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Abstract: Chronic kidney disease (CKD) is a constantly growing global health burden, with more
than 840 million people affected worldwide. CKD presents sex disparities in the pathophysiology of
the disease, as well as in the epidemiology, clinical manifestations, and disease progression. Overall,
while CKD is more frequent in females, males have a higher risk to progress to end-stage kidney
disease. In recent years, numerous studies have highlighted the role of sex hormones in the health
and diseases of several organs, including the kidney. In this review, we present a clinical overview
of the sex-differences in CKD and a selection of prominent kidney diseases causing CKD: lupus
nephritis, diabetic kidney disease, IgA nephropathy, and autosomal dominant polycystic kidney
disease. We report clinical and experimental findings on the role of sex hormones in the development
of the disease and its progression to end-stage kidney disease.
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1. Sex Disparities in CKD

According to the latest epidemiologic studies, chronic kidney disease (CKD) affects
more than 840 million persons worldwide [1]. Over the past 30 years, its death rate
has increased by about 40%, and forecasting models predict that it will become the 5th
most-common cause of potential years of life lost within the next 20 years [1,2]. These
numbers can be partially explained by the rise in the main risk factors for CKD, obesity,
and diabetes, in developed countries [1] as well as in low-to-middle-income countries [3].
CKD consistently shows a strong sexual dimorphism, with a higher age-standardized
prevalence in females than in males despites geographical differences: 9.6% versus 8.6%
in high-income countries, and 12.5% versus 10.6% in low-to-middle-income countries [4].
Nonetheless, the likelihood of progressing to end-stage kidney disease (ESKD) is higher in
males [5,6]. The Chronic Renal Insufficiency Cohort (CRIC) study, which is a longitudinal,
ongoing, multicenter study that involves almost 5500 adults with CKD in the United
States (US), has revealed that women experience lower rates of kidney failure (defined as
the need for dialysis or a kidney transplant) compared to men, with rates of 3.1 and 3.8
per 100 person-years, respectively [7,8]. After adjusting for sociodemographic, clinical,
and laboratory characteristics through multivariate regression analysis, it was found that
women had a decreased risk of ESKD, 50% estimated glomerular filtration rate (eGFR)
decline, progression to CKD stage 5, and death compared to men [7,8].

The sex disparities revealed by CKD epidemiological data suggest a role for sex
hormones, more specifically a protective role for estrogens. However, not all of the afore-
mentioned studies have data on the menopausal state—and estrogen level—of the women
included. When attention is made to separate premenopausal from postmenopausal
women, the difference is clear, as in the Korean National Health and Nutrition Examina-
tion Survey (NHANES) from 2010, where the prevalence of CKD was 7.4% in men, 4.7%
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in premenopausal women, and 20.1% in postmenopausal women [9]. Analysis of the
NHANES 1999–2014 data indicated an association between early menopause and CKD
prevalence [10] (Figure 1). Indeed, women experiencing early natural menopause—before
45 years of age—were at a higher risk to develop CKD, while early surgical menopause was
a hazard factor for both CKD and survival [10,11]. A long reproductive life span duration is
also associated with a lower risk for CKD development, suggesting a cumulative protective
effect of estrogen exposure over time [12,13]. However, women suffering from CKD often
experience menstrual abnormalities and shorter reproductive life spans, making it difficult
to diagnose menopause in premenopausal-age-group women with advanced CKD [14–16].
While postmenopausal hormone replacement therapy (HRT) slows down CKD progres-
sion [17], one should be wary of possible side effects of long-term treatment, such as
coronary heart disease, venous thromboembolism, and stroke [18]. A meta-analysis and
systematic review of the literature on transgender persons subjected to gender-affirming
hormone therapy reveals that kidney function (as a change in serum creatinine) worsened
in transgender men and improved in transgender women one year after the start of treat-
ment [19]. Free testosterone levels are overall lower in male CKD patients and inversely
correlated with the stage of the disease [20–22]. Reports have shown that testosterone levels
increased in male patients after kidney transplant, that is, following an improvement in
kidney function [23]. Low testosterone levels constitute a predictive factor for all-cause
mortality in male dialysis patients [24]. Sex hormone levels in women are more difficult to
assess due to their cyclic nature. Testosterone levels are not significantly different in women
with or without CKD [25]. CKD women that underwent a successful kidney transplant had
normalized serum concentrations of hormones linked to fertility disorders [26].
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Figure 1. Clinical significance of sex in CKD development and progression to ESKD. CKD, chronic
kidney disease; ESKD, end-stage kidney disease; HRT, hormone replacement therapy; GAT, gender-
affirming therapy.

Animal models of CKD reflect the sex disparity observed in patients, with males
progressing faster to CKD than females [6]. In 5/6 nephrectomy, male rats developed a more
severe kidney phenotype, including albuminuria, anemia, and malnutrition, compared to
females [27]. In chronic inhibition of nitric oxide, a model that exacerbates CKD progression,
male rats displayed marked albuminuria, histological damage, interstitial inflammation,
and tubulointerstitial fibrosis, while females had a milder phenotype [28]. In male rats with
chronic allograft nephropathy following kidney transplant, testosterone treatment was
detrimental, increasing inflammation and glomerulosclerosis, while estrogen treatment
mitigated these alterations [29]. Similarly, estrogens protected from CKD progression
in uninephrectomized rats [30], postmenopausal rats [31], 5/6 nephrectomized rats [32],
kidney damage following acute kidney injury [33], adenine-induced CKD [34], and aging
Dahl salt-sensitive rats [35].

Some kidney diseases that can cause CKD have been shown to have a sexual dimor-
phism or differences in prevalence, severity, or presentation between males and females
(Table 1). This review will focus on the effect of sex hormones and their receptors on kidney
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physiology in selected prominent kidney diseases: lupus nephritis, diabetic kidney disease,
IgA nephropathy, and autosomal dominant polycystic kidney disease.

Table 1. Sex-specific associations of kidney diseases.

Kidney Disease Sex-Specific Associations
Lupus nephritis

â Higher prevalence in men with SLE [36]
â More aggressive histopathological features in men [37,38]
â Women more likely to achieve complete remission [39,40]
â No gender differences in long-term renal outcomes or

mortality [38,41,42]

Minimal change nephropathy
â No gender differences in clinical phenotype or remission rates [43]

Diabetic kidney disease
â Faster progression from DKD to CKD to ESKD in men than in

premenopausal women [8,44]
â Presence of albuminuria and low eGFR in men [45–47]

Anti-GBM disease
â Clinical features dependent on age and smoking status rather than

gender [48]
â No gender differences in long-term renal outcomes [48]

IgA Nephropathy
â Higher antibody activity against aberrantly glycosylated IgA in

women [49]
â Faster eGFR decline, adverse clinicopathological characteristics, and

rapid disease progression in men [44,50]
â Sex-specific gene polymorphisms associated with increased risk in

men [51]
â No gender differences in proteinuria, disease activity, or

outcomes [50,52]

Focal segmental glomerulosclerosis
â Higher levels of proteinuria in men [52]
â Greater risk of relapse and less likely to attain remission in

men [51–53]
â Increased risk of death in men [51,54]

Autosomal dominant polycystic kidney disease
â Rapid decline of renal function and earlier onset of ESKD in men [55]

ANCA associated vasculitis
â No gender differences in clinical outcomes [56–58]

SLE, systemic lupus erythematosus; DKD, diabetic kidney disease; CKD, chronic kidney disease; ESKD, end-stage
kidney disease; eGFR, estimated glomerular filtration rate; GBM, glomerular basement membrane; ANCA,
anti-neutrophil cytoplasmic antibody.

2. Sex Hormones and Sex Hormone Receptors

Sex hormones are steroid hormones, including estrogens, progestogens, and andro-
gens, that traditionally have been defined by their role in normal reproductive function, but
that are also involved in other physiological and pathological processes. Sex hormones are
produced by the gonads (ovaries or testes), by adrenal glands, or can be derived by conver-
sion from other sex steroids in other tissues such as the liver or fat [59,60]. They may act in a
paracrine manner or circulate in the blood, stabilized by the sex hormone-binding globulin
(SHBG) or by albumin, or in a free form to act at the target tissue level in an endocrine fash-
ion [60]. Sex hormones act via specific receptors in target tissues where they may exert their
functions by slow transcription-dependent mechanisms through the cytoplasmic estrogen
receptors (ER), androgen receptors (AR), and progesterone receptors (PR), as well as by
fast transcription-independent mechanisms through membrane-associated receptors and
signaling cascades [61–63]. For each sex hormone receptor, two forms exist: the estrogen
receptors ERα and ERβ (encoded by the ESR1 and ESR2 genes, respectively) [64,65]; the an-
drogen receptors AR-A and AR-B (two isoforms of the AR gene) [66], and the progesterone



Int. J. Mol. Sci. 2023, 24, 8244 4 of 19

receptors PR-A and PR-B (two isoforms of the PGR gene) [67]. The selective expression of
these isoforms in target tissues and the differential affinity for their ligands are at the basis
of different cellular responses.

Blood circulating sex hormones can diffuse though the plasma membrane and, in the
cytoplasm, bind to the specific receptor which undergoes dimerization (they can form both
homodimers and heterodimers) and a consequent conformational change promoting the
coupling to regulator proteins. These hormone-receptor complexes, in turn, translocate to
the nucleus in which they bind to a hormone response element (HRE), a short sequence
of DNA within the promoter of a gene, and therefore regulate transcription [62,63]. This
signaling pathway takes several days to exhibit its response effects. Nevertheless, sex
hormones can induce fast responses by transcription-independent mechanisms through the
membrane-associated receptors: sex hormones can bind to membrane-associated receptors
among which, in addition to the membranous-bound form of the previously mentioned
receptor, are also the G protein-coupled estrogen receptor (GPER), which promote intracel-
lular second messenger signaling, via MAPK/ERK/PI3K/cAMP signaling, that indirectly
modulate gene expression and facilitates rapid changes [61–63].

Sex hormones and their receptors have important roles in normal kidney biology, and
altered expression and function could explain the differences in kidney disease onset and
progression.

3. Experimental Models

Acknowledging the sex-related disparities witnessed in experimental models of kidney
disease is crucial when designing and interpreting research, as well as when creating novel
therapies. Female mice, particularly in the C57BL/6J strain, have been shown to possess
greater resistance to Adriamycin-induced injury [68,69]. The International Society of
Nephrology (ISN) recently released a consensus guidance for preclinical animal studies
in translational nephrology taking these distinctions into account. The ISN recommends
that both sexes be studied to comprehend the pathophysiological differences linked to sex
chromosomes, reproductive organs, and sex hormones in experimental models of kidney
diseases [70].

A classical experimental model used to study the role of sex in preclinical studies is
the gonadectomy, that is, the removal of the ovaries in females, or ovariectomy, and the
removal of the testis in males, also called castration or orchiectomy. Gonadectomy can be
performed in rats or mice, and can be combined with regular or cross-sex hormone therapy.
Several animal models have been developed to mimic human menopause as well, from
natural aging to ovariectomy and chronic exposure to ovotoxin [71]. The main limitation in
all these models is the absence of specificity for a given hormonal pathway or hormone
receptor.

Our current understanding of the physiological and pathophysiological roles of sex
hormones is due, in large part, to the generation of various sophisticated genetic models
of sex hormone receptor insufficiency, including ERα- and ERβ- deficient mice [72–74]
and mice lacking androgen [75] or progesterone receptors [76]. Despite numerous animal
models in which gonadal hormones or sex hormone receptors have been manipulated, to
date, none have been accurately characterized for renal endpoints, although interest in the
kidney research community has gradually increased in recent years. As many germline loss-
of-function mutations in the sex hormone receptors in mouse models lack renal phenotypes,
it is conceivable that abnormalities may only become evident under physiological stress,
with age, or following kidney injury. The identification of numerous promoters conferring
renal cell-specific gene regulation in vivo has greatly facilitated the interpretation of gene
targeting studies [77,78]. In addition to the spatial delimitation driven by the promoter,
temporal gene expression can be achieved using inducible systems, allowing the study
of the effect of the absence of a hormone receptor during a specific stage of embryonic
kidney development or in adult mice, for example [79–81]. Investigating renal cell type-
specific sex hormone receptor knock-out in both female and male animals will be crucial to
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understanding sex differences attributed to sex hormone responsiveness in various kidney
diseases. Furthermore, conducting similar genetic studies targeting known activators and
repressors of sex hormones could lead to a better understanding of their role in cellular
response.

The “four core genotypes” (FCG) mouse model is a valuable model for studying sex
hormones, as it involves mice in which the sex chromosome complement is unrelated to
the animal’s gonadal sex [82]. This model comprises XX and XY gonadal males or females,
achieved through the deletion of the testis-determining gene Sry from the Y chromosome
and the insertion of a Sry transgene onto an autosome [83,84]. The FCG model can dis-
tinguish between the influence of sex hormones and the effects of sex chromosomes. By
combining gonadal hormones and sex hormone receptor deletions with existing experi-
mental models of renal disease, it may be possible to develop valuable tools for studying
sex differences. Additionally, removing the gonads of adult animals can eliminate sex
differences in phenotypes caused by the distinct hormones produced by male and female
gonads throughout their lifetimes.

To date, the insights that have been gained into human sex hormone deficiency are
mostly due to the use of knock-out mouse models, even if the strengths and limitations
of these mouse models should be considered to ensure an accurate interpretation of the
phenotypes.

4. Lupus Nephritis

Lupus erythematosus (SLE) is an autoimmune disease that often causes severe kidney
manifestations, called lupus nephritis (LN), which can progress in CKD and ESKD [36].
LN is a type of glomerulonephritis that can be classified based on mesangial involvement,
presence of segmental or global sclerotic lesions, membrane thickening, or severity of
tubulointerstitial lesions [85,86]. Evidence from clinical and experimental data highlights
the sex disparities and the role of sex hormones in SLE and LN. Recent epidemiological
studies show that in the US, the SLE incidence rate per 100,000 person-years was 5.1 (95%
CI 4.6 to 5.6), and was higher in women than in men (8.7 vs. 1.2) [87]. Incidence varies
greatly across international regions, but overall women are consistently more affected by
SLE than men [88]. Up to 60% of SLE patients will develop LN in the course of their life,
with a tendentially higher prevalence in male (27–75%) than in female patients with SLE
(16–52%) [36]. In chronic graft-versus-host disease (GVHD), an experimental model of
SLE, female mice were more susceptible to the development of glomerulonephritis [89,90].
Numerous studies demonstrated how sex hormones influenced the pathogenesis and
clinical features of SLE (recently reviewed in [91]), advocating for the consideration of
sex differences in the management of the disease. In particular, HRT and oral contra-
ceptives can increase the susceptibility to developing SLE or to SLE flares [91–93]. In
transgender women undergoing sex reassignment, gender-affirming hormone therapy can
associate with SLE [94]. Treatment with 17beta-ethinyloestradiol in GVHD or NZB/WF1
mice—another lupus-prone model—accelerated autoantibody production and progres-
sion of LN [89,95,96]. Conversely, SLE mouse models deficient in ERα developed a mild
phenotype [97,98], reinforcing the idea that estrogen is detrimental to SLE. In addition to
estrogen, follicle-stimulating hormone (FSH), and luteinizing hormone (LH) could also
affect SLE, as women with SLE experience disease flare during pregnancy, causing ad-
verse outcomes [99]. In a murine model of SLE, pregnant females experienced a worsened
kidney function, enhanced kidney inflammation, and a reduction in survival rate [100].
Androgen metabolism was found to have an important role in SLE, with SLE patients
exhibiting lower levels of testosterone [93,101]. However, testosterone patches failed to
provide any therapeutic benefit in SLE patients [102–105]. Whether progesterone plays a
role in SLE patients is still debated [106]. In the NZB X NZW mouse model of SLE, females
treated with medroxyprogesterone acetate—a synthetic form of progesterone used in oral
contraceptives—have a lower mortality rate and serum IgG levels [107,108].
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Sex hormones are known immunomodulators and have a prominent role in autoim-
mune diseases (reviewed in [109,110]). In particular, ER are expressed on a wide range
of immune cells and promote the production of proinflammatory cytokines [111]. Modu-
lation of cytokine expression by ER signaling in SLE patients as well as in experimental
models of SLE has been reviewed elsewhere [112]. Estrogens have been shown to affect
the development and function of B cells, T cells, and plasmacytoid dendritic cells (DCs)
(Figure 2). Estrogens play an important role in B cell maturation, and ERα can increase
autoantibody production [113]. Treatment with estradiol or interferon (INF) in NZB X
NZW mice increased the expression of the B cell activating factor (BAFF)—a member of
the TNF-family of proteins—in macrophages, and subsequent autoantibody production,
which was reduced in ERα-deficient splenic cells [114]. An anti-BAFF monoclonal antibody,
Belimumab, has been authorized by the US Food and Drugs Administration to treat lupus
nephritis [115]. Upon estradiol stimulation, T cells of SLE patients start expressing the
CD40 ligand, a known player in LN [116]. Importantly, in patients and mouse models of
SLE, interleukin-2 (IL-2) production is impaired, resulting in a decrease in regulatory T cells
(Treg)—a subset of CD4+ T cells that maintain self-tolerance by suppressing autoreactive
lymphocytes—as well as excessive differentiation of CD4+ naïve T cells into proinflam-
matory T helper 17 (Th17) cells or T follicular helper (Tfh) cells, causing inflammation
and autoantibody production, respectively. Patients with IL-2 deficiency often suffer from
LN [117]. In mice models of SLE, estradiol treatment suppresses IL-2 signaling [118], while
treatment with dehydroepiandrosterone (DHEA), an intermediate compound in testos-
terone synthesis, significantly upregulates IL-2 production [119]. An ongoing phase II
clinical trial is assessing the efficacy of low-dose IL-2 therapy in patients with SLE [120].
Plasmacytoid DCs produce high levels of type I interferon (IFN) in SLE patients, through
toll-like receptor (TLR-)-7 and TLR-9 [112]. Estrogen treatment increased TLR-mediated
production of IFNα by DCs of postmenopausal women and of SLE-prone mice and re-
stored it in Erα-deficient mice [121,122]. Despite important side effects, chloroquine is still
commonly used to treat SLE, inhibiting TLR signaling [123].

Testosterone, conversely, is immunosuppressive, as it inhibits B cell lymphopoiesis in
the bone marrow [124]. Accordingly, male mice deficient in the androgen receptor have
increased numbers of bone marrow B cell precursors [125]. Recently, testosterone has been
shown to regulate B cells through the cytokine BAFF, an essential survival factor for splenic
B cells [126].

Progesterone has been shown to inhibit immune cell activation in SLE, as medrox-
yprogesterone acetate administration in female mice lowered anti-DNA IgG and CD86 on
dendritic cells, but increased the expression of CD40 on B cells [108]. Conversely, aged
Nba2 female mice deficient in the progesterone receptor had more anti-DNA IgG and more
glomerular IgG deposition, inflammation, and overall injury [127]. These mice also had
fewer splenic Treg cells and more Tfh cells [127].

Sex hormone influence on the immune system a major role in SLE, creating significant
differences between male and female patients, increasing the complexity of drug design.
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5. Diabetic Kidney Disease

Diabetic kidney disease (DKD), which impacts 30% of type 1 and 40% of type 2
diabetes mellitus (DM) patients, is a prevalent microvascular complication of the disease.
DM is the leading cause of CKD worldwide, and it develops in approximately 40% of DM
patients [128–130]. Epidemiological studies showed that males progress from DKD to CKD
to ESKD faster than premenopausal women [45,46]. Sex disparities have been observed in
the prevalence and incidence of DKD (diagnosed by the presence of albuminuria and low
eGFR), as well as its phenotypes and clinical manifestations [45–47,131]. In a prospective
observational study of 191 patients with type 2 diabetes mellitus who were monitored
for a median of 5.8 years, male gender was found to be the second risk factor for the
development of incipient or overt DKD, after albuminuria [47]. Additionally, an association
between sex and incident DKD was noted in a follow-up of almost 10 years of 1464 patients
with diabetes and normal renal function at baseline, leading to the conclusion that women
with diabetes have a higher risk of incident CKD than men [132].

Although the exact mechanisms underlying this sex-based disparity remain unclear,
sex hormones are known to play a significant role in the pathophysiology of diabetes and
its complications, especially in women with DM who seem to lose the protective effects
of estrogens on the cardiovascular system even before menopause (Figure 3). The loss
of estrogen is a significant factor in explaining these differences [133]. Under healthy
conditions, estrogens act as vasodilators, increasing the expression of nitric oxide synthase
in the endothelium and resulting in phosphorylation and nitric oxide production via the
ERα receptor [134]. Moreover, in animal models, estrogens appear to reduce fibrosis and
apoptosis in the kidney [135]. Wells et al. demonstrated in a rat model of diabetes that estra-
diol supplementation may be an effective regimen in attenuating the onset and progression
of diabetic renal complications [136]. Evidence suggests that, in human studies, estrogen
therapy attenuates the progression of DKD. Maric et al. showed that supplementation
with 17β-estradiol or administration of selective estrogen receptor modulators reduces the
incidence of diabetes and attenuates the progression of DKD [133]. Estrogen replacement
therapy decreases hyperandrogenicity and improves glucose homeostasis and plasma lipids
in postmenopausal women with noninsulin-dependent DM [137]. Similarly, Brussaard
et al. claimed that short-term estrogen replacement therapy improves insulin resistance,
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lipids, and fibrinolysis in postmenopausal women with non-insulin-dependent DM [138].
Szekacs et al. report that postmenopausal hormone replacement improves proteinuria and
impaired creatinine clearance in type 2 diabetes mellitus and hypertension [139].
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Additionally, in a mouse model of type 2 DM, the db/db mouse model, characterized
by a phenotype of severe obesity, hyperphagia, polydipsia, and polyuria caused by a
spontaneous mutation in the leptin receptor, using a selective estrogen reporter modulator,
raloxifene, results in reduced albuminuria levels and renal damage [140]. Hadjadj et al.
tested the hypothesis that raloxifene protects against increasing urinary albumin excretion
in post-menopausal women with type 2 DM in a randomized pilot clinical trial. They
observed that raloxifene may limit the progression of albuminuria [141]. Another drug that
provides protection in DM is Vitamin D. Experimental data demonstrated that supplemen-
tation with Vitamin D or its active derivatives improves endothelial cell injury, reduces
proteinuria, attenuates renal fibrosis, and as a result, retards DKD progression [142]. It is
interesting to note that estrogens and Vitamin D have a bidirectional relationship, with
estrogens interfering with Vitamin D immunomodulatory activities and vitamin D down-
regulating the aromatase effect [143,144]. Combining Vitamin D supplementation and
sex steroid therapy appears to protect endothelial integrity and counteract cardiovascular
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damage that contributes to CKD and DKD progression. Oral estrogen supplementation has
various mechanisms for its renoprotective effects in DM women [145,146]. In rat models, it
has been shown that aldose reductase may both exacerbate and alleviate the production of
metabolites that lead to hyperglycemia-induced cellular impairment. The assessment of
oxidative stress in diabetic and hypertensive patients may also be a predictive factor for
the progression of kidney damage [147]. E2 therapy can interfere with various pathways
of glycemic damage, including the accumulation of Advanced Glycation End Products
(AGEs) and the expression of transforming growth factor-beta (TGF β), AT1 receptors, and
endothelins with a decrease in the production of collagen and a reduction in apoptotic
phenomena [30,148,149]. In fact, another pathway of glycemic damage is represented
by an estrogen-associated increase in the function of the receptor for advanced glycation
end-products (RAGE). For this reason, under diabetic conditions, AGEs are excessively
generated through the aldose reductase (AR)-polyol pathway. AGEs reduce the efficiency
of anti-oxidant systems, downregulating several protective molecules, such as AGER1 and
SIRT1 [150,151]. Estrogens may also increase the activity of nitric oxide synthase at the
glomerular level, improving vascular permeability and glomerular function [152]. The
regulation of TGF-β pathways is likely influenced by estrogen levels, with its expression
upregulated by chronic hyperglycemia leading to glomerulosclerosis [153,154]. TGF-β
levels are usually increased in men and reduced in women [155]. Estrogens have been
reported to reduce the activity of RAAS (renin–angiotensin–aldosterone system) and stimu-
late TGF-β, confirming its role in regulating TGF-β pathways [156–158]. Progesterone also
appears to play an important role in kidney protection, with progesterone receptors mainly
located in the epithelial cells of the distal tubule in both male and female subjects [159].
Estrogen administration, alone or in addition to progesterone replacement therapy [160],
has demonstrated beneficial effects on ischemic tubular damage [161]. Progesterone ad-
ministration in ovariectomized diabetic mice has been shown to improve the outcomes of
diabetic kidney disease, reducing glomerulosclerosis and profibrotic/angiogenetic factors
and downregulating podocyte markers such as nephrin and podocin [160,162].

Regarding testosterone, some studies show that the decrease in testosterone levels
and concomitant increase in estradiol and progesterone levels with DM correlate with the
development of albuminuria, a hallmark of DKD [163,164]. Interestingly, castration in
diabetic rats, which reduced testosterone levels even further than that in intact diabetic rats
(but had no additional effect on either estradiol or progesterone), was associated with more
severe albuminuria than that in intact diabetic rats. In addition, Iada et al. showed that
adjusting the 17β-estradiol-to-androgen ratio ameliorates DKD in a mouse model [165–167].
Similarly, in rat models, inhibition of estradiol synthesis attenuated renal injury in male
streptozotocin-induced diabetic animals [168]. Sex hormones, particularly estrogens, play a
key role in the pathophysiology of diabetic renal disease. Although the evidence mentioned
above has provided valuable information on the direct and indirect effects of estrogens in
the kidney, further research is needed to clarify the relationship between sex hormones and
the incidence and progression of diabetic renal disease.

6. IgA Nephropathy

Immunoglobulin A nephropathy (IgAN) is a common form of immune complex
glomerulonephritis progressing to ESKD [169] The pathophysiology of IgAN is not clear,
but a hypothesis involves the development of antibodies against aberrantly glycosylated O-
linked oligosaccharide(s) on the IgA1 hinge region [170]. The accumulation of pathogenetic
polymeric IgA1 immune complexes (occasionally with IgG and IgM) in the glomerular
mesangium, leads to ESRD in 30–40% of patients within 20–30 years of diagnosis [171].
Interestingly, Nakamura et al. found that females had significantly higher antibody activity
against synthetic hinge peptides and glycopeptides, which could suggest a protective
mechanism in females against aberrantly glycosylated molecules [49].

The incidence and clinical manifestations of IgAN show gender differences, with
male patients at a higher risk of developing ESKD and having worse outcomes than



Int. J. Mol. Sci. 2023, 24, 8244 10 of 19

females [50,172]. This gender-based disparity has been observed in other kidney diseases
as well, such as idiopathic membranous nephropathy and ADPKD, as reported in a meta-
analysis by Neugarten et al. [44].

Additionally, sex-specific gene polymorphisms have been found to be associated with
IgAN: the NTN4 rs1362970 A/A and GNG2 rs3204008 G/G genotypes are associated with
increased IgAN risk in males, and the PHLDB1 rs7389 G/T genotype is associated with a
higher risk in females [51].

Studies investigating the impact of sex on the development of ESKD in IgAN have
produced varying results. While some studies have found no differences between males
and females [50,52], others have reported worse outcomes in females [173]. For instance,
although blood pressure was higher in males, proteinuria did not differ between the sexes
at diagnosis or during follow-up evaluation [52]. Nevertheless, other studies have demon-
strated more rapid eGFR decline, worse clinicopathological characteristics, and quicker
disease progression in men [44,50]. In an animal study, B6C3F1 mice with vomitoxin- (VT)-
induced IgAN exhibited a male predisposition and more severe disease outcomes [174].
To explore the role of estrogen in IgAN, a study found that female B6C3F1 mice who
underwent castration showed increased severity of VT-induced IgAN, but estrogen supple-
mentation did not mitigate this effect and instead increased disease severity [175].

Interestingly, some of the key genes upregulated in IgAN were linked with the estrogen
signaling pathway and a polymorphism of the ERα gene might be associated with the
pathogenesis of IgAN [176,177]. Another study reported that the expression of glomerular
ERα in IgAN kidney tissue decreased with the worsening of the disease, proposing ERα
as an independent factor involved in the prognosis of patients with IgAN [178]. However,
further studies are needed to elucidate the roles of estrogen and androgen and their
receptors in the pathogenesis of IgAN.

7. Autosomal Dominant Polycystic Kidney Disease

ADPKD is the most common monogenetic hereditary renal disorder in adults and it is
caused by the mutation of PKD1 or PKD 2 [179]. ADPKD often results in CKD and ESKD.

Male gender is a risk factor for the progression of ADPKD [179]. Affected men present
a rapid decline of renal function and earlier onset of end-stage renal disease, compared
to women [55]. In a rat model of inherited polycystic kidney disease (PKD), orchiectomy
led to a reduction in renal size and cyst volume density, indicating alleviation of renal
disease [180]. In contrast, testosterone substitution was shown to antagonize the protective
effect of gonadal ablation. Moreover, in females, testosterone increased kidney size and cyst
growth, identifying androgens as a progression factor [180]. Conversely, estrogens have
been proposed as protective hormones in some experiments with rats [135,181], where the
authors showed that in males the presence of intact androgen status is associated with
stimulation of the renin-angiotensin system (RAS) and endothelin-1 (ET-1) systems. Con-
versely, in females, estrogen has a protective effect, inducing suppression of the intrarenal
RAS and ET-1 systems, and upregulation of VEGF, thereby promoting the preservation of
renal function and attenuation of the loss of structure [135]. In conclusion, androgens and
estrogens seem to have a role in cyst growth and disease progression in ADPKD.

Recent evidence has highlighted the vital role of two chloride ion channels, namely the
protein kinase A-regulated cystic fibrosis transmembrane conductance regulator (CFTR)
and the Ca2+-activated Cl- channel transmembrane 16A (TMEM16A), in the pathology
of ADPKD [182]. It has been discovered that the TMEM16A promoter region contains
androgen-response elements that are relevant for the testosterone-dependent induction of
TMEM16A [183]. Despite the variations in TMEM16A expression, CFTR may be expressed
at lower levels in female ADPKD patients, which could contribute to reduced renal cyst
growth in females. This decrease in CFTR expression may be due to estrogen-dependent
regulation of CFTR [184,185].

In a recent study, Talbi et al. investigated whether enhanced expression or function
of TMEM16A and/or hormonal regulation may induce a more severe phenotype in male
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ADPKD patients [182]. The authors showed that the more severe cystic phenotype in men
is likely to be caused by enhanced cell proliferation, possibly due to enhanced basal and
ATP-induced intracellular Ca2+ levels, leading to enhanced TMEM16A currents. This study
also suggests a difference in Ca2+ homeostasis in the kidneys of male and female ADPKD
patients [182]. Further studies of specific gender hormone modulation will be essential for
the development of clinically applicable approaches to slowing down the progression of
ADPKD.

8. Conclusions and Future Directions

The sex-related discrepancies observed in clinical and experimental settings of CKD
and prominent kidney diseases causing CKD can be explained in part by the effect of sex
hormones on the kidney. Recent studies in complex diseases reveal the close relationship
between sex hormones and epigenetic modifications, i.e., changes in gene expression pat-
terns that are not directly related to the alteration of the DNA sequence itself [186,187].
Studies on epigenetic alterations in a mouse model of DKD have shown a sexual dimor-
phism in the expression of key (de)methylation enzymes [188], suggesting a possible link
to differences in sex hormone expression between males and females. In CD4+ T cells from
SLE patients, estradiol treatment inhibited DNA methyltransferase 1, causing global DNA
hypomethylation [189]. While the role of epigenetic modifications in kidney diseases has
been extensively studied [190], its link to sex hormones is still anecdotal and would require
further investigation.

The advancement of new technologies such as transcriptomics and pharmacogenomics
has provided insights into the sex-specific molecular mechanisms underlying kidney
physiology. The study by Ransick et al. combined single-cell analyses with genetic fate
mapping to show sex, lineage, and regional diversity in the mouse kidney, presenting the
distribution of selected genes associated with hormonal regulation and allowing for further
exploration of sexually dimorphic gene activity [191]. Transcriptomics studies [192], and
more recently multiomics analyses [193], have revealed sex differences in mouse renal
proximal tubular cells. In CKD, impaired function and activation of proximal tubular
cells contribute to the development of tubulointerstitial fibrosis and renal tubular atrophy,
leading to progressive loss of renal function. Therefore, knowing the sex-biased expression
of key molecules in physiological conditions provides the basis for further studies in CKD
conditions.

As the use of artificial intelligence and machine-learning approaches to analyze large
datasets generated by these technologies could enable the development of predictive mod-
els for the early detection and personalized treatment of CKD, it is essential to create sex-
and gender-sensitive models, as proposed, for example, in the field of kidney transplan-
tation [194]. The development of sex-specific drug dosing and administration protocols,
informed by sex-biased expression of pharmacogenes across human tissues, as described
in the study by Idda et al., could also improve treatment outcomes in CKD patients [195].

Moving forward, the application of these technologies could facilitate the identification
of sex-specific biomarkers of CKD progression and novel therapeutic targets and the
development of more effective treatments for both male and female CKD patients.
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