31]. SRP-dependent co-translational
protein targeting the membrane is also a highly enriched biological process. The newly
synthesized polypeptide chain usually carries an N-terminal hydrophobic signal sequence.
When the polypeptide chain appears in the ribosome polypeptide exit channel, it will be
recognized and bound by SRP and then transported to the endoplasmic reticulum. This
pathway can minimize nascent primary proteins misfold and aggregate before reaching the
endoplasmic reticulum [32,33].

In relation to our research, different thawing methods will mainly affect biological
processes by affecting various stages of protein translation.

3.4. Protein–Protein Interactions (PPI)

PPI mapping by DEG cells of groups 1 (quickly thawed mature) and 2 (slowly thawed
mature) showed that RPS27A was the most important protein. RPS27A is mainly located
in the middle and tail of the spermatozoon and regulates spermatozoon motility. The
expression of RPS27A is downregulated in patients with asthenozoospermia and patients
exposed to oxidative stress (reactive oxygen species), indicating that it may be a protein
marker for detecting spermatozoon motility [34,35]. The difference between cells of groups
1 (quickly thawed mature) and 2 (slowly thawed mature) is mainly due to the application of
two different thawing methods. This indicates that RPS27A, which also has great changes
caused by temperature stress. The name of PRM2 is Protamine-2, and Protamine-1 can
often replace it.

Therefore, maintaining a stable ratio of PRM2 and PRM1 is important to protect the
stability of spermatozoon DNA and to reduce the impact of oxidative stress [36,37]. In our
study, it was shown that PRM2 plays an important role in the cryopreservation of testicular
tissue. CSF1R, which has 22 linking sites, is more active in testicular tissue of different
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ages by quick thawing. These data are similar to data from previous research regarding
increasing CSF1R in mouse testicular tissue with age [38].

A comprehensive analysis using KEGG, GO, and PPI showed that oxidative stress-
related pathways and ribosome-mediated protein translation-related pathways play an
important role in testicular tissue at different stages and with the use of different thawing
methods. Due to the limitation of testicular tissue collection, it cannot be ruled out that
the specificity of individual testicular tissue may affect the analysis of sequencing results.
In fact, the study of testicular tissue taking into account the development of spermatozoa
with the culture of cells in vitro for a certain period with the following sequencing is
more informative.

3.5. Some Practical Aspects of Described Technology for Cryopreservation

The most common cryo-injuries during thawing include cell osmotic shock and recrys-
tallization. Ice crystals initially melt in the extracellular fluid, causing a decrease in osmotic
pressure relative to the intracellular environment. This leads to an influx of extracellular
water, resulting in cellular swelling and eventual disintegration. Simultaneously, water
molecules entering the cells can also promote the growth of intracellular ice crystals and
cell damage, especially if the thawing rate is slow [39].

The survival of cryopreserved cells is contingent on the warming rate during thawing,
and cell death associated with intracellular ice formation is primarily attributed to ice
recrystallization rather than the initial nucleation of ice [40,41].

Utilizing a rapid thawing method at 100 ◦C in boiling water allows us to apply the
principles of the following cryobiological concept. According to this concept, any biological
specimen preserved using any existing cryopreservation techniques should be thawed as
swiftly as possible.

In our laboratory conditions, this involves immersing the specimen in boiling water.
In theory, an alternative warming medium like boiling oil (ranging from 250 to 300 ◦C)
could be used, resulting in a thawing rate several times faster than in boiling water.
However, the use of boiling oil for thawing is unsuitable in the sterile environment of
a reproductive laboratory.

An essential aspect of thawing in boiling water is the agitation of the water. When a
cryo-vial containing a frozen specimen with a temperature of −150 to −130 ◦C is exposed
to room temperature for 30 s and then placed in unstirred water, a layer of water with
a temperature significantly lower than 100 ◦C forms between the cryo-vial wall and the
boiling water. This layer acts as an insulator, reducing the thawing speed. By using a
magnetic stirrer to agitate the boiling water, the cool layers of water on the cryo-vial surface
are continuously replaced by water with a temperature of +100 ◦C. Our calculations estimate
that this element of technology increases the speed of thawing by 15–20%. Additionally,
exposing the cryo-vial with biomaterial extracted from liquid nitrogen, which is inherently
non-sterile, serves as a surface sterilization step for the cryo-vial, which is crucial in
medical technology.

Traditional cryopreservation protocols, which aim to protect cells and prevent intra-
cellular crystallization during sub-zero cooling, typically involve the use of permeable
cryoprotectants. These cryoprotectants often include three high molecular alcohols such
as glycerol, ethylene glycol, propylene glycol, and dimethyl sulfoxide (DMSO). These
components constitute 10 to 12% of the total solution, typically comprising either DMSO or
a combination of DMSO and one of the glycols [42].

In our protocol, we used multi-cryoprotectants, similar to how we protect ovarian
tissue cells. Our data suggest that the protective effect of 12% DMSO alone was infe-
rior to that of a 12% solution supplemented with a combination of cryoprotectants (data
not published).
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4. Materials and Methods
4.1. Design of Experiments

A total of 12 human testicular tissue samples (Figure 6) were collected and divided
into 4 groups: quickly (in boiling water at 100 ◦C) thawed cryopreserved mature testicular
tissue (group 1), slowly (by physiological temperature 37 ◦C) thawed mature testicular
tissue (group 2), quickly thawed immature testicular tissue (group 3), and slowly thawed
immature testicular tissue (group 4). Mature testicular tissues were collected from 6 adults,
and immature testicular tissues were collected from 2 children. In each experimental group,
3 samples were used.
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4.2. Extraction and Cryopreservation of Testicular Tissue (Equilibration with Cryoprotectants,
Thawing and Removal of Cryoprotectants)

The study was conducted in accordance with the Declaration of Helsinki and ap-
proved by the Institutional Ethics Committee of Cologne University (protocols 01-106,
12–163, 17-427, 20-1229, code BioMSOTE) and the Bulgarian National Medical Institutional
Ethics Committee (Project “Development of new cryopreservation methods to restore tes-
ticular function in adult and prepubertal patients with oncological diseases”, approval No.
7-021/2022). The informed consent was obtained from patients whose testicular tissue was
collected for this study. All chemicals were obtained from Sigma (Sigma Chemical Co., St.
Louis, MO, USA) unless otherwise stated.

All patients underwent a testicular biopsy after the diagnosis of azoospermia as well
as for fertility preservation before initiating any therapy carrying a high risk of permanent
infertility, such as high-dose chemotherapy. Testicular tissue was obtained from 2 boys and
6 adults aged 3 and 5 and from 34 to 41, respectively.

The procedure of extraction of testicular tissue has been previously described in
detail [43–51]. Briefly, a midline incision was made in the scrotum and the testis, and
the spermatic cord was removed, preferably from the hemiscrotum, with the larger testis.
Tunica vaginalis was opened, and Tunica albuginea was visualized. Under an operating
microscope, Tunica albuginea was widely opened in an equatorial plane, preserving the
subtunical vessels. After the opening of Tunica albuginea, testicular parenchyma was
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examined directly at 12-fold magnification under the operating microscope. Small samples
(1–18 mg) were excised by pulling out larger, more opaque tubules from surrounding
Leydig cell nodules or hyperplasia in the testicular parenchyma.

Cryopreservation of testicular tissue (Figure 1) was performed according to the previ-
ously published protocol for human ovarian tissue [52–55]. Collected testicular fragments
were equilibrated for 30 min. in a cryopreservation solution containing 6% dimethyl sul-
foxide, 6% ethylene glycol, and 0.15 M sucrose. The cryovials were then placed in an Ice
Cube 14S freezer (SyLab, Neupurkersdorf, Austria) for conventional freezing. The freezing
procedure is as follows: When the cryovial reaches −7 ◦C, start the freezing process and
cool at a rate of −0.3 ◦C per minute until it reaches −33 ◦C. The process usually takes about
90 min. Finally, the cryo-vials were placed in liquid nitrogen for long-term storage. Tissue
was thawed with different regimes.

Quick thawing: Thawing of tissue was achieved by holding the cryo-vial for 30 s at
room temperature, followed by immersion in a 100 ◦C (boiling) water bath for 60 s, and
expelling the contents of the vial into the solution for the removal of cryoprotectants. The
exposure time in the boiling water was visually controlled by the presence of ice in the
medium; as soon as the ice reached size 2 to 1 mm, the vial was removed from the boiling
water, at which point the final temperature of the medium was between 4 and 10 ◦C. Within
5 to 10 s after thawing, the tissue fragments from the cryo-vials were expelled into a 10 mL
thawing solution (basal medium containing 0.5 M sucrose) in a 100 mL specimen container
(Sarstedt, Nuembrecht, Germany). After the exposure of the tissues to sucrose for 15 min,
stepping rehydration of cells was performed, as reported previously [52–55].

Slow thawing: This thawing regime was exactly the same as the quick thawing regime
described above, except that the tissues were thawed by immersing the cryovial in a 37 ◦C
water bath for three minutes.

4.3. Sequencing and Data Extraction

Each sample of testicular tissue was used for RNA extraction with the Trizol method.
It was detected that the RIN/RQN of all samples was greater than 4.

Strand-specific transcriptome library construction was completed by enriching mRNA
from total RNA, sequenced by DNBSEQ high-throughput platform, and followed by bioin-
formatics analysis. The library was validated on the Agilent Technologies 2100 bioanalyzer.
The library was amplified with phi29 to make a DNA nanoball (DNB), which had more
than 300 copies of one molecule. The DNBs were loaded into the patterned nanoarray, and
single-end 50 (pair-end 100/150) base reads were generated using combinatorial Probe-
Anchor Synthesis (cPAS). RNA-seq analysis was performed using the Dr. Tom System
(https://biosys.bgi.com, accessed on 25 August 2023). The raw data of RNA-seq number is
BioProject: PRJNA1030294. It can be downloaded at “Sequence read archive” on the Na-
tional Center for Biotechnology Information (https://www.ncbi.nlm.nih.gov/bioproject/
1030294, accessed on 14 March 2024). Because the raw data for sequencing contains reads
of low quality, adapter contamination, and excessively high levels of unknown base N,
these reads need to be removed before data analysis to ensure the reliability of the results.

4.4. Differentially Expressed Genes (DEG) Analysis

DEG is the abbreviation of genes, which refers to the detection of genes with different
expression levels in different samples. Map clean reads were run to a reference gene
sequence (transcriptome), and then gene expression levels for each sample were calculated.
Detection of DEG was performed by the DEseq2 method. This DEseq2 method is based on
the principle of negative binomial distribution. Our project uses the previously described
method [56]. It was analyzed first and maps all candidate genes to each entry in the Gene
Ontology database (http://www.geneontology.org/, accessed on 25 August 2023).

R’s basis function phyper was used (https://stat.ethz.ch/R-manual/R-devel/library/
stats/html/Hypergeometric.html, accessed on 25 August 2023) to calculate the p-value.
Then the p-value is corrected through multiple tests, and the corrected package is the

https://biosys.bgi.com
https://www.ncbi.nlm.nih.gov/bioproject/1030294
https://www.ncbi.nlm.nih.gov/bioproject/1030294
http://www.geneontology.org/
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/Hypergeometric.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/Hypergeometric.html
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q-value (https://bioconductor.org/packages/release/bioc/html/qvalue.html, accessed
on 25 August 2023). Finally, q-value (corrected p-value) ≤ 0.05 was used as the threshold,
and the KEGG and GO term that satisfied this condition was defined as the KEGG and
GO term that was significantly enriched in candidate genes. PPI analysis of differentially
expressed genes was based on the STRING database with known and predicted protein-
protein interactions.

5. Conclusions

No fundamental differences in the quality of cells of mature and immature testicular
tissue after cryopreservation were found. Generally, thawing of mature and immature
testicular tissue was more effective at 100 ◦C. The greatest difference in the intensity of
gene expression was observed in ribosomes of cells thawed at 100 ◦C in comparison with
cells thawed at 37 ◦C. In conclusion, an elevated speed of thawing is beneficial for frozen
testicular tissue.
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