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Abstract: B-cell receptor (BCR) is a B cell hallmark surface complex regulating multiple cellular
processes in normal as well as malignant B cells. Igα (CD79a)/Igβ (CD79b) are essential compo-
nents of BCR that are indispensable for its functionality, signal initiation, and signal transduction.
CD79a/CD79b-mediated BCR signaling is required for the survival of normal as well as malignant B
cells via a wide signaling network. Recent studies identified the great complexity of this signaling
network and revealed the emerging role of CD79a/CD79b in signal integration. In this review,
we have focused on functional features of CD79a/CD79b, summarized signaling consequences
of CD79a/CD79b post-translational modifications, and highlighted specifics of CD79a/CD79b
interactions within BCR and related signaling cascades. We have reviewed the complex role of
CD79a/CD79b in multiple aspects of normal B cell biology and how is the normal BCR signaling
affected by lymphoid neoplasms associated CD79A/CD79B mutations. We have also summarized
important unresolved questions and highlighted issues that remain to be explored for better under-
standing of CD79a/CD79b-mediated signal transduction and the eventual identification of additional
therapeutically targetable BCR signaling vulnerabilities.

Keywords: B lymphocytes; B-cell receptor; BCR; CD79a; CD79b; BCR signaling; BCR assembly;
lymphoid malignancies; non-Hodgkin lymphoma; NHL; CLL; ITAM; immunoglobulin; malignant B
cells; B cell development; antigen-induced BCR signaling; tonic BCR signaling; DLBCL; LYN; BTK;
BCR internalization

1. Introduction

B-cell receptor (BCR) signaling plays a critical role at multiple stages of B cell life
cycle [1]. BCR is a hallmark molecule of B cells that determines cellular fate and regulates B
cell survival, fitness, activation, development, and transformation into immunoglobulin-
secreting cells [2]. Structurally, BCR is composed of a membrane-bound immunoglobulin
(Ig) molecule noncovalently linked with Igα (CD79a) and Igβ (CD79b) transmembrane
signaling subunits [2–4]. BCR has a central role within the adaptive immune system and
antigen recognition. Antigen binding triggers antigen induced BCR signaling, activat-
ing an array of signaling cascades and cellular processes. These include BCR-mediated
antigen capture, recognition, uptake, and processing (also making B cells effective antigen-
presenting cells) [5]. Importantly, BCR is also a source of baseline antigen-independent
signaling, the so-called “tonic” BCR signaling. Tonic BCR signaling is necessary for correct
B-cell development and for survival of normal mature B cells [6]. At the same time, al-
tered BCR signaling has been implicated in the pathogenesis of autoimmune inflammatory
disorders and B-cell derived malignancies [7–10].

In recent years, multiple studies have substantially improved our understanding of
molecular mechanisms governing BCR signaling and highlighted the critical role of BCR
signaling integrative components CD79a and CD79b. In this review, we focus specifically
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on functional features of the CD79a/CD79b heterodimeric unit in normal and malignant B
cells, as well as on its role in BCR signal regulation. Furthermore, we summarize types and
consequences of CD79a/CD79b heterodimer covalent posttranslational modifications, de-
scribe the CD79a/CD79b interaction network, and highlight CD79a- and CD79b-associated
disruption of BCR signaling in malignant B cells. Reflecting the aim of our review, we focus
specifically on signaling events related to CD79a and CD79b molecules, providing only a
brief overview of BCR signaling in general.

2. BCR Signaling in Normal B Cells

BCR signaling is of critical importance for normal B cell performance at all different
stages of their development. BCR can induce a wide array of cellular responses related to the
complexity of the intracellular BCR signaling network. Individual features of BCR signaling
are highly dependent on a specific stage of B cell development and activation status [11].
Importantly, pre-BCR, which is structurally similar to BCR but contains a surrogate light
chain (SLC) made up of the invariant proteins λ5 (CD179b) and VpreB (CD179a) instead of
the Ig light chain in BCR [12], is transiently expressed in early developmental stages and is
necessary for pro-B to pre-B transition and pre-B cell expansion [13,14]. Correct assembly
and proper SLC replacement with the conventional light chain in pre-BCR is an imperative
for further B cell development [15].

BCR signaling is involved in the prevention of naïve B cell premature activation and
expansion of autoreactive clones. At the same time, low-level “tonic” BCR signaling is
essential for naïve B cell survival [16]. BCR antigen binding promotes mature B cell ac-
tivation and further differentiation of naïve B cells via activation of PLC-γ2, PI3K/AKT
and MAPK signaling pathways [17]. To ensure proper functionality of activated B cells,
BCR signaling sustains survival, stimulates cell growth, and supports other related cellular
adaptations via an array of signaling cascades including Ca2+ signaling, NF-κB activation,
PI3K/AKT/mTOR, NFAT, ERK, and MAPK signaling [18]. Furthermore, BCR is vital for
antigen presentation and subsequent T cell response activation and for B cell differentiation
into antibody-producing plasma cells [19]. In particular, BCR-mediated antigen internaliza-
tion is followed by intracellular antigen processing and subsequent surface presentation
to CD4+ and CD8+ T cells [20]. BCR signaling also critically regulates activation-induced
cytidine deaminase (AID)-mediated immunoglobulin class switch recombination [21,22].
Combination of activated BCR signaling with either a T cell-dependent (follicular T helpers)
or T cell-independent (lipopolysaccharides or glycolipids) signal is crucial for B cell dif-
ferentiation into antibody-secreting plasma cells or memory B cells [23]. BCR signaling
driven plasma cell differentiation requires transcription factor Ets1 downregulation via
Lyn-, PI3K-, BTK-, IKK2- and JNK-dependent pathways [24].

Additionally, BCR signaling contributes to the regulation of multiple other cellular
processes in normal B cells including metabolism. For instance, it induces PI3K/AKT-
dependent activation of glycolysis, oxidative phosphorylation, and glucose uptake [25,26].
BCR signaling also activates c-Myc with resulting enhancement of glycolysis and mitochon-
drial biogenesis [27]. BCR-initiated Ca2+ mobilization regulates metabolic reprogramming
of naïve B cells which is required for their growth and further differentiation [18]. Mainte-
nance of the balance between cellular growth and catabolic and anabolic processes is critical
for correct B cell functionality and is primarily sustained via c-Myc and mTORC1 activity
(which are both adjusted through BCR signaling) [28]. Importantly, BCR signaling was
also implicated in metabolic regulation via autophagy upregulation [29]. BCR-mediated
autophagy has been reported to be required for B cell activation [28].

Besides survival, activation, and proliferation, BCR signaling may prime B cells to
anergy and cellular death to ensure B cell tolerance [30]. For instance, BCR signaling has
been suggested to serve as a B cell quality control. Only moderate-intensity BCR signaling
promotes positive selection, while BCR ligation downregulates BCR expression, reduces
pro-survival PI3K/AKT signaling, and provides negative selection [31]. Inappropriately
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activated BCR may lead to B cell apoptosis [32]. BCR-mediated pro-apoptotic signaling has
been associated with Ca2+-dependent and mitochondrial pathways [30].

Therefore, not only the type of BCR signaling, but also its intensity varies during B
cell development and can determine the cell fate of B cells and their involvement in the
immune response.

3. B-Cell Derived Malignancies and BCR Signaling

According to the recently updated 5th classification of lymphoid neoplasms (the
World Health Organization Classification of Haematolymphoid Tumours), B-cell malig-
nancies include the following categories: tumor-like lesions with B-cell predominance,
precursor B-cell neoplasms (B lymphoblastic leukemias), mature B-cell neoplasms, and
plasma cell neoplasms and other diseases with paraproteins [33]. Mature B-cell neoplasms
include, e.g., pre-neoplastic and neoplastic small lymphocytic proliferations (e.g., chronic
lymphocytic leukemia, CLL), multiple types of non-Hodgkin lymphomas (NHLs), and
Hodgkin lymphomas [33]. The most common subtypes of NHL are diffuse large B-cell
lymphoma (DLBCL) and follicular lymphoma (FL), diagnosed in approximately 25–30%
and 20% of NHL patients, respectively [34–37]. In most cases, B-cell-derived tumors
retain surface expression of BCR which variably supports malignant cell growth and sur-
vival [38,39]. BCR signaling has been shown to drive the growth and evolution of B-cell
acute lymphoblastic leukemia (B-ALL), chronic lymphocytic leukemia (CLL), and multiple
types of NHLs [12,40–42]. Pathogenic BCR signaling has been extensively studied and
clearly demonstrated for DLBCL. Additionally, there is evidence that BCR supports tumor
cell growth and survival in mantle cell lymphoma (MCL), FL, Burkitt’s lymphoma, and
marginal zone lymphoma [43–46].

BCR signaling supports tumor cell growth and survival via various mechanisms. The
first described tumorigenic mode of BCR signaling was the so-called “chronic active” BCR
signaling triggered by self-antigen binding. Chronic active BCR signaling supports the via-
bility and growth of malignant B cells mainly through the NF-κB signaling pathway [47,48].
Recently, it was shown that frequent lymphoma-associated mutations of MYD88 (myeloid
differentiation primary response 88) adaptor protein lead to its spontaneous association
with Toll-like receptor 9 (TLR9) and BCR, forming a My-T-BCR complex capable to trigger
NF-κB activation [49]. Moreover, it was shown that lymphoma growth is also supported by
antigen-independent, constitutive, lower intensity “tonic” BCR signaling. Tonic BCR sig-
naling supports the growth and survival of tumor cells mostly via the PI3K/AKT/FOXO1
signaling pathway [50,51]. Antigen-independent cell autonomous BCR signaling with
features of antigen-triggered BCR signaling was identified in CLL [40]. Importantly, in
DLBCL, the type of BCR signaling (antigen driven or similar vs. tonic) reflects gene expres-
sion profiling-based cell-of-origin classification into the activated B cell like (ABC) DLBCL
subtype and germinal center B cell like (GCB) DLBCL subtype, respectively [52].

Given the importance of BCR signaling in B-cell derived malignancies, its inhibition
is one of the novel therapeutic approaches. It is represented mainly by three BTK (Bru-
ton’s tyrosine kinase) inhibitors (ibrutinib, acalabrutinib, and zanubrutinib) approved and
frequently used in the treatment of certain B-cell derived neoplasms. BTK inhibitors are
effective; however, their toxicity and common resistance development represent substantial
challenges that motivate the search for additional BCR signaling targeted inhibitors [53].

Important considerations regarding types of BCR signaling come from genomic stud-
ies, as documented in DLBCL. Distinct patterns of BCR signaling are reflected in tumor
mutational patterns, which further expand the above-mentioned cell-of-origin DLBCL
classification. Based on the spectrum of somatic alterations, genomic studies identified five
to seven distinct genetic DLBCL subtypes [54–58]. The MCD (combined MYD88L265P and
CD79B mutations), N1 (mutated NOTCH1), and A53 (aneuploid and TP53 inactivation) sub-
types are significantly overlapping with the ABC DLBCL subtype, whereas EZB (mutated
EZH2 and translocated BCL2), ST2 (mutated SGK1 and TET2), and BN2 (translocated BCL6
and mutated NOTCH2) are overlapping with GCB DLBCL [56]. Alternative classifications
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were published by Chapuy et al., including clusters 1 to 5 (BN2-DLBCL, A53-DLBCL,
EZB-DLBCL, ST2-DLBCL, and MCD-DLBCL, respectively); and by Lacy et al., including
MYD88, BCL2, SOCS1/SGK1, TET2/SGK1, and NOTCH2 clusters [55,58]. Pedrosa et al.
later attempted to unite and simplify the existing classifications through the assessment of
the mutational status of only 26 genes and BCL2 and BCL6 translocation status to facilitate
their clinical implementation (two-step genetic DLBCL classifier; 2-S). The suggested 2-S
subtypes are N12-S, EZB2-S, MCD2-S, BN22-S, and ST22-S [54]. Importantly, none of the
above-mentioned genetic studies were able to assign all cases, leaving a substantial pro-
portion of tumors unclassified. On the other hand, genetic studies provided insights into
the contribution of CD79a and CD79b (and their mutations) towards tumorigenesis and
lymphoma development [54–58].

4. Extracellular, Transmembrane, and Intracellular Domains of CD79a/CD79b Are
Functionally Distinct in BCR

BCR organization has been intensively studied in recent years. Therefore, information
about the BCR structure provided novel insights into molecular mechanisms of BCR
signal initiation and signal transduction. In 2022, two independent groups successfully
identified the human BCR structure using cryo-electron microscopy [59,60]. Furthermore,
the identification of the murine BCR structure supplemented the data on human BCR [61].

Each of the approximately 120,000 BCR receptor molecules present at the surface of a
mature B cell contains a membrane-embedded Ig (class M, D, G, A, or E) composed of two
light and two heavy chains linked with disulfide bonds [61,62]. There is a strong evidence
that the immunoglobulin-CD79a/CD79b stoichiometric ratio is 1:1, supporting the attach-
ment of CD79a/CD79b to the immunoglobulin (in a non-covalent manner) [59–61,63,64].
The membrane attachment of the immunoglobulin molecule is mediated via C-terminal
regions of Ig heavy chains, specifically by their transmembrane domains [65]. Multiple
studies indicated that the cytoplasmic tails of membrane-bound immunoglobulins me-
diate isotype-specific BCR signaling. The immunoglobulin tail tyrosine (ITT) signaling
motif was described in membrane-bound IgG and seems to mediate the reactivation of
IgG-switched memory B cells. Following antigen-induced SYK (spleen tyrosine kinase)-
mediated phosphorylation, the ITT facilitates docking of adaptor protein Grb2 (growth
factor receptor-bound protein 2). Grb2 in turn recruits BTK, which leads to the amplifica-
tion of Ca2+ mobilization and resulting amplification of BCR signaling [66–69]. However,
the CD79a/CD79b heterodimer is critically important for a general BCR signal trans-
duction [70,71]. CD79a/CD79b heterodimeric unit contains three domains (extracellular,
transmembrane, and intracellular) and is bound together with disulfide bonds formed
between cysteine residues of its extracellular domains [72]. Interestingly, CD79a and CD79b
extracellular domains are the least conserved regions of CD79a and CD79b molecules
with significant interspecies variability. Experiments in mouse B cells showed that their
replacement with the human counterpart does not affect BCR assembly and signaling [73].

Interactions between Ig and CD79a/CD79b complex result in the formation of four-
helix transmembrane bundle whose conserved nature assures correct assembly of any BCR
isotype [60,74]. These tight interactions within the cell membrane are crucial for the assem-
bly, stability and functionality of BCR, suggesting co-folding of BCR components during
BCR complex formation [63]. Moreover, recent study demonstrated that the assembly and
signaling features of BCR additionally depend on protein–protein interactions between
transmembrane domains of CD79a and CD79b [72].

Specific interactions between the membrane-bound immunoglobulin and CD79a/CD79b
are dependent on the BCR isotype. The IgM immunoglobulin binds to the CD79a/CD79b
heterodimer extracellular domain from the side, whereas the IgG immunoglobulin interacts
with the top of the CD79a/CD79b complex. It further suggests isotype specific differences
in BCR signaling [74,75].

Intracellular domains of CD79a and CD79b have an immunoreceptor tyrosine-based
activation motif (ITAM) made up of 26 amino acid residues and containing two critical
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tyrosine residues. ITAM tyrosines can undergo phosphorylation by the Src-family of
kinases and are directly involved in BCR signal mediation [17,76,77]. Furthermore, it seems
that ITAM phosphorylation also contributes to the regulation of BCR internalization [78].

The in-depth analysis of the cryo-electron microscopy BCR structure and additional
studies of BCR functionality revealed that individual CD79a and CD79b domains mediate
distinct processes to coordinate BCR signaling (Figure 1).
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5. The CD79a/CD79b Heterodimer Is Critically Important for BCR Functionality

BCR plays a pivotal role in B cell biology. It regulates antigen uptake, antigen presen-
tation, cell survival, proliferation, activation, differentiation, metabolism, B cell negative
selection, cellular death, and B cell anergy [1,11,17,19,28,79–83]. Results of multiple studies
and our current understanding of BCR signaling suggest that the CD79a/CD79b het-
erodimer is among key decisive regulators of BCR signaling and B cell fate.

CD79a and CD79b were implicated in the regulation of membrane-bound IgM expres-
sion and BCR complex formation and stability. The functional CD79a/CD79b complex
promotes IgM transport and increases its surface levels via adjusting its glycosylation [2].
Furthermore, CD79a and CD79b facilitate assembly and steadiness of BCR by stabilizing
each other to form the CD79a/CD79b dimer, mediate glycosylation of each other and IgM,
as well as deliver the assembled receptor to the Golgi apparatus [2,84]. CD79a- and CD79b-
mediated intracellular trafficking has been suggested to depend on their transmembrane
domains’ interactions and ubiquitination patterns [2,78,85].

Two of the main pathways mediating survival signals downstream of BCR are NF-κB
signaling (e.g., anti-apoptotic genes upregulation) and PI3K/AKT signaling (e.g., via its
downstream effector transcriptional factor FOXO1) [86–89]. In naïve B cells, both CD79a
and CD79b are required to physically interact with B-cell activating factor receptor (BAFFR),
whose ligand, the B-cell activating factor (BAFF), initiates pro-survival PI3K/AKT signaling
upon binding to BAFFR [90]. BCR signaling, combined with co-stimulation from CD40,
BAFFR, and TLRs, regulates antibody-mediated immune responses requiring class switch
recombination [21]. Interestingly, He et al. reported that association of CD19 with CD79b
alone could trigger an alternative pathway to promote survival, fitness, and growth of B
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cells in a PI3K-dependent fashion [76]. Antigenic BCR stimulation and consequent signaling
events also induce association of CD79a/CD79b heterodimers with MHC class II molecules.
CD79a/CR79b heterodimers thus contribute to signal transduction following MHC class
II activation (engaging Src-family tyrosine kinases and Ca2+ signal) [91,92]. The indirect
mechanism by which the CD79a/CD79b heterodimer promotes cell survival is the already
mentioned enhancement of IgM surface expression [2]. BCR signaling could also induce
autophagy, which is involved in the regulation of cell survival and metabolic homeostasis
of B cells [28,93]. Furthermore, B cell polarization and BCR intracellular trafficking are
regulated by autophagy-related proteins mobilized upon BCR signaling activation [94].
However, the exact role of CD79a and CD79b in these signaling events, as well as details
about their interaction with other BCR co-receptors, are not yet fully known and may not be
limited to a simple recruitment of BCR signaling mediators. Importantly, autophagy-related
regulation of BCR trafficking may complement the already reported effects of CD79a and/or
CD79b phosphorylation and ubiquitination on antigen processing and presentation [78,85].
As mentioned above, proliferation and activation of B cells is supported by BCR-mediated
PI3K signaling activation and consequent stimulation of mitochondrial biogenesis and
elevated glucose uptake [26,28,95]. Nevertheless, it is important to emphasize that while
BCR signaling is important for metabolic reprogramming of B cells, the ITAM-containing
CD79a and CD79b BCR components are not indispensable for it [96].

The critical importance of CD79a and CD79b BCR subunits for BCR functionality,
signal transmission, and signal regulation was largely established by studies of CD79a and
CD79b posttranslational modifications.

6. BCR Signaling Is Regulated by Phosphorylation, Ubiquitination, and Glycosylation
of CD79a and CD79b

ITAM phosphorylation is critical for signal transduction in ITAM-containing receptors.
ITAM motifs are relatively common across various receptors in different immune cells
including, e.g., T cells, NK cells, macrophages, or dendritic cells [97]. It is generally accepted
that phosphorylation of both ITAM tyrosine residues by Src-family tyrosine kinases such
as Lyn, Fyn, or Blk recruits SYK and the resulting complex activates downstream signaling
pathways (e.g., PI3K/AKT, NF-κB, and MAPK) [17,38,98,99]. Furthermore, recent studies
suggested that phosphorylation patterns of CD79a and CD79b ITAMs might affect BCR
cellular localization and determine which downstream kinase is recruited to modulate BCR
signaling (Figure 2).

Upon antigen binding, most cell surface BCR molecules are internalized for antigen
processing and further presentation [5,100]. This process can occur even when ITAM
tyrosine residues remain non-phosphorylated [78,101]. Importantly, non-phosphorylated
ITAM-mediated BCR endocytosis is critically dependent on mCD79b Y195, but not mCD79a
Y182 (murine CD79a, these tyrosine residues correspond to CD79b Y196 and CD79a Y188
in humans, respectively) and relies on adaptor protein 2 (AP2, an important mediator
molecule involved in clathrin-mediated endocytosis). Phosphorylation of ITAM tyrosine
residues prevents AP2 binding to the BCR YxxØ endocytosis motif and hence BCR inter-
nalization [101].

Results of multiple studies indicate that mono- or bis-phosphorylation of ITAM ty-
rosine residues determines whether Lyn or SYK is recruited. Lyn is recruited upon ITAM
mono-phosphorylation, while SYK docking occurs in response to ITAM bis-phosphorylation
(observed only in approximately 20% of activated BCR molecules) [102–104]. It has been
also reported that Src-family kinases are preferentially recognized by CD79a in contrast
to CD79b [105]. Comparing the two CD79a ITAM phosphorylation sites, mCD79a Y182
mediates Lyn recruitment in comparison to mCD79a Y193 (murine CD79a, these tyro-
sine residues correspond to Y188 and Y199 in human CD79a, respectively) [104]. Lyn
acts as a molecular switch in BCR signaling, working in a bidirectional manner. Like
other Src-family kinases, it phosphorylates CD79a/CD79b ITAMs to provide SH2 domain-
associated SYK docking. On the other hand, Lyn phosphorylates ITIMs (immunoreceptor
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tyrosine-based inhibitory motifs) in ITIM containing receptors with consequent recruitment
of phosphatases such as SHIP-1 (Src homology region 2 domain-containing inositol 5′

phosphatase 1), SHP-1 (Src homology region 2 domain-containing tyrosine phosphatase),
and PTEN (phosphatase and tensin homolog) to downregulate BCR signaling [102,106,107].
Lyn-mediated SYK recruitment activates the B-cell linker (BLNK) protein, which pro-
motes assembly of phosphoinositide phospholipase C-γ-2 (PLC-γ2), BTK, and adaptor
protein Grb2 into a multimolecular regulatory complex leading to downstream NF-κB and
PI3K/AKT signaling activation [17]. However, within components of this classical BCR
signalosome, Lyn is not indispensable. Lyn deficiency in Lyn knock out (KO) models can
be compensated by other members of Src-family kinases [108,109]. At the same time, Lyn is
critical for signalosome-independent IL-4-mediated alternative pathway of BCR signaling
activation [108].
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Figure 2. Phosphorylation of ITAM and non-ITAM tyrosines of CD79a and CD79b differentially
modulates BCR signaling. Abbreviations: BLNK—B-cell linker protein; BCR—B-cell receptor; BTK—
Bruton’s tyrosine kinase; Dok-1—docking protein 1; ERK—extracellular signal-regulated kinase;
Grb2—growth factor receptor-bound protein 2; ITAM—immunoreceptor tyrosine-based activation
motif; ITIM—immunoreceptor tyrosine-based inhibitory motif; JNK—c-Jun N-terminal kinase; Lyn—
Lck/Yes novel tyrosine kinase; NF-κB—nuclear factor kappa-light-chain-enhancer of activated B cells;
P—phosphate group; PI3K—phosphoinositide 3-kinase; PLC-γ2—phosphoinositide phospholipase
C-γ-2; PTEN—phosphatase and tensin homolog; SHIP-1—Src homology 2 (SH2) domain-containing
inositol-5-phosphatase 1; SHP-1—Src homology region 2 domain-containing phosphatase-1; SYK—
spleen-associated tyrosine kinase. This figure was created with biorender.com.

The above-mentioned Lyn-dependent negative regulation of BCR signaling relies on
SHIP-1- and PTEN-catalyzed dephosphorylation of phosphatidylinositol (3,4,5)-trisphosphate
(PtdIns(3,4,5)P3), blocking the PI3K/AKT pathway [103]. Moreover, Lyn-mediated SHP-1
activation leads to CD79a/CD79b ITAMs and SYK dephosphorylation, forming a nega-
tive feedback loop [110,111]. Therefore, Lyn determines the signal transduction strength,
mediating the balance between phosphorylation/dephosphorylation of key regulatory
intracellular BCR signaling components. Therefore, it affects B cell fate decisions. Lyn
recruitment, which depends on phosphorylation patterns of CD79a/CD79b, upregulates
intracellular Ca2+ signaling through SYK-mediated PLC-γ2 activation and downregulates
it via PtdIns(3,4,5)P3 degradation (mediated by SHIP-1 and PTEN). It was reported that
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quantitatively distinct Ca2+ signaling patterns downstream of BCR activation regulate B
cell survival by NF-κB engagement and B cell proliferation via NFAT, mTORC1, and c-Myc
activation [18].

Experimental evidence indicates that other than classical ITAM tyrosines of CD79a
(amino acid positions 188 and 199) are also substrates of phosphorylation and are involved
in regulation of BCR signaling. mCD79a Y176 and Y204 are required for BLNK recruitment
(a key adaptor phosphorylated by SYK). mCD79a Y204 phosphorylation is of particular
importance for BLNK recruitment. It places SYK and BLNK in a close proximity to allow
further BLNK activation. It also links SYK with downstream BCR signaling events including
Ca2+ mobilization, NF-κB, ERK, and JNK activation [112–114]. The murine mCD79a Y176
corresponds to human CD79a Y182 (a third tyrosine within the ITAM domain) and murine
mCD79a Y204 corresponds to human CD79a Y210 (a non-ITAM downstream tyrosine).
Therefore, both ITAM and non-ITAM tyrosine residues are subject to phosphorylation and
are all crucial for BCR signal transduction and regulation of its strength. The strength of
BCR signaling also depends on intricate equilibrium between kinases and phosphatases.

Phosphorylation is certainly a key covalent post-translational modification of CD79a/
CD79b which regulates BCR signaling. However, several studies suggested that both CD79a
and CD79b lysine sites are utilized for ubiquitin attachment and are therefore prone to
ubiquitination [78,85,115–118]. As mentioned previously (Figure 1), ubiquitination sites are
located in the intracellular domain of CD79a and CD79b [115]. Upon BCR-antigen binding,
CD79a and CD79b are subject to rapid ubiquitination (within 5 min) [117]. Time-dependent
kinetics of CD79a and CD79b ubiquitination and its role in BCR receptor function still
needs to be elucidated, but it has been demonstrated that CD79b is ubiquitinated first,
followed by a CD79a ubiquitination [85].

Ubiquitination might have a much wider significance in proximal BCR signaling
regulation in general since CD79a and CD79b are ubiquitinated concurrently with Lyn
and SYK. Importantly, CD79a phosphorylation (but not CD79b phosphorylation) seems to
promote CD79a ubiquitination. Moreover, concurrent activation of SYK employs ubiquitin
ligases such as c-Cbl and Cbl-b, which may further recruit Itch (another ligase involved in
ubiquitination-dependent BCR signal regulation) [117,119]. Involvement of ubiquitination
at early stages of BCR signaling suggests that it may be a versatile signaling mark. Several
studies showed that CD79a and/or CD79b ubiquitination specifically targets BCR for
endocytosis even if ITAM tyrosines are phosphorylated and that it affects intracellular
trafficking, endosome signaling, and antigen processing and presentation [78,85,116,118].
Veselits et al. reported that CD79b ubiquitination is necessary for PI3K activation and
PIP3 accumulation in BCR-containing endosomes, affecting consequent sorting into the
major histocompatibility complex (MHC) class II antigen-presenting compartment and
endocytic trafficking [116]. Moreover, KLHL14 (Kelch-Like Family Member 14, a tumor-
suppressing chaperone regulating protein folding, frequently mutated in lymphomas)
promotes CD79a and CD79b ubiquitination and their consequent downregulation [115].
Since CD79a/CD79b ubiquitination is involved in many aspects of BCR signaling, it could
be potentially targetable; however, the exact mechanisms of CD79a/CD79b ubiquitination
and its regulation are not fully clarified.

Recent studies also showed that CD79a/CD79b could be N-glycosylated and have
linked this modification to the regulation of BCR surface expression. Abnormal glyco-
sylation of CD79a results in retention of BCR complex in the endoplasmic reticulum for
further proper folding and assembly, leading to a reduction in its translocation to the cell
membrane [84]. Apart from the above-mentioned CD79a/CD79b ubiquitination, KLHL14
protein affects also CD79a/CD79b glycosylation. It regulates immature glycosylated BCR
stability and turnover in the endoplasmic reticulum [115].

In summary, post-translational modifications of CD79a/CD79b heterodimer define its
own assembly, BCR expression, BCR endocytosis, strength of BCR signaling, intracellular
trafficking, and antigen processing and presentation.
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7. BCR Signaling Is Regulated at the Level of CD79a/CD79b Heterodimer by Physical
Interactions with Regulatory Molecules

As already mentioned above, CD79a/CD79b heterodimer or its components can
physically interact with a wide range of regulators to modulate BCR signaling (summarized
in Figure 3). Classical BCR signaling requires direct Lyn recruitment or SYK docking to
promote further activation of downstream kinases [102–104]. On the other hand, multiple
studies have recently demonstrated that CD79a and CD79b might have substantially larger
interactomes.
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Figure 3. The role of CD79a/CD79b in B-cell receptor signaling in normal B cells. Abbreviations:
BAFF—B-cell activating factor; BAFFR—B-cell activating factor receptor; BCR—B-cell receptor; BTK—
Bruton’s tyrosine kinase; ERK—extracellular signal-regulated kinase; Grb2—growth factor receptor-
bound protein 2; ITAM—immunoreceptor tyrosine-based activation motif; ITIM—immunoreceptor
tyrosine-based inhibitory motif; KLHL14—Kelch Like Family Member 14; Lyn—Lck/Yes novel
tyrosine kinase; MAPK—mitogen-activated protein kinase; MHC II—major histocompatibility com-
plex class II; NF-κB—nuclear factor kappa-light-chain-enhancer of activated B cells; P—phosphate
group; PI3K—phosphoinositide 3-kinase; PIP3—phosphatidylinositol (3,4,5)-trisphosphate; PLCγ2—
phosphoinositide phospholipase C-γ-2; PTEN—phosphatase and tensin homolog; SHIP-1—Src
homology region 2 domain-containing inositol 5′ phosphatase 1; SHP-1—Src homology region 2
domain-containing tyrosine phosphatase; Syk—spleen-associated tyrosine kinase; TLR9—toll-like
receptor 9; TRAF3—tumor necrosis factor receptor (TNFR)-associated factor 3; Ub—ubiquitination.
This figure was created with biorender.com.

As mentioned above, CD79a/CD79b heterodimeric unit determines BCR internaliza-
tion via its ubiquitination and ITAM phosphorylation. Mono-phosphorylation of CD79
ITAMs recruits Lyn, while bis-phosphorylation docks SYK with further activation of BTK
and PLCγ2 and resulting downstream activation of NF-κB and PI3K/AKT signaling.
CD79a/CD79b unit mediates also co-signaling from CD19, BAFFR, MHC II, and TLR9 and
is regulated by KLHL14 and TRAF3 (tumor necrosis factor receptor (TNFR)-associated
factor 3). CD79b seems to localize in a close proximity to CD19 even when it is not as-
sociated with other components of BCR (i.e., Ig and CD79a). This interaction helps to
maintain pro-survival signal in B cells in an ITAM/PI3K-dependent manner [76]. PI3K
recruitment upon stimulation of CD19 co-receptor requires its Lyn-dependent phosphoryla-
tion [120]. Direct interactions of CD79a and CD79b with TLR9 lead to MYD88 recruitment
and hence NF-κB signaling upregulation via the MYD88-TLR9-BCR supercomplex [49].
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In addition to NF-κB signaling, ligand binding to BAFFR (which could be either attached
or located closely to CD79a and CD79b) upregulates also PI3K/AKT as another critical
BCR downstream pathway [90]. Furthermore, CD79b, along with other proteins involved
in proximal BCR signaling (SYK and BTK), interacts with TRAF3 (a negative regulator of
BCR signaling). Therefore, this interaction results in reduction of non-canonical NF-κB
and MAPK/ERK pathway activation without affecting canonical NF-κB and PI3K/AKT
signal [121]. Notably, TRAF3 has been well established as a regulator of CD40 and BAFFR
signaling in B cells [122,123]. The above-mentioned KLHL14 is another negative regulator
of BCR signaling which physically interacts with CD79a and CD79b [115]. As mentioned
above, CD79a/CR79b heterodimers could also associate with MHC class II and contribute
to its downstream signal transduction [91,92].

Expansion of CD79a and CD79b molecular interaction information further supports
the critical role of these BCR components in a complex regulation of downstream BCR
signaling. It can be assumed that CD79a/CD79b unit, especially its CD79b component,
may represent a signaling hub mediating crosstalk between BCR and its co-receptors.

8. CD79a and CD79b Are Important Regulators of Proximal and Distal BCR Signaling in
Malignant B Cells

Availability of next-generation sequencing has significantly expanded our under-
standing of mutational profiles in B-cell derived malignancies, increased the number of
known tumor driver genes, and provided information about additional mechanisms of
tumorigenesis. Tumorigenic contribution of CD79A and CD79B mutations is well stud-
ied and could be demonstrated in NHL as an example. Mutation frequency of CD79B
varies between 4 and 23%, largely depending on NHL type [54,57,124,125]. Mutations
of CD79A are present in approximately 3–4% of NHL [57,58]. CD79A and CD79B muta-
tions most frequently affect ITAM regions. In general, CD79A alterations primarily result
in removal of the entire ITAM region, while CD79B mutations frequently affect the first
tyrosine residue of ITAM, the Y196 [41,126,127]. The main example of uneven distribu-
tion of CD79A and CD79B mutations between lymphoma subtypes is DLBCL. CD79A
and CD79B mutations are observed in up to 30% of ABC DLBCL cases and only in 3%
of GCB DLBCL tumors [41,48,57,126,128,129]. None of the currently proposed genetic
clustering algorithms uses CD79A mutations as a genetic feature of any DLBCL genetic
subtype. However, frequency of CD79A alterations is higher in EZB cluster [54–58,130]. In
contrast to CD79A, CD79B mutations are one of the most enriched genetic features of MCD
cluster and are very frequent in BN2 and A53 clusters in the GenClass and LymphGen
algorithm-based genetic classifications, respectively [56]. According to the alternative
genetic DLBCL classifications, CD79B mutations are enriched in Cluster 5, MYD88, and
MCD2-S genetic subtypes, which are all MCD cluster equivalents [54,55,58]. This genetic
DLBCL subtype (with high frequency of CD79B mutations) is robust and omnipresent
across all genomic classifications of DLBCL and is strongly associated with active BCR
signaling. In lymphoma, CD79B mutations augment BCR surface levels via reduction
of BCR endocytosis, preventing BCR binding to clathrin-coated pits [3,41,48,101,126,131].
Importantly, BCR signaling strength seems to be proportional to CD79b expression levels
in NHL [132]. Another widely recognized mechanism through which mutated CD79b
increases BCR signaling is its inability to properly activate Lyn, a Src-family tyrosine kinase
triggering negative feedback loop-based inhibition of BCR signaling [3,41,126,128,131].
Reduced Lyn activity also contributes to overcoming B cell anergy [41]. Importantly, CD79b
with mutated ITAMs promotes BCR clustering in ABC DLBCL, which is a characteristic
consequence of BCR-antigen binding [3,38,50,133]. It indirectly supports the important
role of CD79b protein alterations in chronic active BCR signaling augmentation. There-
fore, CD79b mutations might promote pro-survival active BCR signaling via BCR surface
levels upregulation, enhancement of BCR clustering, inhibition of BCR internalization,
and reduced BCR signaling negative regulation. On top of ITAM tyrosines mutations,
Andrades et al. reported that CD79B gene is frequently affected by recurrent splice site
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mutations in DLBCL. These mutations frequently lead to intron 4 retention with premature
termination of CD79b translation. It also results in BCR overexpression and enhancement
of NF-κB and AKT signaling [134]. CD79a and CD79b molecules (and possibly their muta-
tions) further affect the CD79b-CD19 and BCR-BAFFR mediated PI3K/AKT activation and
BCR/TLR9/MYD88 and CARD11/BCL10/MALT1 complexes formation with consequent
NF-κB signaling activation.

CD79A mutations are much less frequent and were not identified within any genetic
DLBCL cluster. On the other hand, it was reported that CD79A mutations can contribute to
activation and enhancement of chronic active BCR signaling in ABC DLBCL as well [135].
Importantly, wt CD79a, specifically its ITAM Y188 and its phosphorylation, are critical for
tonic BCR signal mediation in GCB DLBCL [50].

Frequencies and signaling consequences of CD79A and CD79B mutations are overviewed
in Tables 1 and 2, respectively. Most genetic studies focused only on ITAM regions, therefore,
data on frequencies of non-ITAM region mutations are limited. However, Lohr et al.
reported that in DLBLC, 12.5% of CD79B mutations affect non-ITAM regions [136]. High
rate of mutations in extracellular and transmembrane domains of CD79b (over 30% of
patients) was detected also in CLL [137]. Therefore, it would be of great interest to analyze
specifically frequency and eventual signaling consequences of mutations affecting non-
ITAM regions across various B-cell derived malignancies.

Taken together, it could be hypothesized that chronic active BCR signaling in ABC
DLBCL relies primarily on CD79b, while CD79a contributes more to tonic BCR signaling in
GCB DLBCL. However, more studies are necessary to elucidate the exact contribution of
either CD79a or CD79b (and their mutations) to various types and states of BCR signaling
in lymphoma. An overview of CD79a/CD79b involvement in lymphoma associated BCR
signaling is provided in Figure 4.

Table 1. Frequency of CD79A mutations and related B-cell receptor signaling consequences.

Frequency of Cases with Any
CD79A ITAM Mutation

CD79A
Mutation Subtypes

Frequency of Cases with
CD79A Mutation Subtypes *

Signaling Consequences of
CD79A Mutation Subtypes

6% in DLBCL [124]
5% in unclassified DLBCL [125]
2.5% in CD5+ DLBCL [138]
0.7% in DLBCL [58]
6.5% in ABC DLBCL [139]
2.9% in ABC DLBCL [48]
0% in ABC DLBCL [125]
0% in GCB DLBCL [139]
6.3% in PCLBCL-LT [131]
5.5% in WM [140]
3% in FL [141]
3% in FL [124]
0% in FL [142]
0.8% in CLL [124]
0% in BL [124]
0% in SMZL [143]
0% in MZL [143]

CD79A ITAM Y188
point mutations

Not detected in multiple
studies of DLBCL, FL, and

other lymphoid malignancies

Inhibition of tonic BCR
signaling, based on a cell line

study [50]

CD79A ITAM Y199
point mutations 1.8% in WM [140] Not reported

Complete ITAM
deletions 1.5% in ABC DLBCL [48]

Increased surface BCR
expression [125]

Chronic active BCR signal
enhancement [139]

Other CD79A mutations
affecting ITAM

(e.g., deletions, truncations,
frameshift, or splice site

mutations)

6% in PCLBCL-LT (ITAM
deletions affecting Y188) [131]

6.5% in ABC DLBCL [139]
1.3% in DLBCLs (deletions

affecting Y188) [125]
2.9% in ABC DLBCL(splice

site mutations) [48]
1.8% in WM (deletion) [140]

Increased surface BCR
expression [125]

Chronic active BCR signaling
enhancement [139]

* For studies with available information. Abbreviations: ABC DLBCL—activated B-cell-like diffuse large B-
cell lymphoma; BL—Burkitt lymphoma; CLL—chronic lymphoblastic lymphoma; DLBCL—diffuse large B-cell
lymphoma; FL—follicular lymphoma; GCB DLBCL—germinal center B-cell like diffuse large B-cell lymphoma;
ITAM—immunoreceptor tyrosine-based activation motif; MZL—marginal zone lymphoma; NMZL—nodal
marginal zone lymphoma; PCLBCL-LT—primary cutaneous large B-cell lymphoma, leg type; SMZL—splenic
marginal zone lymphoma; WM—Waldenström macroglobulinemia.
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Table 2. Frequency of CD79B mutations and related B-cell receptor signaling consequences.

Frequency of Cases with Any
CD79B ITAM Mutation

CD79B
Mutation Subtypes

Frequency of Cases with
CD79B Mutation Subtypes *

Signaling Consequences of CD79B
Mutation Subtypes

65% in CLL [137,144]
56.3% in PCLBCL-LT [131]
33% in MZL [145]
0% in MZL [143]
30% in PCNSL [146]
31% in DLBCL [145]
38% in CD5+ DLBCLs [138]
26.8% in ABC DLBCL [57]
21.1% in ABC DLBCL [48]
10.8% in ABC DLBCL [147]
9% in ABC DLBCL [139]
23% in DLBCL [125]
14.5% in DLBCL [136]
14.3% in DLBCL [54]
14% in DLBCL [58]
12.9% in DLBCL [124]
8.5% in DLBCL [147]
8% in DLBCL [148]
5.6% in DLBCL [139]
5.1% in GCB DLBCL [147]
3.1% in GCB DLBCL [48]
1.9% in GCB DLBCL [57]
1.6% in GCB DLBCL [139]
10% in SMZL [143]
9% in WM [140]
7% in WM [149]
9% in FL [141]
5% in FL [124]
4.9% in FL [142]
0% in FL [148]
0% in FL [145]
0% in CLL [124]
0% in CLL [150]
0% in BL [48,124]
0%in MCL [148]
0% in MCL [145]
0% in marginal zone/MALT
lymphoma [148]
0% gastric MALT lymphoma [48]
0% in SLL [148]
0% in CLL/SLL [145]
0% in NMZL [145]

CD79B ITAM Y196
point mutations

75% in transformed WM [151]
53.1% in PCLBCL-LT [131]

30% in PCNSL [146]
35% in CD5+ DLBCL [138]
18% in ABC DLBCL [48]
1.6% in GCB DLBCL [48]

3.7% in DLBCL [139]
10% in SMZL [143]

9% in WM [140]
8% in DLBCL [148]

3% in FL [141]
7.5% in DLBCL [147]

Surface BCR expression upregulation
via inhibition of BCR

internalization [48,152]
Reduced BCR signaling negative

regulation via decreased Lyn
binding [48]

Enhancement of BCR clustering [3,50]
Active BCR signaling

enhancement [48]
NF-κB activation enhancement [48]

CD79B ITAM Y207
point mutations 4% in CLL [144,153]

Surface BCR expression
upregulation [152]

Impairment of antigen induced BCR
signaling [144,153]

Other CD79B mutations
affecting ITAM
(e.g., deletions,

truncations, frameshift,
splice site/intron

retention mutations)

0.7% in ABC DLBCLs (Y196
deletions) [48]

0.6% in DLBCL (deletions affecting
Y207) [139]

0.5% in DLBCL (E197stop) [147]
17% in B-CLL (deletions) [144]

1.8% in DLBCL (splice site mutations
and intron retention) [134]

Similar consequences as Y196
mutations

CD79B ITAM mutations
not affecting ITAM

tyrosines

2.5% in CD5+ DLBCL (deletion in
ITAM region before the first

tyrosine) [138]
1.6% in GCB DLBCLs (L199Q) [48]

6% in FL (point mutations in
ITAM) [141]

3.1% in PCLBCL-LT (E197D point
mutation) [131]

31% in DLBCL [145]
1.2% in DLBCLs [139]

12.7% in DLBCL (point mutations and
one frameshift) [136]

25% in CLL [137]

Not reported

Non-ITAM mutations
Over 30% in CLL [137]

17% in CLL [144]
1.8% in DLBCL [136]

Decreased BCR expression and
signaling in CLL [153]

* For studies with available information. Abbreviations: ABC DLBCL—activated B-cell like diffuse large B-cell
lymphoma; BL—Burkitt lymphoma; CLL—chronic lymphoblastic lymphoma; DLBCL—diffuse large B-cell lym-
phoma; FL—follicular lymphoma; GCB DLBCL—germinal center B-cell like diffuse large B-cell lymphoma; ITAM—
immunoreceptor tyrosine-based activation motif; MALT—mucosa-associated lymphatic tissue; MCL—mantle
cell lymphoma; MZL—marginal zone lymphoma; NMZL—nodal marginal zone lymphoma; PCNSL—primary
central nervous system lymphoma; PCLBCL-LT—primary cutaneous large B-cell lymphoma, leg type; SLL—small
lymphocytic lymphoma; SMZL—splenic marginal zone lymphoma; WM—Waldenström macroglobulinemia.

Importantly, ABC DLBCL tumor cell survival is critically dependent on BCR trig-
gered NF-κB activation [50,154–156]. BCR downstream NF-κB activation is mediated by
CD79a and CD79b and is enhanced by their mutations. However, within the pathologically
active BCR signaling in lymphoma, CD79A or CD79B mutations cannot be considered
separately from other mutations. It is only one molecular event within a quite complex
BCR signaling and NF-κB activation process. As an example of this complexity, CD79A
and CD79B mutations were included in a large network of 153 lymphoma-altered genes
related to NF-κB signaling [124]. Other studies also reported that CD79A and CD79B
mutations modify distal BCR signaling in collaboration with other mutations of the BCR
signaling network via modulation of NF-κB signaling (with an effect on survival, apoptosis,
and proliferation of tumor cells). Mutated CD79a or CD79b proteins cannot trigger BCR
signaling by itself; they “only” amplify the signal and modulates its strength and direc-
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tion [135]. This relationship was described specifically for CARD11 (caspase recruitment
domain family member 11) mutations in ABC DLBCL. CARD11 acts as a component of
the CARD11-BCL10-MALT1 signalosome complex involved in bridging proximal and
distal BCR signaling towards NF-κB activation [157,158]. CARD11 mutations seem to be
necessary for mutated CD79a/CD79b-mediated NF-κB activation [48]. In addition, viability
of mutated CD79B ABC DLBCL cells critically relies on BTK that fuels canonical NF-κB
signaling via regulation of downstream mucosa-associated lymphoid tissue lymphoma
translocation protein 1 (MALT1) [129]. CD79B mutations not only sustain anti-apoptotic
and proliferation-inducing NF-κB signaling directly but also support the interplay between
other BCR-associated signaling pathways to ensure the survival of ABC DLBCL cells. It
was reported that in two model ABC DLBCL cell lines with mutated CD79B, PI3K signal-
ing and downstream PDK1 (putative 3-phosphoinositide-dependent kinase 1) activation
are essential events for CARD11-BCL10-MALT1 signalosome complex-mediated NF-κB
activation [159]. This suggests a substantial interaction between PI3K signaling and the
NF-κB pathway in CD79B-mutated ABC DLBCL. In MCL, pro-survival PI3K/AKT/mTOR
signaling is sustained by wt CD79a and requires activity of Lyn [160]. This is consistent
with the role of CD79a in promoting pro-survival PI3K/AKT/mTOR signaling in GCB
DLBCL [50]. In contrast to ABC DLBCL, GCB DLBCL cells rely on the PI3K/AKT/mTOR
to support their survival [161,162]. Therefore, GCB DLBCL is characterized by tonic BCR
signaling where CD79a phosphorylation results in activation of downstream PI3K/AKT
pathway [50].

In lymphomas, CD79B mutations also commonly co-occur with MYD88 mutations,
especially MYD88L265P. MYD88 mutations have higher prevalence in cases with extranodal
localization and mediate active BCR signaling phenotype within the MCD genotype of
DLBCL [3,56,58,126,127,130,163–165]. Multiple studies reported a combined biological
effect of CD79B and MYD88 mutations. Importantly, none of these two mutated genes can
induce malignant transformation alone as they need to act in collaboration with other driver
mutations [127,166]. It has been shown that only the combination of CD79B and MYD88 mu-
tations prevented anergy of autoantigen-stimulated B cells and allowed their plasmablastic
differentiation [152]. The most common MYD88L265P mutation results in overactivation of
MYD88 protein, a molecular adaptor that normally promotes NF-κB signaling via IRAK
(IL-1 receptor-associated kinase) recruitment and formation of the so-called myddosome
complex [167]. Myddosomes are large oligomeric signaling complexes that are assembled
within TLRs and IL-1 signaling. Myddosomes are primarily formed by MYD88 and IRAKs
and act as a scaffold for further downstream signal transduction [168–171]. Phelan et al.
demonstrated that CD79B-MYD88 mutations simultaneously facilitate intermolecular inter-
actions to form a three-component MYD88-TLR9-BCR (My-T-BCR) supercomplex, which
drives NF-κB and mTOR signaling activation [49]. Furthermore, lymphoma sequencing
studies revealed that the network of concurrently mutated genes in MCD DLBCL cluster
includes inactivating mutations of KLHL14, which promotes My-T-BCR-dependent NF-κB
signaling via reduction of CD79a and CD79b ubiquitination [115]. It is worth mentioning
that enhancement of CD79b-mediated non-canonical NF-κB signaling has been associated
with TRAF3 insufficiency in lymphoma [121].

In addition to the My-T-BCR supercomplex, CD79a/CD79b maintains pro-survival
PI3K/AKT signaling via interaction with BCR co-receptors BAFFR and CD19 in B-cell
NHL [76,90]. The pro-survival signal comes from BAFF-dependent Lyn-mediated activation
of PI3K/AKT [90]. A similar PI3K-dependent pro-survival signal is sustained by CD79b
through CD19 activation. It is ITAM-dependent, can occur even in the absence of other
BCR components (IgM and CD79a), and is considered an alternative lymphoma survival
supporting mechanism [76].

Taken together, CD79a and CD79b BCR components could be considered critical
regulators of altered signal flow in the complex network of deregulated BCR signaling in
NHL. This suggests that CD79a/CD79b complex might represent a suitable and universal
therapeutical target for B-cell malignancies and possibly other B-cell-related disorders. On
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the other hand, BCR signaling deregulation occurs in response to multiple mutations in
several interacting and BCR regulatory elements adjusting pro-survival BCR signaling in a
relatively diverse manner.
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9. Open Questions and Future Directions

Next-generation sequencing-based subtyping of DLBCL has improved the accu-
racy of disease outcome prediction. Particularly, concomitant CD79B and MYD88 mu-
tations (characteristic for the MCD class of DLBCL) are associated with worse progno-
sis [3,55,57,126,172,173]. Importantly, a recent DLBCL meta-analysis showed that CD79B
mutations had higher predictive value for disease progression and treatment outcomes
than MYD88 mutations [164]. Inferior survival of patients with CD79B mutations might
be related to a specific disease biology and associated with an increased risk of chemo-
refractory disease and relapse [54]. Indeed, transcriptomic, and proteomic studies showed
downregulation of CD79b in refractory DLBCL. This suggests that CD79b targeted ther-
apy, such as polatuzumab vedotin (anti-CD79b monomethyl auristatin E antibody-drug
conjugate), might not be best suited in this clinical situation [174]. On the other hand,
overexpression of CD79b in ABC DLBCL contributes to ibrutinib (a potent BTK inhibitor)
resistance. Similarly, MCL tumors with higher baseline levels of CD79b expression required
higher concentrations of ibrutinib for efficient BCR signal suppression [132,175,176]. None
of these correlations were observed for CD79a upregulation. On the other hand, it was
reported that BTK inhibition increases CD79a phosphorylation as a part of compensation
feedback loop. It leads to activation of multiple key BCR signal mediators with consequent
proximal BCR signal rewiring [177]. Increased CD79a/CD79b activity might be one of
general resistance mechanisms. It was reported that CD79a-mediated Lyn-dependent
activation of PI3K/AKT/mTOR signaling also occurs in bortezomib (an FDA-approved
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26S proteasome inhibitor) resistant MCL [160]. Future studies regarding CD79b activation
and interactions in malignant B cells are necessary to fully understand its contribution
to drug resistance and to confirm its eventual diagnostic significance as a reliable resis-
tance biomarker. Pre-clinical in vitro-based studies could provide general information
how CD79a and CD79b altered expression, mutations, and/or phosphorylation patterns
affect sensitivity to various inhibitors. The variability of CD79b expression levels between
different types of NHLs and individual tumors (which likely predicts BCR activity) indi-
cates that CD79b expression could be evaluated as a possible biomarker for effective BCR
inhibition. The evaluation of CD79a and CD79b pre-treatment expression levels (as well as
its treatment resistance-related changes) should be implemented in clinical trials with BCR
signaling inhibitors. Moreover, CD79b assessment could be considered in studies of other
targeted therapies where BCR signaling activation might contribute to treatment resistance.
Explanation of CD79a/CD79b signaling details, as outlined below, might help to identify
additional therapeutic options for personalized B-cell derived malignancies treatment.

BCR signaling, as well as the functional involvement of CD79a and CD79b molecules,
has already been extensively studied; however, many important issues remain to be ad-
dressed. What are the underlying transcription factors, pathways, or other mechanisms
regulating CD79a and CD79b expression? Implementation of genome-wide KO screen
approaches in model lymphoma cell lines might help to identify these factors. It could also
explain differences in CD79a and CD79b expression levels (in normal as well as malignant
B cells) and lead to the identification of novel approaches for BCR signaling inhibition.

Multiple questions also remain to be answered in relation to CD79a/CD79b ITAM
phosphorylation. How is the ITAM phosphorylation regulated? Do CD79a/CD79b con-
formational changes mediate CD79a/CD79b ITAM phosphorylation? What are the exact
and detailed characteristics of CD79a/CD79b interactions with Src-family kinases? Src-
family tyrosine kinases generally have a BCR signaling activation role; however, Lyn forms
a negative feedback loop highlighting its unique and important role within BCR signal
regulation. The complexity, interaction, activation/inhibition balance, and co-regulation
between CD79a/CD79b and Src-family kinases are not fully clarified. Moreover, are there
any other kinases and phosphatases involved in ITAM phosphorylation and dephospho-
rylation? Basic molecular biology studies using targeted KO, protein–protein interaction
assessment, or structural biology methods might bring such information.

Further studies should also focus on mechanisms of CD79a and CD79b ubiquitination
and glycosylation as another layer of BCR signal regulation. Similarly, it is important
to identify how is BCR signaling affected by tumor-related disruption of redox home-
ostasis and reactive oxygen species (ROS) production [178,179]. Novel proteomics-based
studies of the CD79a/CD79b interactome might provide additional information on these
unresolved issues.

Given the heterogenous nature of B-cell derived malignancies, it is similarly important
to identify mechanisms by which CD79A and CD79B mutations modulate BCR signaling
balance towards a particular effector pathway or pathways in a complex landscape of
multiple co-occurring driver mutations. The direct involvement of CD79a/CD79b in CD19,
BAFFR and TLR9 signaling raises a question of their possible critical role in the formation of
a mutual BCR-centered signaling network [49,76,90,180]. Is the CD79a/CD79b heterodimer
a signaling hub coordinating signals from various BCR co-receptors? Interpretation of ge-
nomic data and experimental studies also suggest that CD79a and CD79b signal mediation
might be substantially different between normal and malignant B cells.

10. Conclusions

CD79a and CD79b molecules are at the center of a very complex BCR signaling network
with critical functional implications for normal as well as malignant B cells. Moreover,
CD79a/CD79b unit mediates signaling crosstalk between BCR and its co-receptors, which
supports its role as an important B cell signaling hub. Solving above outlined open issues
could further expand our understanding of BCR signal initiation and propagation and
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allow us to further specify the complexity of CD79a/CD79b signaling and possibly identify
novel therapeutic targets for B-cell related disorders.
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