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Abstract: Stearoyl-acyl carrier protein (ACP) ∆9 desaturase (SAD) is a critical fatty acid dehydroge-
nase in plants, playing a prominent role in regulating the synthesis of unsaturated fatty acids (UFAs)
and having a significant impact on plant growth and development. In this study, we conducted
a comprehensive genomic analysis of the SAD family in barley (Hordeum vulgare L.), identifying
14 HvSADs with the FA_desaturase_2 domain, which were divided into four subgroups based on
sequence composition and phylogenetic analysis, with members of the same subgroup possessing
similar genes and motif structures. Gene replication analysis suggested that tandem and segmental
duplication may be the major reasons for the expansion of the SAD family in barley. The promoters
of HvSADs contained various cis-regulatory elements (CREs) related to light, abscisic acid (ABA),
and methyl jasmonate (MeJA). In addition, expression analysis indicated that HvSADs exhibit mul-
tiple tissue expression patterns in barley as well as different response characteristics under three
abiotic stresses: salt, drought, and cold. Briefly, this evolutionary and expression analysis of HvSADs
provides insight into the biological functions of barley, supporting a comprehensive analysis of the
regulatory mechanisms of oil biosynthesis and metabolism in plants under abiotic stress.

Keywords: barley; SAD; evolution; unsaturated fatty acids (UFAs); abiotic stress

1. Introduction

The unsaturated fatty acids (UFAs) are produced through a series of desaturation and
elongation processes of saturated fatty acids, which are a highly sophisticated mechanism
in plants. Stearoyl-acyl carrier protein (ACP) ∆9 desaturase (SAD) is a decisive enzyme
located in the plastid, catalyzing the dehydrogenation of stearic acid (C18:0) at a specific
position in the fatty acid chain to form a double bond for the first step of desaturation,
resulting in the formation of monounsaturated fatty acid (C18:1) [1,2]. Hence, SAD directly
determines the ratio of saturated fatty acids to UFAs in plant oils [3]. Oleic acid, as the main
form of monosaturated fatty acid exported by plastids, can be further desaturated into
polyunsaturated fatty acid derivatives and used as a main component of the cell membrane
system in the form of phospholipids [4].

Fatty acids and their derivatives are important energy-storage substances and are
the main components of cell membrane lipids in plants. They are particularly actively
synthesized during seed development and have been validated in most species. GmSAD5
is highly expressed in soybeans during the middle and late stages of seed development,
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consistent with the oil enrichment period. It was found to have strong selectivity for
stearic acid substrates and could efficiently catalyze the biosynthesis of monounsaturated
oleic acid [5]. Expression analysis showed that GhA-SAD6 and GhD-SAD8 in cotton are
preferentially generated during endosperm development and are responsible for producing
palmitoleic acid in cotton seed oil [6]. Four SAD-encoding genes (FAB2, AAD5, AAD1, and
AAD6) in Arabidopsis are also transcriptionally induced in seeds, where FAB2, AAD5, and
AAD1 are involved in the formation of the embryonic corneum [7]. Interestingly, TcSAD1
in cacao is universally expressed in all the tissues and is highly correlated with dramatic
changes in fatty acid composition during seed maturation [8]. Overall, these results support
that various SADs in these plants are intimately linked to the lipid synthesis pathway and
seed development.

Fatty acids and their derivatives are extensively involved in regulating various defense
pathways such as basal immunity, effector-induced resistance, and systemic resistance.
Research has found that endoplasmic reticulum membranes of oilseed rape grown at low
temperatures (4 ◦C) are rich in polyunsaturated fatty acids and have a significantly altered
lipid composition. Additionally, an allele of SAD, homologous to AtSAD6 (At1g43800),
was also found to be responsive to, and up-regulated by, low temperatures in oilseed
rape [9]. The overexpression of the ScoSAD prominently improved the freezing resistance
of transgenic potato plants [10]. The transcription levels of soybean SAD and FAD2-1 were
markedly increased under low-temperature treatment. Additionally, the transcription level
of FAD2-1B was also higher than that of FAD2-1A after 35 days of flowering [11]. Treating
peanut seedlings with 250 mM of NaCl weakened the activity of ω-3 fatty acid desaturase,
leading to decreased contents of UFAs, which affected the stability and fluidity of the
membrane and even caused irreversible damage to the plant. On the contrary, increasing
the content of UFAs contributed to the improvement of salt tolerance in Suaeda salsa [12–14].
Apart from responding positively to temperature, drought, and salt stresses, FAs also serve
defense purposes by affecting hormone levels. Low oleic acid induced the accumulation
of salicylic acid (SA) and activated defense responses in GhSSI2s-silenced cotton to resist
disease, whereas the disruption of GhSSI2s directly activated resistance gene-dependent
defenses [15]. In addition, UFAs reacted immediately with reactive oxygen species (ROS)
to maintain the stability of the cytomembrane and organelle membranes by regulating ROS
levels [16–18]. Given the important role of FAs in regulating metabolic homeostasis and
ensuring normal plant growth, this study explores the bioinformatics aspects of SAD.

Barley is the fourth largest cereal crop in the world after wheat, rice, and maize [19].
The analysis and publication of the barley genome have facilitated high-resolution, preci-
sion genomics research, and studying specific gene families in barley can help elucidate
the molecular genetic mechanisms of wheat crops. A significant number of gene families
have been identified in barley [20–26], but systematic research on the SADs encoding FA
dehydrogenase in barley has not yet been reported. This study screened the barley SAD
family based on database data to confirm 14 members distributed on four chromosomes,
with relatively conservative protein motifs. This study focuses on 14 HvSADs and inves-
tigates their expression under abiotic stress using bioinformatics analysis, with a view of
exploring the excellent resistance function of SADs and providing a theoretical basis for
genetic improvement and molecular breeding in barley.

2. Results
2.1. Identification and Characterization of SAD Proteins in Barley

Through homologous comparison and domain validation, 14 SADs were identified in
the whole barley genome and designated as HvSAD1 to HvSAD14. The physicochemical
properties of the SADs, such as the molecular weight (MW), number of amino acids (aa),
theoretical isoelectric point (pI), aliphatic index, and other information, are summarized in
Table 1. The average protein length of the HvSADs was 396 aa, ranging from 339 (HvSAD12)
to 428 (HvSAD6) aa, while the corresponding MWs were 38–47 kDa, with an average of
approximately 44 kDa. The average theoretical pI was 7.23, distributed between 5.97
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(HvSAD12) and 9.03 (HvSAD7). Half of the HvSADs were acidic, and the rest were alkaline.
The aliphatic index of the HvSADs ranged from 72.91 to 87.33, with an average of 79.71.
Moreover, all of the HvSADs possessed negative GRAVY values (ranging from −0.177 to
−0.490), indicating the hydrophilic character of the HvSADs. The subcellular localization
of the proteins showed that most HvSADs were located in chloroplasts, with a few located
in the cytoplasm and mitochondria, which is speculated to affect photosynthesis. The
variability in the physicochemical properties of the HvSADs may reflect a diverse protein
structure and function. All characteristics of the HvSADs are shown in Table 1.

2.2. Sequence Alignment and Phylogenetic Analysis

The sequence alignment results of the HvSADs showed that the overall amino acid
similarity among proteins was 57.62%. Different colors were used to visually represent
the proportion of homology, with yellow representing 100%, blue representing ≥ 75%,
and purple representing ≥ 50%. From Figure 1, it can be observed that the homologous
proportion of HvSADs ranging from 50% to 100% accounted for a higher proportion of the
total sequence. The black line represents the region of the FA_desaturase_2 domain. The
conserved motifs of Motif1, Motif2, Motif3, Motif5, and Motif6 are common components of
the domain and may be an important criterion for determining whether the candidate’s
SADs possess this domain (Figure 1). HvSAD12 was found to have significantly different
homologous sequences compared with other members, thereby increasing the difference in
the comparison results.
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Table 1. Detailed information of the identified barley SADs.

Gene Name Gene ID
Protein

Subcellular
Localization

Domain Chromosome Genomic Location
Size (aa) MW (Da) pI Aliphatic

Index GRAVY

HvSAD1 HORVU.MOREX.r3.2HG0106740 427 47,347 8.47 85.55 −0.267 Chloroplast FA_desaturase_2 Chr2 23,954,883−23,956,257
HvSAD2 HORVU.MOREX.r3.2HG0101470 375 41,677.74 8.68 87.33 −0.257 Mitochondrial FA_desaturase_2 Chr2 13,191,866−13,193,197
HvSAD3 HORVU.MOREX.r3.2HG0101440 405 44,883.21 7.19 84.96 −0.241 Mitochondrial FA_desaturase_2 Chr2 13,111,139−13,112,470
HvSAD4 HORVU.MOREX.r3.2HG0161410 392 44,559.57 6.04 73.44 −0.490 Chloroplast FA_desaturase_2 Chr2 425,614,894−425,618,180
HvSAD5 HORVU.MOREX.r3.5HG0535350 391 44,667.93 6.05 80.36 −0.405 Chloroplast FA_desaturase_2 Chr5 581,725,723−581,727,357
HvSAD6 HORVU.MOREX.r3.5HG0486420 428 47,617.36 7.59 73.93 −0.306 Chloroplast FA_desaturase_2 Chr5 459,736,400−459,738,111
HvSAD7 HORVU.MOREX.r3.5HG0457600 385 43,660.82 5.97 74.75 −0.381 Chloroplast FA_desaturase_2 Chr5 262,136,160−262,138,788
HvSAD8 HORVU.MOREX.r3.7HG0668240 412 45,390.46 6.87 72.91 −0.344 Chloroplast FA_desaturase_2 Chr7 103,262,598−103,263,947
HvSAD9 HORVU.MOREX.r3.3HG0310210 395 44,530.92 6.65 78.61 −0.409 Chloroplast FA_desaturase_2 Chr3 573,217,384−573,221,932

HvSAD10 HORVU.MOREX.r3.3HG0307490 378 42,389.33 6.24 79.29 −0.324 Chloroplast FA_desaturase_2 Chr3 564,864,759−564,866,328
HvSAD11 HORVU.MOREX.r3.3HG0309010 417 45,352.59 6.87 78.01 −0.177 Chloroplast FA_desaturase_2 Chr3 569,309,951−569,311,619
HvSAD12 HORVU.MOREX.r3.3HG0288610 339 38,752.42 9.03 76.31 −0.297 Cytoplasmic FA_desaturase_2 Chr3 484,477,447−484,478,466
HvSAD13 HORVU.MOREX.r3.2HG0101500 405 44,883.21 7.19 84.96 −0.241 Mitochondrial FA_desaturase_2 Chr2 13,265,580−13,266,911
HvSAD14 HORVU.MOREX.r3.2HG0106840 402 44,563 8.4 85.55 −0.236 Chloroplast FA_desaturase_2 Chr2 24,197,160−24,198,368
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2.3. Phylogenetic Analysis of SAD Proteins

Elucidating phylogenetic relationships is essential for understanding the structure and
evolution of gene families. By comparing the SADs of barley, rice, wheat, maize, A. thaliana,
G. hirsutum, S. lycopersicum, and G. max, we classified HvSADs and their homologs into four
groups, namely Class I–Class IV, based on the distance of the genetic relationships (Figure 2).
No HvSAD member was distributed in Class I, and most of them were distributed in Class
II and Class IV rather than in Class III. HvSAD1 and HvSAD14 are more closely related, and
HvSAD2, HvSAD3, and HvSAD13 also belong to the same branch. As a whole, HvSADs
are closely associated with homologs in wheat, rice, and maize, and most are not on the
same terminal branch as cotton, tomato, and Arabidopsis, suggesting higher evolutionary
homology with monocotyledonous plants than dicotyledonous plants. Notably, most
HvSADs are closely related to AtSAD6 (At1g43800) and do not belong to the same branch
as other members of Arabidopsis, indicating the possibility that AtSAD6 plays an important
role in the evolution of SADs in connecting monocots and dicots.
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Figure 2. Phylogenetic analysis of HvSADs and their homologs from various organisms. AT rep-
resents A. thaliana, Zm represents Z. mays, Os represents O. sativa L, Traes represents T. aestivum,
GLYMA represents G. max, Gohir represents G. hirsutum, Soly represents S. lycopersicum, and Hv rep-
resents H. vulgare. The phylogenetic tree was generated using the NJ method by MEGA7; bootstrap
values = 1000. SADs are classified into four groups (Class I–IV) and are distinguished by different
colors. HvSADs are marked with stars.
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2.4. Gene Structure and Protein Motif Analysis of the HvSADs Family

To further explore the evolutionary, functional diversity, and domain characteristics
of the HvSADs, the structural distribution of exons, introns, non-coding regions, and
conserved motifs was investigated (Figure 3a, Supplementary Table S2). Ten motifs were
identified in HvSADs, and the results showed that the rest of the motifs, except for Motif8
and Motif9, were associated with the FA_desaturase_2 domain. HvSADs have five com-
mon motifs in this domain, whereas the distribution of other motifs is not significantly
different, such as Motif7, Motif4, Motif10, and Motif8. It is noteworthy that except for
HvSAD12, the other members also possess Motif4, Motif7, and Motif10 related to the
domain (Figures 1 and 3). In Class IV, except for a lack of Motif4 for HvSAD2, all other
members have 10 predicted motifs and a concentration of exon regions (Figure 3b).
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The genetic structure composition indicated that HvSADs have fewer introns, but
the intron composition of HvSAD4, HvSAD7, and HvSAD9 is higher compared to other
members. In addition, the phylogenetic tree shows a high similarity of gene structures
at the end of the same branch and a low similarity of gene structures between branches
of different divisions, which may have been in adaptation to the external environment,
leading to the diversity of gene families.

2.5. Cis-Regulatory Elements Analysis in the Promoters of HvSADs

Plants need to rapidly adapt to the constantly changing environment and ensure
timely defense to support their normal growth and development. Understanding the CRE
composition of the HvSAD promoters can help elucidate the potential factors affecting
HvSAD expression and the regulatory pathways for participation. The results showed that
common CREs (such as TATA-box and CAAT-box) are present in the promoter regions of
HvSADs. Furthermore, there are many other functional elements (Figure 4), which can
be categorized into four groups: (1) growth and development regulation elements, such
as zein metabolism regulation-related element (O2-Site) and meristem expression-related
element (CAT-box); (2) stress-responsive elements, such as drought-responsive element
(MBS), low temperature-responsive element (LTR), and anaerobic-responsive element
(ARE); (3) hormone-responsive elements, such as ABA-responsive element (ABRE), auxin-
responsive element (TGA element), salicylic acid-responsive element (TCA-element), and
MeJA-responsive element (CGTCA motif/TGACG motif); (4) light-responsive elements,
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such as Box 4, G-box, GT1-motif, and SP1. There were 33, 66, 184, and 182 elements
responsible for plant growth and development, stress response, hormone response, and
light response, respectively, accounting for 7%, 14%, 40%, and 39% of all CREs in the
HvSAD promoter regions. HvSADs had the most hormone-responsive elements distributed
in the promoter regions, and except for HvSAD4, they all contained ABRE elements.
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Figure 4. CREs distribution in the promoter regions of HvSADs. The CREs in the promoter of each
HvSAD were classified based on the putative functions, including hormone-responsive CREs, light-
responsive CREs, environmental stress-responsive CREs, and growth and development-responsive
CREs. The positional distribution of various CREs on promoters is shown as rectangles with different
colors. The number in each box represents the quantity of each CRE for the corresponding gene.

The element’s response to plant hormones, light, and environmental stresses was
detected in all the HvSADs, while only growth and development regulation elements were
lacking in the HvSAD9. In plant growth and development, the CRE related to light response
and meristem expression (CAT-box, 15) was relatively high. In hormone response, the
CREs associated with ABA (ABRE, 69) and MeJA (TGACG motif, 42; CGTCA motif, 42)
were the most. In the stress response, the CREs related to anaerobic response (ARE, 24)
and GC motif (14) were relatively high. The above results indicated that HvSADs are not
only induced by adversity, hormones, and light, but may participate in plant growth and
development processes. The different numbers of CREs reflect the different modes in which
SADs are regulated.

2.6. Chromosome Location and Gene Duplication Analysis of HvSADs

HvSADs are unevenly distributed on four of the seven barley chromosomes (Figure 5).
Among them, there are six, four, and three genes on chromosomes 2, 3, and 5, respectively,
while only one HvSAD is present on chromosome 7, and most HvSADs are located near the
ends of the chromosome arm.

Tandem and segmental duplication are two forms of gene duplication events that
are major forces driving the expansion of gene families and the evolution of the entire
genome [27]. Collinearity analysis revealed the presence of SAD gene duplication in the
barley genome. Based on the evolutionary relationships and the distance between homolo-
gous gene pairs, two pairs of genes were each determined to have undergone tandem and
segmented duplication (Figure 6). For instance, HvSAD2 and HvSAD13 underwent tandem
replication and are tightly arranged on the same chromosome to form gene clusters with
similar sequences and functions. In the same family, HvSAD4 and HvSAD9 are, respec-
tively, located at a distance of 2H and 3H, which is the result of segmental duplication. To
further explore selective pressure in barley, the synonymous (Ks) and nonsynonymous (Ka)
nucleotide substitution rates of four homolog pairs were calculated (Supplementary Table
S3). The Ka/Ks ratio is an important indicator reflecting the type and intensity of selection
pressure during evolution, with Ka/Ks < 1 indicating negative selection pressure and
Ka/Ks > 1 indicating positive selection pressure. Hence, the HvSAD2/HvSAD13 gene pair
(tandem duplication was displayed in a red box) with Ka/Ks = 2.55 underwent positive
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selection during evolution. The Ka/Ks of the HvSAD4/HvSAD9 gene pair (segmental
duplication) is 0.08, indicating that HvSADs possibly underwent purifying selection.
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Figure 6. Gene duplications of HvSADs. Segmentally duplicated HvSAD gene pairs are linked by
the red lines between chromosomes. Segmentally duplicated gene pairs within the rice genome
are linked by the gray lines. The tandem duplication gene pairs are displayed in a red box. The
chromosome numbers are shown at the center of each chromosome. The scale bar marked on the
chromosome indicates chromosome lengths (Mb).

The syntenic relationships of SADs between barley and four other representative
species (wheat, rice, maize, and Brachypodium distachyon) separately revealed 33, 6, 7,
and 7 collinear gene pairs (Figure 7, Supplementary Table S5). The SADs have greater
collinearity between barley and wheat and exhibit high homology with other monocotyle-
donous plants. Additionally, HvSAD4 and HvSAD9 exhibit multi-collinearity among
species, indicating that they are more evolutionarily conserved.
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Figure 7. Collinearity relationship of the SADs in barley and four other plant species, including rice
and maize (a), wheat, and Brachypodium distachyon (b). Gray lines in the background indicate
the syntenic blocks between barley and other plant genomes, while the purple lines highlight the
syntenic HvSAD gene pairs and red triangles show gene locations.

2.7. Expression Profiles of HvSADs in Different Tissues

The expression data of 16 different growth stages and tissues of barley Morex were
obtained from the BARLEX website, and clustered heatmaps of 13 HvSADs genes (The
expression data of HvSAD2 was absent on the website) were produced using TBtools
v1.116 (accessed on 28 February 2023). Different colors and circle sizes indicated different
expression levels (Figure 8). The expression patterns of genes are often related to their
functions, and related analysis can provide clues for potential functional studies. The results
indicated that HvSADs mainly exhibit three expression patterns in different tissues/organs.
The first type was highly expressed during the reproductive growth stage, among the
expression levels of HvSAD4, HvSAD6, HvSAD7, HvSAD9, and HvSAD10 increased from
the young developing inflorescences (5 mm) (INF1) to developing inflorescences (1–1.5 cm)
(INF2) stage and further increased during the grain development stage. It is speculated
that HvSADs may also be related to barley yield. The second type of HvSADs was mainly
expressed during the nutrient growth stage, such as HvSAD8 and HvSAD11, which were
highly expressed at this stage but exhibited low expression at other tissue stages. Due to
their obvious tissue specificity, these genes may be necessary for spike morphogenesis. The
third type of HvSADs was almost not expressed in any tissue, including HvSAD3, HvSAD5,
HvSAD12, and HvSAD13.
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Figure 8. Expression profiles of HvSADs in different tissues and development stages.

Rows represent SAD members, while columns show different developmental stages
and tissues. The expression level of SADs [log10(FPKM+1)] is shown by the intensity of color,
wherein blue blocks represent low expression and red blocks represent high expression.
Different-sized circles describe the value of expression level, while blue circles indicate
a value of zero. EMB, 4 day embryos; ETI, etiolated seedling, dark condition (10 DAP);
LEA, shoots from seedlings (10 cm shoot stage); ROO1, roots from seedlings (10 cm shoot
stage); ROO2: roots (28 DAP); INF1, young developing inflorescences (5 mm); INF2, de-
veloping inflorescences (1–1.5 cm); CAR5, CAR15: developing grain (5 DAP, 15 DAP);
LEM, inflorescences, lemma (42 DAP); LOD, inflorescences, lodicule (42 DAP); PAL, dis-
sected inflorescences, palea (42 DAP); EPI, epidermal strips (28 DAP); RAC, inflorescences,
rachis (35 DAP); NOD, developing tillers, 3rd internode (42 DAP); SEN, senescing leaves
(56 DAP).

2.8. Expression of 10 HvSADs under Abiotic Stress by qRT-PCR

To investigate the potential role of HvSADs in abiotic stress, barley seedlings at the
third leaf stage were subjected separately to salt (200 mM), drought [20% (m/V) PEG6000],
and cold (4 ◦C) stress treatments for 0, 4, and 12 h. Ten HvSADs with good primer
specificity were selected for investigation, and qRT-PCR was used to detect the expression
of genes in seedling leaves under three stress conditions. The results showed that most
HvSADs exhibited significantly lower expression than the control for most of the time
after drought, cold, and salt treatments, whereas the expression of most HvSADs was
significantly upregulated under salt stress (Figure 9a–c). The selected HvSADs exhibited
differential expression over time, but their response patterns varied under different stress
conditions. Among them, HvSAD4, HvSAD7, and HvSAD9 did not respond to cold stress
but showed a significant upward and downward regulation trend under drought and salt
treatments. Most notably, HvSAD11 and HvSAD12 showed highly significant upregulation
under drought and salt stress treatments but a downregulation trend under cold stress. The
above findings indicate that HvSADs respond to abiotic stresses and may participate in the
response to environmental stress.
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Figure 9. Expression analysis of 10 selected HvSADs under abiotic stresses using qRT-PCR, viz.
drought (a), cold (b), salt (c) stresses. The y-axis represents the relative expression level of the HvSAD
gene in plant leaves based on qRT-PCR analysis. The x-axis represents the analyzed HvSADs, with
the red column representing a treatment time of 0 h, the blue column representing 4 h, and the purple
column representing a treatment time of 12 h. A t-test was used to analyze significant differences in
data, “*” represents p < 0.05, and “**” represents p < 0.01. Error bars represent standard deviations of
the means from three technical replicates.

3. Discussion

Research on fatty acids has indicated that UFAs are essential and important nutrients
for the human body. Additionally, UFAs are also an important component of plant cells,
and so the study of their synthesis and functional mechanisms has important theoretical
and practical significance. In plants, SADs have been cloned and characterized from
Arabidopsis [28], peanut [29], cacao [8], cotton [30], and soybean [5], but there have been no
reports on barley. Therefore, the identification and characterization of the HvSADs family at
the genome-wide level will help elucidate their functional and evolutionary relationships
in important crops. In this study, we comprehensively analyzed HvSADs and investigated
their potential functions in development and abiotic stress responses.

In total, 14 SADs were identified in the barley genome and divided into four groups
(Classes I–IV). Compared with cotton, tomato, and soybean, SADs from barley have
a higher homology with wheat, rice, and maize, indicating that this gene family may
potentially have more conservative evolution in monocotyledonous plants. The majority
of HvSADs in the same group also showed relatively small changes in the exon–intron
structure, motifs, and domain distribution, suggesting that HvSADs are more conserved
within the species. The SADs in barley have relatively similar protein lengths and MWs
among different groups, and it is similar in length and MW to SAD proteins in studied
species such as Arabidopsis [28] and cocoa [8]. The FA_desaturase_2 domain of barley
SADs has conserved histidine (EENRHG/DEKRHE) enriched regions [31], located in
Motif2 and Motif1. Aspartic acid (D) and histidine (H) provide necessary binding sites
and catalytic activity for Fe2+ HvSAD protein monomers [32]. The HvSADs in Group II
have a higher proportion of introns compared to other members, and the retention of
introns during transcription and translation may also increase compared to other members,
thereby regulating gene expression and generating proteomic diversity, and even leading
to phenotypic variation [33]. Interestingly, HvSADs (except HvSAD12) have chloroplast
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transit peptides, and some members also have mitochondrial transit peptides, which
is consistent with the predicted localization results (Supplementary Table S4). This is
different from cotton and oil tea, where HvSADs are not only localized in chloroplasts
but also in mitochondria [30,34]. The above implies that HvSADs play a key role in plant
photosynthesis and respiration. The existence of a link between plant photorespiration
metabolism and fatty acid metabolism has been reported in soybean and Arabidopsis [35–37].

New genes mainly originate from gene duplication. Some duplicated genes undergo
functionalization, which in plants encompasses varying degrees of functional differentia-
tion and promotes the diversity of gene functions [38–40]. Analysis of the gene duplication
events indicated that some HvSADs underwent tandem and segmental duplication pro-
cesses in a similar way as the expansion of barley GRAS and Arabidopsis gene families [27,41].
Consequently, the expansion of the barley SAD family may also be the result of the com-
bined effects of tandem and segmental duplication. Tandem duplication mainly occurs
in the chromosomal recombination region, implying that recombination occurred in the
regions where HvSAD2 and HvSAD13 are located. The Ka/Ks ratio of the segmentally du-
plicated HvSAD gene pairs was less than one. They underwent a purifying selection during
the evolutionary process, avoiding detrimental mutations. This is crucial for the functional
protection of the HvSAD family [42] (Supplementary Table S3). The collinearity analysis
among different species showed that HvSADs have a high homology with Gramineae
plants, especially wheat. HvSAD4 and HvSAD9 displayed multiple collinearities among
species, providing potential clues for the origin and evolution of HvSADs. The conser-
vation and functional diversity exhibited by the gene family during evolution enhances
the adaptability of plants to various unfavorable survival environments, such as drought,
disease, and temperature extremes, to ensure their growth and development [43,44].

The CREs themselves do not encode any proteins but typically bind to transcription
factors to regulate the expression of adjacent genes. During plant growth, differentiation,
and development, it is necessary to integrate signals from different tissues, development,
and environments to regulate gene expression. Therefore, it is extremely important to
focus on specific elements that regulate transcription initiation [45]. In the promoter
regions, we identified a large number of CREs associated with hormone response, light
response, and stress response, as well as a few growth and development elements. The
number of light-responsive elements was the highest (182), followed by MeJA elements
(CGTCAMotif/TGACG Motif, 84) and ABA reaction elements (ABRE, 69). It has been found
that Chlorella significantly upregulated the transcription of SAD to induce the accumulation
of total fatty acids, including oleic acid, under high light stress [46]. However, olives treated
under dark conditions showed a significant 90-fold reduction in the level of SAD1 and
SAD3 transcripts, but no noticeable difference in the total UFA content [47]. Hormones
are also essential in regulating plant growth and development. MaABI5-like regulated
ABA-induced cold tolerance by increasing the content of UFAs and flavonoids [48]. In
Arabidopsis, the level of linolenic acid was increased through exogenous MeJA treatment
to enhance drought and salt tolerance as well as cold tolerance [49]. Furthermore, MeJA
participates in plant signal transduction, induces the synthesis of defensive compounds,
and plays a great part in plant resistance to stresses and diseases [44,50]. The above results
emphasize that utilizing CREs that potentially affect plant development and environmental
response can be used to promote crop improvement.

In some plants, SADs have been found to have tissue and stage-specific expression.
AhSAD3 in peanuts was mainly expressed in developing seeds in accordance with the oil
accumulation stage, while AhSAD1/2 was expressed in developing seeds, leaves, stems,
roots, and flowers, and the expression level in the flowers was even higher than that in the
seeds [29]. In Arabidopsis, the double mutations in both FAB2 and AAD5, two SAD-encoding
genes, caused embryo development to stop before the globular stage, and these two genes
along with AAD1, another SAD-encoding gene, participated in the formation of embryonic
keratin in the later stage of seed growth [7]. OeSAD1 was expressed most highly in olive
leaves and least in the flowers, while OeSAD2 was mainly expressed in the fruit peel and
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was lowest in the leaves, exhibiting a significant inducing effect in the fruit [51]. This study
showed that HvSADs are not only expressed in a specific tissue type. For example, HvSAD4
and HvSAD9 were expressed at higher levels in each tissue compared to other members,
suggesting that they have a regulatory effect on multiple development stages. However,
HvSADs also exhibited high expression levels in specific tissue types, such as HvSAD10
being most expressed in CAR15, which is consistent with the research results in peanuts.

Existing studies have shown that SADs are associated with plant abiotic stress re-
sistance, particularly with a crucial impact on cold stress resistance [10,47,52–55]. In tea
trees and flax, the expression of the SADs was strongly induced by cold and drought
stresses [52,55]. It is noteworthy that in addition to most ARE and GC motifs, the HvSADs
also had CCAAT-box (MYBHv1 binding site), MBS (MYB binding site involved in drought-
inducibility), LTR (low-temperature responsiveness), TC-rich repeats (defense and stress
responsiveness), and MBSI (MYB binding site involved in the regulation of flavonoid biosyn-
thesis genes) elements, which offer the possibility of the HvSADs to respond promptly to
drought, cold, and salt stresses. [56,57] In the study, HvSADs were also found to respond
to cold, drought, and salt stresses, but each member responded to different stresses in
different ways. Low-temperature stress often leads to the fixation of membrane proteins,
and the content of UFAs in plants increases to a certain extent in order to maintain the
fluidity of the cell membrane [47]. HvSAD8 was significantly upregulated by cold stress,
with the highest expression level in the aboveground parts of the seedlings, implying that it
is important for the protection of barley seedlings against severe cold. The expression levels
of HvSAD5 and HvSAD10 were significantly downregulated and then upregulated under
cold stress, indicating a rapid response to stress and controlled through negative regulation.
In addition to positively responding to cold stress, studies have also found that increasing
the content of UFAs in plant membrane lipids can greatly enhance the tolerance of the
photosynthetic machinery to salt stress. In Arabidopsis, salt stress significantly reduced
the expression of AtACP5, and knocking out the gene increased the sensitivity of plants
to salt stress. The overexpression of AtACP5 led to changes in FA composition, thereby
improving salt tolerance [58,59]. Similar to other abiotic stresses, plants resist drought stress
by regulating the content of UFAs [60,61]. HvSAD11 and HvSAD12 strongly responded to
drought and salt stress and were significantly upregulated after 4 h and 12 h, exhibiting
greater upregulation under these stresses compared to cold stress. This may be related
to the fact that, compared to other cereal crops, barley itself has strong salt, drought, and
cold tolerance. The SAD family in plants influences lipid synthesis, seed development, and
stress resistance, which has positive implications for genetic improvement and breeding in
plants [53,62,63].

4. Materials and Methods
4.1. Identification of SADs in Barley

To find candidate SADs in the barley genome, the hidden Markov model profile of
the PF03405 (FA_desaturase_2 domain) file was downloaded from the Pfam database
(http://pfam-legacy.xfam.org/) (accessed on 24 August 2022) [64,65], and the protein
sequences with this domain were screened using TBtools v1.098669 (accessed on 24 August
2022) (E-value ≤ 10−5) [66]. Meanwhile, for reliable results, the identified sequences of
seven SADs of Arabidopsis were also used as reference sequences, and a BLASTP search
was performed with the barley genome in the Ensembl Plants database (http://plants.
ensembl.org/index.html) (accessed on 24 August 2022) as well as in the BARLEX database
(http://barlex.barleysequence.org) (accessed on 24 August 2022), with an E-value ≤ 10−5

and identity ≥ 50% set as the filtering conditions to obtain the potential HvSAD mem-
bers [28,67,68]. Using NCBI (https://www.ncbi.nlm.nih.gov) (accessed on 25 August 2022)
and SMART (http://smart.embl-heidelberg.de/) (accessed on 25 August 2022) online soft-
ware, domain validation was performed on the screened barley SAD protein sequences [69].
Next, the incomplete reading frame and short and redundant sequences were removed
manually, after which the SAD gene and protein sequences in barley were finally obtained.

http://pfam-legacy.xfam.org/
http://plants.ensembl.org/index.html
http://plants.ensembl.org/index.html
http://barlex.barleysequence.org
https://www.ncbi.nlm.nih.gov
http://smart.embl-heidelberg.de/
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4.2. Physicochemical Properties Analysis

The composition and physical and chemical characteristics of the HvSADs were ana-
lyzed with ExPASy (https://web.expasy.org/) (accessed on 1 September 2022), and the sub-
cellular localizations of the HvSADs were assessed using WoLF PSORT
(https://wolfpsort.hgc.jp/) (accessed on 1 September 2022) [70,71]. Signal and chloro-
plast transit peptides were predicted using Ipsort (https://ipsort.hgc.jp/) (accessed on 1
September 2022) [72]. Detailed information on all HvSADs is provided in Table 1.

4.3. Phylogenetic Analysis

A phylogenetic tree of SADs among eight plant species was constructed using the
neighbor-joining (NJ) method in MEGA7.0 software. The bootstrap value was set to 1000,
and Evolview (http://www.evolgenius.info/evolview/#/) (accessed on 7 March 2023)
was used to display the evolutionary tree [73,74]. Additionally, to study the characteristic
structural domains of barley SAD members, multiple sequence comparisons of HvSAD
protein sequences were performed using DNAMAN version: 9.0.1.116 (accessed on 7
March 2023).

4.4. Analysis of Conserved Motif and Gene Structure

The exon-intron structures of HvSADs were examined using TBtools and the GFF3
data (Generic Feature Format version 3 Data) from Ensembl Plants. The conserved motifs
of HvSADs performed a thorough investigation with MEME (http://meme-suite.org/)
(accessed on 12 February 2023), with a maximum of 10 motifs and motif width between
6 and 50 amino acid residues. Finally, the full graphics of the conversed motif and gene
structure were visualized by the BioSequence Structure Drawers function of TBtools.

4.5. Cis-Regulatory Elements Prediction in the Promoter Regions of HvSADs

For each HvSAD, a 2000 bp sequence upstream of the initiation codon (ATG) was
extracted using TBtools v1.116 (accessed on 12 February 2023) and submitted to the Plant-
CARE website (http://bioinformatics.psb.ugent.be/webtools/plantcare/html/) (accessed
on 12 February 2023) to obtain information on CREs [75]. The obtained prediction informa-
tion was categorized and summarized. Eventually, the CREs were displayed using TBtools
and Excel 2016 software (Microsoft Corp., Redmond, WA, USA).

4.6. Chromosome Distribution, Gene Duplication, and Selective Pressure Analysis

Genomic data of barley, wheat (Triticum aestivum), rice (Oryza sativa), maize (Zea
mays), and Brachypodium distachyon were downloaded from the Ensembl Plants database.
The TBtools v1.116 (accessed on 9 February 2023) was used to analyze and visualize the
chromosomal distribution, gene duplication events within the barley genome, as well
as the gene level collinearity among plant genomes. The Simple Ka/Ks Calculator (NG)
tool in TBtools v1.116 (accessed on 9 August 2023) was used to calculate the ratio of
non-synonymous to synonymous substitution (Ka/Ks) for duplicated gene pairs.

4.7. Expression Analysis of HvSADs Members

The expression levels of HvSADs in different tissues and development stages were
downloaded from the transcriptome data of RNA sequence from the BARLEX database.
The gene expression values are represented by fragments per kilobase of exon per million
fragments mapped (FPKM). A heatmap of the expression pattern was analyzed by TBtools
to analyze the expression of each SAD in different tissues of barley.

4.8. Plant Material, Stress Treatment, RNA Extraction, and qRT-PCR Analysis

After disinfecting the barley Morex seeds, they were germinated under dark conditions
at 24 ◦C. Seedlings exhibiting strong and consistent growth were selected for hydroponic
cultivation and were cultivated with 1/2 Hoagland’s nutrient solution in an artificial
illumination incubator under a day/night temperature of 24 ◦C/22 ◦C with 14 h of 100% of

https://web.expasy.org/
https://wolfpsort.hgc.jp/
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full light and 10 h of darkness. The nutrient solution was changed every three days. At
the third-leaf stage, the seedlings were treated under low-temperature stress (4 ◦C), salt
stress (200 mM NaCl), and simulated drought stress [20% polyethylene glycol (PEG)6000]
separately. The control group was cultivated with a nutrient solution only. The leaves were,
respectively, sampled at 0 h, 4 h, and 12 h and stored at −80 ◦C after rapidly freezing with
liquid nitrogen.

Total RNA was extracted using a Plant RNA Extraction Kit (Promega, Beijing, China)
and then reversely transcribed to cDNA by a Reverse Transcription Kit (YEASEN, Shanghai,
China), all according to the reagent instructions. The quantitative real-time PCR (qRT-
PCR) amplification was performed using Hieff® qPCR SYBR Green Master Mix (YEASEN,
Shanghai, China) in a CFX96 TouchTM Real-Time PCR Detection System (Bio-Rad, Hercules,
CA, USA). Primers were designed according to the CDS sequences of HvSADs using Primer
Premier 5 software (Premier Biosoft Interpairs, Palo Alto, CA, USA) with the following
settings: PCR product size for 100–300 bp, primer length for 22 ± 3 bp. Their specificity
was then confirmed by using the Ensembl Plants database for BLASTN search in the barley
genome. HvActin (HORVU. MoreX.r3.1HG0003140) was used as the internal reference
gene. The sequence information of all primers is listed in Supplementary Table S1. Three
biological replicates and three technical replicates were tested for each sample, and the
relative expression levels were calculated using the 2−∆∆Ct method [76]. Gene expressions
for selected HvSADs were analyzed using GraphPad Prism version 9.5.0 for Windows
(GraphPad Software, San Diego, California USA, www.graphpad.com).

5. Conclusions

This study identified 14 HvSADs genes from the barley genome. Based on a phy-
logenetic and gene structure analysis, the HvSADs were classified as Class I to Class IV.
Members of the same group exhibited similar structural characteristics. Gene replication
analysis indicated that tandem duplication, fragment duplication, and purification selection
contributed to the expansion and evolution of the HvSAD family. In addition, a common-
ality analysis between barley, rice, wheat, maize, and Brachypodium distachyon showed
varying degrees of correlation. The HvSADs were found to be influenced by various factors,
including hormones, light, and stress. In addition, the HvSADs were highly expressed
during young ear and seed development and may be involved in the regulation of repro-
ductive growth. Several HvSADs exhibited different expression patterns under abiotic
stress. Overall, the genome-wide identification and molecular characterization of HvSADs
provide new insights into their evolutionary history and functional roles, contributing to a
comprehensive analysis of the regulatory mechanisms and genetic improvement of plant
oil biosynthesis and metabolism.
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