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Abstract: In autumn and spring, citrus leaves with a Ponkan (Citrus reticulata Blanco cv. Ponkan)
genetic background (Harumi, Daya, etc.) are prone to abnormal physiological chlorosis. The effects
of different degrees of chlorosis (normal, mild, moderate and severe) on photosynthesis and the
chlorophyll metabolism of leaves of Citrus cultivar (Harumi) were studied via field experiment.
Compared with severe chlorotic leaves, the results showed that chlorosis could break leaf metabolism
balance, including reduced chlorophyll content, photosynthetic parameters, antioxidant enzyme
activity and enzyme activity related to chlorophyll synthesis, increased catalase and decreased
enzyme activity. In addition, the content of chlorophyll synthesis precursors showed an overall
downward trend expected for uroporphyrinogen III. Furthermore, the relative expression of genes
for chlorophyll synthesis (HEMA1, HEME2, HEMG1 and CHLH) was down-regulated to some extent
and chlorophyll degradation (CAO, CLH, PPH, PAO and SGR) showed the opposite trend with
increased chlorosis. Changes in degradation were more significant. In general, the chlorosis of
Harumi leaves might be related to the blocked transformation of uroporphyrinogen III (Urogen III) to
coproporphyrinogen III (Coprogen III), the weakening of antioxidant enzyme system activity, the
weakening of chlorophyll synthesis and the enhancement in degradation.

Keywords: Citrus; chlorosis; photosynthetic characteristics; chlorophyll synthesis; chlorophyll degradation

1. Introduction

Citrus, one of the world’s most important fruit crops in the family Rutaceae [1], is
grown in more than 140 countries, mainly in tropical and subtropical regions [2]. Citrus
fruits are rich in bioactive substances, such as essential oils, carotenoids, flavonoids, acacia
and limonoids, which have significant effects in terms of anti-inflammation, anti-oxidation,
immune regulation, prevention and treatment of multiple respiratory diseases [3,4]. Harumi,
which is a late-maturing hybrid citrus [‘F 2432’ Ponkan (Citrus reticulata) × Kiyomi tangor
(Citrus unshiu × Citrus sinensis)] [5], has been increasingly planted in China and favored
by many consumers because of its high quality, high yield and abundant nutrients [6].
However, after years of field observation, we found that citrus (Harumi, Daya, etc.) leaves
with a Ponkan (Citrus reticulata Blanco cv. Ponkan) genetic background were prone to
abnormal physiological chlorosis. Leaf color variation is a common type of mutation,
which is usually caused by abnormal chlorophyll synthesis and metabolism pathways
caused by gene mutation [7]. The most common leaf color mutations are chlorosis and
albino. Chlorotic leaf is a product of reduced chlorophyll content. Many scholars have
explored the cause and found that disrupted chlorophyll biosynthesis [8], accelerated
chlorophyll degradation [9] and reduced chlorophyll protection activity and pigment [10]
may lead to changes in plant leaf color.
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Chlorophyll (Chl) is the main photosynthetic pigment of plants. The proper provision
of Chl is a key condition for the smooth performance of photosynthesis [11]. Chloro-
phylls (Chls, Chl a and Chl b) are tetrapyrrole molecules essential for photosynthetic light
harvesting and energy transduction [12]. Changes in natural conditions, such as light
and temperature, affect the process of chlorophyll synthesis and degradation, resulting in
changes in Chl content. When Chl content changes in plants, various leaf color mutant
phenotypes occur, including chlorina, virescent, albino, yellow-green and stay-green. Leaf
color mutants develop from the inhibition of genes that regulate Chl biosynthesis and
chloroplast development [13]. The total Chl content per unit of leaf area is one of the
most sensitive factors to nutrient availability and different environmental stresses [14].
In addition, chlorophyll a (Chl a) is essential for photochemistry, which, in its excited
state, converts light energy into electricity, while chlorophyll b (Chl b) provides plants
with an advantage in harvesting light around 450 nm, a wavelength region of light that
is not efficiently absorbed by Chl a [11,15]. However, Chl, which is a potential cellular
phytotoxin, must be degraded when there is excess Chl and its derivatives [16]. Otherwise,
reactive oxygen species (ROS) produced by excess Chl can lead to leaf cell death when Chl
degradation is inhibited [17,18].

In recent years, the study of chlorophyll synthesis and the degradation pathway has
become a hot topic [19–21]. Chl metabolism is strictly regulated at different stages of
plant development [14]. A study on tomato chlorophyll has shown that the slym1 gene
negatively regulates photosynthesis. The binding of Slym1 to the intermediate protein MP
(ID: 101256896) leads to the interaction between MP and HY5, resulting in the accumulation
of a large amount of unbound HY5 in the cell, thus accelerating the breakdown of chloro-
phyll [22]. Chlide a oxygenase (CAO) is the only enzyme found to catalyze the conversion
of Chl a to Chl b [12]. SGR1 plays a key role in chlorophyll degradation, and plants lacking
SGR1 exhibit a strong green-preserving phenotype [23,24]. Pentatricopeptide repeat (PPR)
proteins have been shown to influence chloroplast development and chlorophyll accumula-
tion by editing the RNA of chloroplast genes [25]. Soluble versus membrane localization
of glutamyl-tRNA reductase (GluTR) has also been shown to be related to chlorophyll
content [26]. The Chl biosynthesis pathway in plant tissue is now largely elucidated, but
its catabolism regulation is incomplete. Leaf senescence is caused by the breakdown of
chlorophyll and the resulting chlorosis of the leaves. In these processes, chlorophyll is
broken down in the PAO/Phyllobilin pathway [27,28].

Many studies have focused on the analysis of the expression of relevant genes during
photosynthesis, and the regulation of corresponding protein levels [29,30]. However, in this
experiment, we investigated photosynthesis, the antioxidant enzyme system, chlorophyll
synthesis and degradation metabolism in the common citrus variety Harumi. Chlorophyll
metabolism is very complex. Among them, the process of chlorophyll biosynthesis takes
L-glutamy-tRNA as a substrate. Under the joint action of a variety of enzymes and related
genes, it takes 16 steps to finally synthesize chlorophyll [31]. In chlorophyll synthesis, any
problem with any link may lead to abnormal chlorophyll metabolism [25]. Therefore, it
is necessary to further study the intermediates, enzyme activities and gene expression
related to the chlorophyll metabolism pathway. It is also of great significance to investigate
the causes of abnormal chlorosis (one-year-old leaves on autumn shoots, senescence of
leaves not yet occurred) of Harumi leaves to promote the normal growth, yield and quality
formation of citrus fruits.

2. Results
2.1. Photosynthetic Pigments and Photosynthetic Parameters

Photosynthetic pigments in leaves decreased with the degree of chlorosis (Figure 1B).
The photosynthetic pigments of normal leaves were significantly higher than leaves with
moderate and severe chlorosis. There was no significant difference in the chlorophyll
a/b ratio, but there was a significant difference in the chlorophyll/carotenoid ratio. The
chlorophyll/carotenoid ratio decreased significantly with the increase in chlorosis degree,
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and the maximum decrease was 18.50%. The analysis of gas exchange parameters showed
that as chlorosis deepened, Pn (net photosynthesis rate), Tr (transpiration rate) and Gs
(stomatal conductance) values significantly decreased, excluding an increase in Ci (in-
tercellular CO2 concentration) (Figure 1C). Pn, Tr and Gs showed linear regression with
R2 = 0.9928, R2 = 0.9791 and R2 = 0.9776 with total chlorophyll, respectively. However, no
linear correlation was found between Ci and total chlorophyll (Table 1).
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Figure 1. Leaves were in different degrees of chlorosis (A) and the effect of different degrees of
chlorosis on photosynthetic pigments (B) and photosynthetic parameters (C). Values are shown as
mean ± SD (n = 3). Different letters above the bar chart indicate significant differences between
different treatments (p < 0.05). FW, fresh weight. SD, standard deviation.

Table 1. Determination coefficients between chlorophyll pigments and photosynthesis parameters.

Correlation Coefficients Pn Tr Gs Ci

Chl a 0.9898 0.9681 0.9456 0.8462
Chl b 0.9806 0.9557 0.9563 0.8479

Carotenoid 0.9800 0.9258 0.9806 0.7800
T-Chl 0.9856 0.9586 0.9558 0.8402

2.2. Chlorophyll Synthesis Precursors

The contents of Coprogen III, Proto IX (protoporphyrin IX), Mg-Proto IX (Mg-protoporphyrin
IX) and Pchlide (protochlorophyllide) in chlorotic leaves were significantly lower than
those of the normal leaves, except for Urogen III, ALA (δ-5-aminolevulinic acid) and PBG
(porphobilinogen) (Figure 2). Changes in ALA and PBG contents were basically the same,
decreasing in mild and moderate chlorotic leaves and then increasing in severe chlorotic
leaves (Figure 2A). The higher the degree of chlorosis, the lower the content of Coprogen
III, Proto IX, Mg-Proto IX and Pchlide, but the higher the content of Urogen III. All of the
levels of chlorosis represented significant differences for each other (excluding Pchlide)
(Figure 2B). Pchlide content showed a decreasing trend while there were no significant
differences between the normal and mild chlorosis leaves (Figure 2C). Compared with
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the normal leaves, the precursors of severe chlorosis had extremely significant changes.
Urogen III, Pchlide, Coprogen III, Mg-Proto IX and Proto IX in leaves with severe chlorosis
were 139.4%, 49.9%, 31.6%, 25.6% and 1.6% of normal leaves, respectively.
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Figure 2. Effect of different degrees of chlorosis on the precursor of chlorophyll synthesis. ALA
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2.3. Activity of Chlorophyll Synthesis and Degradation Enzyme

In chlorotic Harumi leaves, the highest levels of Glu-TR (Glu-tRNAs), UROD (uropor-
phyrinogen decarboxylase) and ChlM (magnesium protoporphyrin IX methyltransferase)
activity were detected in normal leaves (Figure 3A), and the lowest levels were found in
leaves with severe chlorosis. Activity decreased continuously and significantly throughout
the chlorosis process. In addition, UROD activity was negatively correlated with the con-
tent of Urogen III (R2 = −0.8893), but positively correlated with Croprogen III (R2 = 0.9824)
(Figure 3A). There were no significant differences in the activities of Chlase (chlorophyllase)
and MDCase (Mg-dechelatase) as the degrees of chlorosis increased. In the process of
deepening the degree of chlorosis, there was no significant change in the chlase activity
in leaves (Figure 3B). For Mg-dechelatase activity, although there was a tendency for it to
increase, only a significant difference was observed between severe chlorosis and normal
leaves, but no significant difference was found between normal and mild chlorosis or
moderate and severe chlorosis (Figure 3C).
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2.4. Relative Expression of Genes Involved in Chlorophyll Metabolism Pathway

Relative expression data showed that the chlorosis of Harumi leaves had significant
effects on key genes in the chlorophyll synthesis and degradation pathway chlorosis
(Figure 4). As chlorosis intensified, downstream CHLH expression for chlorophyll synthesis
was significantly down-regulated, while upstream HEMA1, HEME2 and HEMG1 were also
down-regulated to some degree. In addition, HEMA1 and HEME2 were expressed the
highest in mild chlorotic leaves, which were significantly higher than normal, moderate
and severe chlorotic leaves. It could be seen that the chlorosis of Harumi leaves may have
been due to the blocking of the chlorophyll synthesis pathway.

Key gene data for chlorophyll degradation indicated that the leaf chlorosis of Harumi
increased the expression of CLH, PPH, PAO and SGR, and the expression of CAO involved
in chlorophyll b (chl b) synthesis was significantly down-regulated during leaf chlorosis.
The maximum expression of CLH, PPH and PAO was found in mild chlorotic leaves, which
was consistent with the expression of the above metabolic genes HEMA1 and HEME2. In
addition, stay-green (SGR), which was significantly down-regulated in severe chlorotic
leaves, was lower than mild and moderate chlorotic leaves, but still higher than normal
leaves. The results showed that the chlorophyll degradation was promoted in chlorotic
Harumi leaves.
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2.5. Antioxidant Enzyme Activity

With the exception of CAT (catalase), all antioxidant enzyme activities in the citrus
leaves of Harumi decreased with the deepening of chlorosis (Figure 5). SOD (superoxide
dismutase), POD (peroxidase) and APX (ascorbate peroxidase) enzyme activities decreased
with increasing degrees of chlorosis, but CAT activity increased. Moreover, the values
showed significant variation in the activity of POD and CAT enzymes. The significant
difference only existed between normal and severe chlorotic leaves for SOD. APX activity
in different degrees of chlorosis was significantly different from normal leaves (Figure 5D).
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2.6. Correlation Analysis

According to the analysis, we observed both positive and negative correlations be-
tween the indicators (Figure 6). There were significant negative correlations between
chlorosis index, photosynthesis and chlorophyll parameters (p ≤ 0.05). The expression of
SGR, PAO, PPH and CLH was positively correlated with the chlorosis index, while HEMA1,
HEME2 and HEMG1 had no significant correlation with the chlorosis index (Figure 6A).
Notably, ALA and PBG content were significantly negatively correlated with the expression
of SGR (p ≤ 0.05), but there was no significant correlation with other indicators (Figure 6B).
The expression of key genes involved in chlorophyll catabolism (CLH, PPH, PAO and SGR)
was negatively correlated with PBG, Coprogen III, Proto-IX, Mg-Proto IX and Pchlide
content; however, a positive correlation was found between the expression of chlorophyll
degradation genes (except SGR) and Urogen III content. Moreover, there was a positive cor-
relation between the expression of chlorophyll catabolism genes and CAT activity, Chlase
activity and Mg-dechelatase activity. The expression of key genes in chlorophyll catabolism
was negatively correlated with the expression of chlorophyll synthesis genes (HEMA1,
HEME2, HEMG1, CHLH and CAO), although not significantly.
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3. Discussion

Before this experiment, we found that the soil in the sampling garden lacked Mg by
measuring the content of mineral elements, which led to the chlorosis of leaves of Citrus cul-
tivar (Harumi). Via the determination of other indicators of leaves in this experiment, a more
comprehensive and in-depth exploration was conducted of the physiological mechanism
of chlorosis of Harumi leaves.

As chlorosis increased, Pn, Tr and Gs showed a significant downward trend, while Ci
showed a significant upward trend. It can be concluded that the fact that the photosynthetic
capacity of leaves decreased and the photosynthetic rate decreased may have been caused
by stomatal restriction or nonstomatal restriction factors. Ci decreasing and Ls increasing
shows that the photosynthetic rate decreasing mainly comes from the stomatal limitation; Ci
increasing and Ls decreasing indicates that nonstomatal limitation is the main cause [32,33].
In this experiment, Ci showed a significant increasing trend, but Ls still needed to be further
studied to determine the reason for the decline in the photosynthetic rate in chlorotic leaves.
Compared with normal leaves, chlorophyll content, carotenoid content and the chloro-
phyll/carotenoid ratio of chlorotic leaves showed a significant downward trend. This result
indicated that leaf chlorosis was related to the content of the main photosynthetic pigments
and the effect of chlorosis on chlorophyll content was greater than that of carotenoids. As
the chlorophyll/carotenoid ratio decreased linearly, chlorophyll’s ability to cover the leaf
color decreased, and the leaf became chlorotic to varying degrees [34]. Compared to other
citrus varieties, chlorophyll b content in normal Harumi leaves was very low, which could
be attributed to the species characteristics. We hypothesized that this might also have been
one of the reasons why citrus leaves with a Ponkan (Citrus reticulata Blanco cv. Ponkan)
genetic background were prone to chlorosis in autumn and spring. In addition, chlorophyll
synthesis precursors in chlorotic leaves decreased significantly compared to normal leaves,
except for Urogen III. It was speculated that the transformation pathway from Urogen III
to coprogen III was blocked, which led to the abnormal blocking of the entire chlorophyll
biosynthesis pathway.
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In order to analyze the rules of key substances in chlorophyll metabolism, the activities
of enzymes related to chlorophyll metabolism and the expression of related genes were
further studied. The results showed that the activities of the chlorophyll synthesis enzymes
GluTR, UROD and ChlM decreased significantly with the intensification of chlorosis, but
the activities of the chlorophyll degradation enzymes Chlase and MDCase did not change
significantly. At the same time, genes related to chlorophyll synthesis showed a nonlinear
downward trend, while genes related to chlorophyll degradation showed a nonlinear
upward trend. Therefore, we speculate that abnormal chlorophyll metabolism in chlorotic
leaves is more likely to be related to blocking the chlorophyll synthesis pathway. In the
chlorophyll synthesis pathway, the significant decrease in UROD activity and the decrease
in HEME2 (a related regulatory gene) jointly hinder the transformation from Urogen III
to Coprogen III, which may be an important reason for the blocking of the chlorophyll
synthesis pathway [35,36]. The expression level of the stay-green gene (SGR) increased
significantly in chlorotic leaves, which may be related to the irregular upward trend in PPH
and PAO gene expression [37]. SGR is closely related to chlorophyll degradation and may
promote chlorophyll degradation by activating multiple chlorophyll degrading enzymes
and the phototrapping complex. The relative expression level of the SGR gene decreased
suddenly in severely chlorotic leaves, and was only higher than that in normal leaves,
indicating that the stay-green gene (SGR) was involved in the process of the chlorosis of
Harumi leaves, and chlorosis promoted the degradation of chlorophyll in Harumi leaves
to a certain extent, but excessive chlorosis would lead to a reduced expression level of the
SGR gene, and the reasons for this need to be further explored.

Previous studies have shown that the relative relationship between Chlase activity
and CAO gene expression is closely related to the transformation from chlorophyll a to
chlorophyll b [38]. In this experiment, compared with normal leaves, Chlase enzyme activ-
ity in chlorotic leaves did not show an obvious upward trend, while CAO gene expression
showed a certain downward trend. This result also confirmed previous speculation to
some extent that the chlorosis Harumi plant was more likely to be caused by abnormal
chlorophyll anabolism (Figure 7).
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reactive oxygen species in the process of their own metabolism or under external stress.
If they are not removed in time, they will have a serious toxic effect on plant growth and
development, and affect plant signal transduction and cell membrane stability [40]. It has
been reported that oxidative stress is induced to cause a dramatic decrease in photosynthetic
pigments [33]. In this experiment, except for CAT, the activity of other antioxidant enzymes
in chlorotic leaves showed a downward trend compared to those in normal leaves. POD and
APX activity decreased significantly as chlorosis increased. Therefore, it is speculated that a
decrease in POD and APX enzyme activities leads to a decrease in the antioxidant capacity
of Harumi leaves, which may lead to the content of active oxygen species exceeding the
normal level and reactive oxygen species destroying chlorophyll and affecting the formation
of photosynthetic pigments, resulting in metabolic disorder and chlorosis of the leaves.
Further measurements of oxygen reactive species concentration are needed to confirm
this hypothesis. CAT activity did not change significantly in normal, mild and moderate
chlorosis leaves, but increased significantly in severe chlorosis leaves. It may be that the
membrane lipid peroxidation of heavily chlorotic leaves promoted the increase in CAT
activity via negative feedback regulation [41].

4. Materials and Methods
4.1. Plant Material and Treatment

According to the classification standard of Xing [42], leaves were divided into normal,
mild, moderate and severe chlorotic leaves (Figure 1A). We selected nine Citrus trees
(Citrus reticulata × Citrus sinensis Harumi) that had been grafted for five years in a small
plot with strong growth and were basically the same tree shape: three trees had one
treatment, with three independent real repetitions. Leaves were sampled from the farm
of Danling County, Meishan City, Sichuan Province (30◦02′ N, 103◦52′ E, altitude 527 m),
where the soil organic matter content was 4.12%, and the pH was slightly acidic (pH = 6.6).
We collected the samples at 9:00–12:00 in early April at a temperature of 18–22 ◦C and
irradiance of 11,300–11,450 kj/m2. For each tree, 8 leaves with varying degrees of chlorosis
and 8 normal leaves, which were from autumn shoots of the previous year, were collected
from 4 directions in the east, south, west and north.

The collected leaves were grouped, placed in a foam box with dry ice and brought
back to the laboratory. We performed the following treatments on all samples: wash tissue
surface dirt with clean water and distilled water, wipe dry with paper towels, cut the
leaves avoiding the main vein portion and mix thoroughly. Some leaves were used for the
determination of photosynthetic pigments (chlorophyll a, chlorophyll b and carotenoid),
and others were treated with liquid nitrogen and stored at −80 ◦C for the determination of
antioxidant enzyme activity, chlorophyll precursor substance synthesis content, intermedi-
ate metabolites of chlorophyll degradation, enzyme activities of chlorophyll metabolism
and key regulatory genes.

4.2. Determination of Photosynthetic Parameters

A total of 5–8 typical leaves with the same growth and similar illumination at the same
leaf position for each chlorosis level (normal, mild, moderate and severe) between 9:30 and
11:00 on a clear day, avoiding the main vein, were selected and used for the determination
of the photosynthetic index. Pn, Tr, Gs and Ci were monitored using a portable photo-
synthesis measuring instrument (LI-6400; Licor, Lincoln, NE, USA) (setting parameters:
illumination 800 µmol·m−2·s−1, CO2 concentration 400 µmol·mol−1, temperature 25 ◦C,
relative humidity 82 ± 0.5%).

4.3. Determination of Photosynthetic Pigments

The determination of photosynthetic pigment content was adopted and improved
from the method of Arnon [43]. Fresh leaves were cut and mixed, 0.1 g was weighed and
placed in a 10 mL centrifuge tube, 10 mL of 95% ethanol was added and extracted in the
dark until the leaves were completely white (about 24 h), 95% ethanol was the blank control
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and OD values of 663 nm, 645 nm and 470 nm were measured using an enzyme calibration
system (Thermo Fisher Scientific, multiskan go). We calculated chlorophyll a (Chl) (a),
chlorophyll b (Chl b), carotenoid and total chlorophyll (T-Chl) content, respectively.

We calculated the concentration of each pigment in the leaves (mg·g−1) according to
the following equations:

Chl a content = 12.21 × OD663 − 2.81 × OD645. (1)

Chl b content = 20.13 × OD645 − 5.03 × OD663. (2)

Caroteniod content = (1000 × OD474 − 3.27a − 104b)/229
(a and b indicate the content of Chl a and Chl b, respectively).

(3)

T-Chl content = Chl a + Chl b. (4)

4.4. Determination of Chlorophyll Synthesis Precursor Substance Content

Plant δ-5-aminolevulinic acid (δ-ALA) ELISA Kit (catalog number: ZK-8135) and
Plant Bilinogen (PBG) ELISA Kit (catalog number: ZK-7842) (Shanghai Zhen Ke Biolog-
ical Technology Co., Ltd., Shanghai, China) were used to determine the content of ALA
and PBG.

The method of measuring Urogen III and Coprogen III was taken from Yu et al. [44].
A 0.3 g leaf sample was weighed and the appropriate amount of liquid nitrogen was
added and fully grinded, transferred to a centrifuge tube with 3 mL 0.067 M phosphate
buffer (pH 6.8) and centrifuged at 12,000 rpm for 10 min; 1.5 mL of supernatant was
taken and 75 µL of 1% Na2S2O3 was added, shaken vigorously, irradiated with strong
illumination for 20 min, had its pH adjusted to 3.5 using glacial acetic acid and then
was extracted with 3 mL of ether. The OD value of the water phase at 405.5 nm was
measured after stratification. The content of Urogen III was calculated using the molar
extinction coefficient (5.48 × 105 mol−1·cm−1) of 405.5 nm. Then, the ether extract above
was extracted using 1 mL 0.1 M HCl, and the salt phase OD value was determined at a
wavelength of 399.5 nm. The Coprogen III content was calculated at 4.89× 105 mol−1·cm−1

(molar extinction coefficient 399.5 nm) with 3 biological repetitions.
The determination of Proto-IX, Mg-Proto IX and Pchlide content was performed as de-

scribed by Liu et al. [45]. A 0.3 g leaf sample was weighed, appropriate liquid nitrogen was
added to it and it was grinded; 10 mL extraction solutions were added (acetone/ammonia
water = 9:1), homogenized thoroughly and then centrifuged at 12,000 rpm for 10 min. The
OD of the supernatant was measured at 575 nm, 590 nm and 628 nm, respectively, with
3 biological repetitions. The content was calculated by the following equations:

Proto-IX content = 0.18016 × OD575 − 0.04036 × OD628 − 0.04515 × OD590. (5)

Mg-Proto IX content = 0.06077 × OD590 − 0.01937 × OD575 − 0.003423 × OD628. (6)

Pchlide content = 0.03563 × OD628 + 0.007225 × OD590 − 0.02955× OD575. (7)

4.5. Determination of Antioxidant Enzyme Activity

SOD activity was measured as described by Heath et al. [46]. The guaiacol colorimetric
method [47] was used to determine POD activity. The determination of CAT and APX
activities was determined using ultraviolet spectrophotometry [48].

4.6. Determination of Enzyme Activity Related to Chlorophyll Synthesis

Plant Glu-tRNAs ELISA Kit (catalog number: ZK-8377), plant Magnesium proto-
porphyrin IX methyltransferase (ChlM) ELISA Kit (catalog number: ZK-8381) and plant
uroporphyrinogen decarboxylase (UROD) ELISA Kit (catalog number: ZK-8383) (Shanghai
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Zhen Ke Biological Technology Co., Ltd., Shanghai, China) were used to extract enzymes
and determine GluTR, UROD and ChlM activities.

4.7. Determination of the Chlase (Chlorophyllase) and Mg-Dechelatase Activity
4.7.1. Enzyme Extraction

The method described by Costa [49] was used for the extraction of Chlase and Mg-
dechelatase. We took 1 g frozen leaves, grinded them into fine powder in liquid nitrogen
and poured them into 3 mL of the following extraction buffer: 0.1 M sodium phosphate
buffer (pH 6.0), 0.2% (v/v) Triton X-100, 30 g/L PVP, 1 mM phenyl methyl sulfonyl fluoride
(PMSF) and 5 mM cysteine. The mixture was placed on a low temperature shaker at 4 ◦C
for 1 h and then centrifuged at 9000× g for 20 min at 4 ◦C. The supernatant was crude
enzyme extract.

4.7.2. Preparation of Substrates

The preparation of chlorophyll refers to the method of Harpaz-Saad [35], with a few
modifications. To 10 g fresh leaves of Harumi, 20 mL of chilled (−20 ◦C) 80% acetone was
added and extracted in the dark at 4 ◦C for 12 h. It was centrifuged at 10,000× g for 15 min
at 4 ◦C, and then the supernatant was taken to determine its absorbance at 645 nm and
663 nm. Chl a (µg/mL) = 12.7A663–2.69A645; then, we diluted the supernatant to 60 µg/mL.

4.7.3. Chlorophyllase Activity

Chlase activity was measured via the method described by Suzuki et al. [50]. The
reaction mixture contained 0.3 mL crude enzyme extract, 1 mL of phosphate buffer 0.1 M
(pH 7.0) with 0.15% Triton X-100 and 0.3 mL acetone solution. We incubated the mixture
at 40 ◦C for 60 min in the dark and stirred it frequently. After 60 min, 3 mL of acetone at
4 ◦C was added immediately to terminate the reaction, and 3 mL of hexane was added to
extract the remaining Chl. The mixture was vigorously stirred until an emulsion formed,
and then it was centrifuged at 9000× g for 2 min at 4 ◦C. Absorption was measured at
667 nm of the lower water layer to determine the chlase activity. The extinction coefficient
was 76.79 mmol cm−1 [51].

4.7.4. Mg-Dechelatase Activity

Substrates were prepared from Chl as described by Suzuki et al. [50] and stored in
the dark at −20 ◦C for standby. The Mg-dechelatase activity determination procedure was
taken from Suzuki et al. [35]. The reaction system consisted of 50 mM Tris-Tricine buffers
(pH 8.8), 10 µL substrate and 200 µL crude enzyme extract, with a total volume of 3 mL.
We incubated the mixture at 37 ◦C for 30 min and determined the absorbance at 692 nm.
An increase of 0.001 within 30 min was expressed as a unit of enzyme activity.

4.7.5. Detection of Related Gene Expression in Chlorophyll Metabolism Pathway

An RNAprep Pure Polysaccharide Polyphenol Plant Total RNA Extraction Kit (Tian-
gen Biotech, Beijing, China) was used to extract total RNA from the leaves, and the ReverTra
Ace® qPCR RT Master Mix Kit was used to synthesize cDNA. We used qRT-PCR primers
(Table 2), as described by Pillitteri et al. [52]. Primers were synthesized by Tsingke Biotech-
nology Co., Ltd. (Beijing, China). RT-qPCR was performed using a 2X M5 HiPer SYBR
Premix EsTaq (Mei5 Biotechnology Co., Ltd.) and a CFX96 Real-Time PCR Detection System
(Bio-Rad, Hercules, CA, USA) instrument.
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Table 2. Primer sequences used for gene expression analysis.

Gene Name Accession
Number Length Forward (5′–3′) Reverse (5′–3′)

HEMA1 XM_006472322 136 GTCTTCACCAGCACAGCATCTGA CACAAGAGCCCACATTACGAGGAA
HEME2 XM_006486147 62 CTGTAGCGGAACCGAAAAATG TCCTCGAACAGCTTTCAGCAA
HEMG1 XM_006444561 162 TTCTGTAGATGCTGCCGGTG AATGTTTCCACCCCTTGGCT
CHLH XM_006489925 89 GTGGCGACCCTATCAGGAAC TGCTGCTGTGGTGGGAATAG
CAO XM_006472723 57 TCGCATCCAATGCCCATAT TTCTCGCATTTCCCATCTGTT
CLH XM_006443932 62 GAAACGAATCGAGGGATCCA CTTCAGAAACGCCACCACAA
PPH XM_006482877 61 GATGCAGGTAGTTTCCCAAAAGA GCAAGCCCGGAATTAAAACC
PAO XM_006487933 60 AAGCAAGAATTTGTCTCCACTACGA TCTGATGCTGCAGGGTCTGA
SGR XM_006477286 167 CAAGGTCATCTCATCAAGGA GATTCTACTCCGTTCTTACAAG
Actin XM_006464503 195 CATCCCTCAGCACCTTCC CCAACCTTAGCACTTCTCC

First, the relevant gene sequence was found in Arabidopsis thaliana, and then the gene
sequence was blasted in the Citrus Pan-genome to Breeding Database (http://citrus.hzau.
edu.cn/index.php, accessed on 1 January 2023); then, primers were designed using Primer3
(http://bioinfo.ut.ee/primer3--0.4.0/, accessed on 12 January 2023) and synthesized by
Sangon Biotech. The genes in the table are HEMA1, HEME2, HEMG1, CHLH, CAO, CLH,
PPH, PAO, SGR and Actin. Primer 0.8 µL, ddH2O 7.6 µL, 2× M5 HiPer SYBR Premix
EsTaq 10 µL and cDNA 1.6 µL formed the composition of the 20 µL reaction system. The
quantitative PCR fluorescence reaction program was 95 ◦C predenaturation for 30 s, 95 ◦C
denaturation for 5 s and 53 ◦C annealing for 30 s, and fluorescence signals were collected at
53 ◦C for 40 PCR amplification cycles. The internal reference gene was Actin (Citrus sinensis
actin-7), and there were three technical replicates and three biological replicates for each
sample. The 2−∆∆CT method [53] was used to calculate the relative expression of the gene.

4.8. Correlation and Statistical Analysis

The data were analyzed using Duncan’s multiple range test with SPSS 26.0 at the p < 0.05
level of significance. Pearson correlation analysis was used to analyze the correlation
between 32 indicators of photosynthesis and chlorophyll degradation. Graphical represen-
tation was drawn using Origin 2021.

5. Conclusions

This experiment investigated the differences in photosynthesis characteristics and
chlorophyll metabolism in the leaves of Citrus cultivar (Harumi) with different degrees of
chlorosis. The results showed that photosynthesis characteristics, chlorophyll metabolism
and the leaf antioxidant enzyme system were correlated. Abnormal UROD activity and
HEME2 gene expression played key roles in the chlorophyll synthesis pathway, which
hindered the key pathway of transformation of Urogen III into Coprogen III and led to
the inhibition of chlorophyll synthesis. At the same time, the combined action of MDCase
activity and SGR gene expression might have caused excessive chlorophyll degradation to
some extent. Abnormal chlorophyll metabolism led to a decrease in chlorophyll content,
which eventually led to leaf chlorosis and affected the photosynthesis process. In addition,
the decrease in antioxidant enzyme activity mainly caused by POD and APX led to a
decrease in plant antioxidant capacity, and negatively promoted an increase in CAT content
in severely chlorotic leaves, which led to leaf chlorosis and photosynthesis disorder.

In summary, the blocked transformation of Urogen III to Coprogen III, excessive
chlorophyll degradation and the weakening of antioxidant enzyme system activity might
have particularly important impacts on the chlorosis of Harumi leaves. Although the specific
regulatory mechanism needs further study, we identified the key substances, enzymes and
genes that may cause chlorosis, as well as possible abnormal chains. These data provided a
basis for further follow-up studies, for example on the reason why the transformation from

http://citrus.hzau.edu.cn/index.php
http://citrus.hzau.edu.cn/index.php
http://bioinfo.ut.ee/primer3--0.4.0/
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Urogen III to Coprogen III was blocked, methods to solve the chlorosis of Harumi leaves,
the chlorosis mechanism of other citrus varieties and so on.
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