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Abstract: Bisphenol A (BPA) is a xenobiotic with endocrine disruptor properties which interacts
with various receptors, eliciting a cellular response. In the plastic industry, BPA is widely used in
the production of polycarbonate and epoxy-phenolic resins to provide elastic properties. It can be
found in the lining of canned foods, certain plastic containers, thermal printing papers, composite
dental fillings, and medical devices, among other things. Therefore, it is a compound that, directly or
indirectly, is in daily contact with the human organism. BPA is postulated to be a factor responsible for
the global epidemic of obesity and non-communicable chronic diseases, belonging to the obesogenic
and diabetogenic group of compounds. Hence, this endocrine disruptor may be responsible for the
development of metabolic disorders, promoting in fat cells an increase in proinflammatory pathways
and upregulating the expression and release of certain cytokines, such as IL6, IL1β, and TNFα. These,
in turn, at a systemic and local level, are associated with a chronic low-grade inflammatory state,
which allows the perpetuation of the typical physiological complications of obesity.

Keywords: bisphenol A; inflammation; adipose tissue; endocrine disruptor

1. Introduction

Bisphenol A (BPA) is a chemical widely used as a component for polycarbonate and
epoxy-phenolic resin production which is highly resistant to heat, providing elasticity to
plastic materials. It can be found in the lining of canned foods, certain plastic containers,
thermal printing papers, composite dental fillings, and medical devices, among other
things. Therefore, it is a compound frequently found, on a daily basis, in contact with the
human organism [1].

Evidence suggests that BPA could be a contributing factor in the global obesity epi-
demic and in non-communicable chronic diseases, making part of the so-called obesogenic
and diabetogenic compounds [2,3].

BPA has been incorporated in the food chain, generating increased interest in its safe
use by the public, as well as the scientific community. Therefore, various exploratory
scientific studies on its consequences at the cellular and physiological levels in different
body systems and tissues have arisen. Some of these studies regarded safe intake levels,
yet experimental and epidemiological results supported the fact that low doses of this
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compound have the capacity to affect, with negative repercussions, the endocrine system
at the metabolic level. In absolute terms, adult human exposure to BPA is low; however,
chronic exposure can take place depending on BPA-carrying vectors [4].

Based on the latest scientific findings, the European Food Safety Authority (EFSA)
proposed the reassessment of the risks of BPA in food and considered significantly lowering
the tolerable daily intake (TDI) for BPA from that given in its previous assessment in 2015,
and, in 2019, a new TDI of 0.04 ng/kg bw/day was established to replace the previously
proposed TDI of 4 µg/kg bw/day. This decrease in the TDI was based on evaluation studies
published between 2013 and 2018, mainly due to the results that showed the adverse effects
of BPA on the immune system [5].

BPA routes of exposure to the human organism include oral intake, inhalation, contact
with skin and eyes, and by fetal–maternal transmission, since BPA can cross the placental
barrier [6] (Figure 1).
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enters the body, it can alter the physiology of adipose tissue by modifying inflammatory pathways.

It is estimated that 90% of exposure to BPA is through food, and, usually, only 5%
corresponds to inhalation or through dental materials or dermal exposure [7]. However,
exposure to BPA through the skin produces a longer half-life of this compound in the body
when compared to the half-life of BPA taken in through oral exposure [8,9].

When BPA enters the body, it is metabolized in the liver, and a BPA–glucuronate conju-
gate is formed, a metabolite that has been shown to be stable and valid as a biomarker [10].
Due to its lipophilic nature, BPA has the ability to be deposited in human and animal
adipose tissue [11]. BPA is excreted in the urine in a relatively short time, and virtually
all the BPA that enters the body is eliminated within 48 h without a significant amount of
retention in body tissues [4].

Regarding BPA levels detected in human biological samples, levels ranging from
picomolar to nanomolar ranges have been reported [12]. Tables 1 and 2 illustrate the most
recent levels reported in human plasma and urine in recent years.
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Table 1. Urinary BPA levels from human samples.

References (Year) Type of Participants (n: Number
of Participants) Levels Found Detection

Method Country

Rebai et al. (2021) [13] Workers in a plastics industry
located in an industrial zone (n: 170). Average (µg/g creatinine): 3.70. GC/MS Algeria

Ayar et al. (2021) [14]
Patients of pediatric intensive care

unit: urine samples (n: 115) of
children (n: 40).

Mean (µg/g creatinine): 189.2
- First day of hospitalization: 29.5;

- The seventh day of
hospitalization: 41.1;

- After 30 days of hospitalization (or
when the patients were

discharged): 104.8.

HPLC Turkey

Aktağ et al. (2021) [15]

Prepubertal children:
- Prepubertal children with
exogenous obesity (n: 36);

- Prepubertal children with
exogenous obesity and metabolic

syndrome (n: 27);
- Control group age- and

sex-matched healthy children with
no significant underlying medical

conditions (n: 34).

Median and (mean ± SD)
(µg/g-creatinine):

- Prepubertal children with
exogenous obesity without metabolic

syndrome: 15.0 (25.0 ± 24.2);
- Prepubertal children with

exogenous obesity and metabolic
syndrome: 32.1 (46 ± 39.4);

- Control group: 5.0 (6.0 ± 4.6).

LC-MS/MS Turkey

Chang et al. (2020) [16]

Adults in the Cheyenne River Sioux
tribe: American Indians/Alaskan

natives (n: 276):
- Participants with diabetes (n: 138);

- Control group without diabetes
matched using age (n: 138).

Geometric mean (µg/L):
- Total participants: 1.83;

- Participants with diabetes: 1.90;
- Control: 1.77.

HPLC-MS/MS USA

Mohsen et al. (2018) [17]

Children randomly selected from
primary and preparatory schools

(6–16 years old) (n: 167):
- Boys (n: 95);
- Girls (n: 72).

Median (ng/mL):
- Boys: 0.60;
- Girls: 0.67.

HPLC-MS/MS Egypt

Omran et al. (2018) [18]

Infertile patients presented to the
andrology unit (n: 50):

- Oligoasthenoteratospermia cases
group (n: 16);

- Asthenospermia cases group (n: 22);
- Asthenoteratospermia cases group

(n: 12);
- Matched controls with normal

semen parameters (n: 50).

Median (µg/g creatinine):
- Total infertile cases group: 21.59;
- Oligoasthenoteratospermia cases

group: 18.16;
- Asthenoteratospermia cases

group: 19.28;
- Asthenoteratospermia cases

group: 31.23;
- Control group: 19.31.

HPLC Egypt

Manfo et al. (2019) [19]

Adults between 18 and 59 years of
age (n: 81):

- Townsmen in urban area: (n: 37);
- Farmers using agro-pesticides in

rural area: (n: 44).

Arithmetic mean (µg/g creatinine):
- All participants: 2.18 ± 1.97;

- Townsmen in urban area: 2.16;
- Farmers using agro-pesticides in

rural area: 2.20.

RIA Cameroon

Youssef et al. (2018) [20]
Children aged 3–8 years (n: 97):

- Asthmatic children (n: 45);
- Healthy controls (n: 52).

Median (ng/mL):
- Pediatric asthmatic patients: 1.56;

- Control group: 0.790.
HPLC-MS/MS Egypt

Abo El-Atta et al.
(2018) [21]

Children/adolescents 2–18 years
of age:

- Study group: obese children (BMI
≥ 95th percentile) (n: 40);

- Control group: normal-weight
children (BMI 5th–85th percentile)

(n: 40).

Median (min–max) (µg/g creatinine):
- Obese children: 121.89

(39.22–586.97);
- Control group: 14.92

(<LOD − 34.94).

HPLC Egypt

Jiménez-Díaz et al.
(2016) [22]

Healthy population of women aged
18 years or

older (n: 34).

Geometric mean (ng/mL): 0.44.
Mean (ng/mL): 1.12. UHPLC-MS/MS Tunisia

Keshavarz-Maleki et al.
(2021) [23]

- Breast cancer mastectomy patients
(n: 41);

- Control group: reduction
mammoplasty patients with similar

BMI to cases group (n: 11).

Mean ± SD (ng/mL):
- Breast cancer mastectomy patients:

2.12 ± 1.48;
- Control group: 0.91 ± 0.42.

ELISA Iran
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Table 1. Cont.

References (Year) Type of Participants (n: Number
of Participants) Levels Found Detection

Method Country

Wu et al. (2021) [24]

Multiethnic cohort (1993–2014):
- Postmenopausal women with
breast cancer aged 45–75 years:

- African American (n: 48);
- Latino (n: 77);

- Native Hawaiian (n: 155);
- Japanese American (n: 478);

- White: (n: 274);
- Individually matched (n: 1030).

Geometric means (ng/g creatinine):
- Whites (n = 547): 1.48;

- Japanese Americans (n = 956): 1.07;
- Native Hawaiians (n = 309): 1.26;
- African Americans (n = 97): 0.77;

- Latinos (n = 157) 0.92.

LC/HRAM-MS USA

Durmaz et al. (2018) [25]

- Newly diagnosed girls with
premature thelarche nonobese (aged

4–8 years) (n: 25).
- Control group: healthy girls of

comparable age with no history of
premature thelarche or any other

endocrine disorder and no secondary
sexual characteristics in their

physical exam (n: 25).

Median µg/g (creatinine):
- Newly diagnosed girls with

premature thelarche, non-obese: 3.21;
- Control group: 1.62.

HPLC Turkey

Radwan et al. (2018) [26]
Males attending infertility clinic for

diagnostic purposes with normal
semen concentration (n: 315).

Median: 1.87 µg/L, 1.63 µg/g
creatinine GC/MS Poland

Lee et al. (2019) [27]

Pregnant women who had babies
with normal gestation age, neonatal

weight, and information on
birth outcome:

- Neonatal urine (n: 152);
- Maternal urine (n: 224).

Median (ng/mL):
- Neonatal urine: 4.75;
- Maternal urine: 2.86.

HPLC-MS/MS
and GC-MS Korea

Adoamnei et al.
(2018) [28]

Healthy, young university students
(18–23 years old) (n: 215). Unadjusted median (ng/mL): 2.8. UHPLC-MS/MS Spain

Benson et al. (2021) [29]
Men 18–20 years of age from the

Fetal Programming of Semen Quality
cohort (n: 556).

Pseudo percentiles (ng/mL):
5th: 0.22,

50th: 1.30,
95th: 9.90.

LC-MS/MS Denmark

Mínguez-Alarcón et al.
(2019) [30]

Women undergoing in vitro
fertilization treatment (between 18

and 45 years old) (n: 420).
Geometric means (µg/L): 1.14. IDMS USA

Gonzalez et al. (2019) [31]
Workers of a hazardous waste

incinerator (n: 29): 11 women and
18 men.

Mean (µg/L): 0.86. GC/MS Spain

Hong et al. (2023) [32]

Obese patients and healthy
individuals (n: 289):

- Obesity cases: participants aged
above 16 and below 65 years old,

body mass index
(BMI) ≥ 27.5 kg/m2;

- Control group: participants aged
above 16 and below 65 years old

with body max index < 24.0 kg/m2

(n: 152).

Median (µg/g creatinine):
- Obesity cases: 4.33;
- Control group: 1.37.

LC-MS/MS China

HPLC: high-pressure liquid chromatography; GC/MS: gas chromatography coupled to mass spectrometry;
RIA: radioimmunoassay; LC-MS/MS: high-performance liquid chromatography coupled with tandem mass
spectrometry; UHPLC-MS/MS: ultra-high-performance liquid chromatography with tandem mass spectrometry;
HPLC-MS/MS: high-performance liquid chromatography (HPLC)–tandem mass spectrometry; ELISA: Enzyme-
linked immunosorbent assay; IDMS: isotope dilution high-performance liquid chromatography–tandem mass
spectrometry; LC/HRAM-MS: liquid chromatography (LC) with sensitive isotope dilution Orbitrap-based high-
resolution accurate-mass mass spectrometry.
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Table 2. Plasm BPA levels from human samples.

References (Year) Type of Participants (n: Number
of Participants) Levels Found Detection

Method Country

Wiraagni et al. (2019) [33]
Healthy volunteers (n: 150):

- Males (n: 43);
- Females (n: 107).

Observed BPA Levels (ng/mL):
Range: 0 to 76.80
Mean: 2.22 ± 9.91

- Males: 0.29;
- Females: 2.99;

- Less than 33 years of age: 0.847;
- 33 years of age and older: 5.852;

- Subjects with tap water as source of
drinking: 2.882;

- Subjects with mineral water as
source of drinking: 0.318.

LC-MS/MS Malaysia

Yamamoto et al.
(2016) [34]

Women at 23–35 weeks of gestation
and those who delivered between

2002 and 2005:
- Maternal blood (n: 59);

- Cord blood (n: 285),

Geometric mean (ng/mL):
- Maternal blood 0.051;

- Cord blood 0.046;
Mean (ng/mL):

- Maternal blood 0.063;
- Cord blood 0.057.

ID-LC/MS/MS Japan

Pednekar et al.
(2018) [35]

Women between 20 and 40 years of
age, attending infertility outpatient

department, diagnosed with
infertility (n: 45):

- Polycystic ovary syndrome (n: 31);
- Endometriosis (n: 11);

- Polycystic ovary syndrome and
endometriosis (n: 3);

- Married women between 20 and
40 years of age with proven fertility

and no evidence of any
gynecological disorders, who

achieved pregnancy naturally and
delivered recently (within one year)

(n: 34).

Mean (ng/mL):
- Women with infertility: 4.66 ± 3.52;

- Polycystic ovary syndrome:
5.80 ± 3.05;

- Endometriosis: 4.59 ± 1.22;
- Polycystic ovary syndrome and

endometriosis (3): 13.17;
- Fertile women group: 2.64 ± 3.99.

GC-MS India

Mas et al.
(2018) [36]

Online hemodiafiltration patients
using BPA-free (polynephron) or

BPA-containing (polysulfone)
dialyzers in a crossover design with
two arms after a run-in period of at

least 6 months with the
same membrane:

- Patients with BPA-free high-flux
polynephron (polynephron)

membranes (n: 36);
- Patients with high-flux polysulfone

(Helixone®) dialyzers that contain
BPA (n: 36);

- Patients on conventional
hemodialysis (n: 10);

- Healthy controls (n: 10).

Mean (ng/mL):
- Patients using BPA-free

(polynephron): 8.79 ± 7.97;
- Patients with high-flux polysulfone:

23.42 ± 20.38;
- Patients on conventional

hemodialysis: 98.96 ± 120.75;
- Healthy controls: < 2.

High-sensitivity
ELISA Spain

Kolatorova et al.
(2018) [37]

Healthy pregnant women of 33 ± 4.1
years (week 37 of pregnancy) (n: 27).

Median with lower and
upper quartiles (ng/mL): 0.059

(0.023, 0.084).
LC-MS/MS Czech

Republic

Jin et al. (2017) [38]

Participants of healthy general
population, without any evidence of
occupational exposure to bisphenols:

- Women (n: 9);
- Men (n: 10);
- Total (n: 19).

Mean (range) (ng/mL):
- Women: 0.75 ± 0.12, (0.60–0.88);

- Men: 0.60 ± 0.17, range: (0.41–0.85);
- Total: 0.67 ± 0.16 (0.41–0.88).

LC-MS/MS China

Komarowska et al.
(2021) [12]

- Children with congenital unilateral
cryptorchidism aged 1–4 years

(n: 98);
- Healthy boys without any disorders

of the testes at a comparable age of
1–4 years (n: 19).

Median (ng/mL):
- Children with congenital unilateral

cryptorchidism: 9.95;
- Control group: 5.54.

GC-MS Poland
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Table 2. Cont.

References (Year) Type of Participants (n: Number
of Participants) Levels Found Detection

Method Country

Zbucka-Krętowska et al.
(2019) [39]

Women undergoing routine
amniocentesis between the 15th and

18th weeks of gestation carrying
fetuses with a normal karyotype

(n: 52).

Mean (ng/mL): 8.69, range: 4.3–55.3. GC-MS Poland

Cambien et al. (2019) [40]
Patients suffering from end-stage

renal disease and hospitalized
(n: 10).

Range (ng/mL): 0.266–86.831. UHPLC–MS/MS France

Shen et al. (2016) [41]

- Women with uterine leiomyoma
(n: 300);

- Control group with no use of
hormone drugs during the 3 months

prior to the study and free of
reproductive-system-related tumors

and other estrogen-dependent
diseases (breast cancer, endocrine

system diseases, etc.) (n: 300).

Media (mean ± SD) (ng/mL):
- Women with uterine leiomyoma:

11.19 (16.7 ± 13.9);
- Control group: 4.31 (8.62 ± 11.8).

HPLC-MS/MS China

Ho et al. (2017) [42]

Voluntary human donors (n: 140)
age range from 18 to 96 years:

- Men (n: 66);
- Women (n: 64).

Geometric mean (range) (ng/mL):
- Total: 0.53 (range: N.D.–10.43);

- Women: 0.59 (N.D.–8.99);
- Men: 0.47 (N.D.–10.43).

LC-MS/MS China

Lin et al. (2017) [43]

- Mother–child pairs with 2-year-old
children (n: 208): girls (n: 91), boys

(n: 117);
- Mother–child pairs with 7-year-old
children (n: 148): girls (n: 70), boys

(n: 78).

Median (ng/mL):
- 2-year-old children: 3.2; girls: 2.9;

boys: 3.3;
- 7-year-old children: 3.2; girls: 1.2;

boys: 4.0.

UPLC-MS-MS Taiwan

GC/MS: gas chromatography coupled to mass spectrometry; ID-LC/MS/MS: isotopic dilution liquid
chromatography–tandem mass spectrometry; ELISA: enzyme-linked immunosorbent assay; UPLC-MS-MS:
ultra-performance liquid chromatography–tandem mass spectrometer; LC-MS/MS: high-performance liquid
chromatography coupled with tandem mass spectrometry; UHPLC-MS/MS: ultra-high-performance liquid
chromatography coupled to a triple quad mass spectrometer; HPLC-MS/MS: high-performance liquid chromatog-
raphy (HPLC)–tandem mass spectrometry.

2. BPA as an Endocrine Disruptor

BPA is a xenobiotic with endocrine disruptor characteristics which interacts with
various nuclear receptors, producing a specific cellular response. It has been shown that BPA
has biological activity, binding to various receptors such as estrogen α and β receptors (ERs),
G-protein-associated receptor GRP30, androgen receptors (ARs), thyroid hormone receptors
(TRα and β), estrogen-related receptor gamma (ERRγ), and glucocorticoid receptor (GR)
(Figure 2).

2.1. Estrogen α and β Receptors

In 1936, Dodds and Lawson demonstrated BPA’s estrogenic properties in vivo [44]. It
was shown that this compound acts as a 17-beta estradiol (E2) steroidal hormone; however,
its affinity is 1000 to 10,000 times lower in comparison with the E2 physiological recep-
tor [45]. Classical estrogen receptors are most commonly identified as nuclear receptors,
although these same proteins appear to have membrane-bound variants. BPA exerts effects
on either nuclear or membrane-localized ERs of the α type. Additionally, BPA has the
capacity to increase progesterone receptor expression, yet with a capacity 2000 times lower
than estradiol. The physiological consequences of BPA-induced modulations are diverse
and depend on the tissue examined and the study model [45].
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2.2. GPR30 Receptor

The GPR30 is a more recently described class of estrogen receptor belonging to the
G-protein-coupled receptors family, which mediates E2-elicited cellular signals. These re-
ceptors regulate cellular responses through second messengers and elicit a faster response
in comparison with intracellular steroid hormone receptors. For GPR30, the second mes-
senger is cyclic AMP and elicits cellular signals involved in extracellular-signal-regulated
kinase 1/2 (ERK1/2) [46].

2.3. Androgen Receptor (AR)

ARs bind steroid hormones through nuclear receptors. This type of receptor is ex-
pressed in all male and female organs, and, as with ERs, it shares similar mechanisms
of action, as well as its location within the cell. Once an AR interacts with its ligand, it
travels to the nucleus and forms homodimers. Within the nucleus, it interacts with androgen
response element promoter regions, modifying the expression of androgen-responsive genes.

In silico studies have reported the ability of BPA to bind to multiple sites on the AR
surface through hydrophobic interactions. In contrast, in vivo studies have shown its
antagonistic activity to AR [47], where BPA acts as a competitive inhibitor [48]. Moreover,
it has the ability to inhibit testosterone-promoted translocation of the receptor to the
nucleus [49]. The anti-androgenic effects of BPA on male reproductive function may be
mediated by different mechanisms involving stabilization, ligand-induced AR heat shock
protein 90 dissociation, and nuclear translocation of the AR receptor [50].

3. Inflammatory Processes in Adipose Tissue

Adipose tissue adapts to the different nutrient intake changes in the body to maintain
metabolic and energy homeostasis. Nutrient deficiency or excess alters the size and physi-
ology of fat cells and causes adaptive cellular events known as “tissue remodeling” [51].
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Remodeling of adipose tissue taking place in obesity sometimes involves chronic
proinflammatory reactions with systemic repercussions known as lipo-inflammation [52].
This remodeling is closely associated with metabolic disorders, such as insulin resistance,
type 2 diabetes mellitus, cardiovascular diseases, and resistance to catecholamines. Fur-
thermore, inflammation level is proportionally related to metabolic disease severity [53].
Inflammation can be explained as an adaptive response to excess energy or adverse cellular
conditions or tissue stress, stimulating angiogenesis to prevent hypoxia. Additionally, in-
flammation increases insulin resistance, a cellular mechanism that limits the rate of energy
accumulation at the muscle or adipose tissue level.

The inflammation process represents an ordered sequence of cellular events that
maintains tissue homeostasis; hence, it is a protective response whose function involves
the destruction or dilution of the damaging agent or injured tissues or the removal of dead
cells [54].

Inflammation can occur acutely with edema formation and leukocyte migration, or
inflammation may be chronic with the presence of M1-type proinflammatory macrophages
and lymphocytes, along with proliferation of blood vessels and connective tissue that
occurs over a prolonged period [55].

The typical complications of obesity, and, by extension, of adipose tissue, are closely
related to chronic inflammation, characterized by proinflammatory molecule secretion
by macrophages and adipocytes, such as secretion of interleukin 6 (IL6), tumor necrosis
factor-α (TNF-α), monocyte chemoattractant protein-1 (MCP-1), and interleukin 1β (IL1β),
and activation of nuclear factor κβ (NF-κβ), the master regulator of inflammation [53].

4. Influence of BPA on Inflammatory Signals in Adipose Tissue

Scientific evidence has shown a potential role for BPA in the development of metabolic
disorders associated with inflammation; however, the mechanisms involved are still unclear.

BPA promotes the expression and release of certain proinflammatory cytokines, re-
sulting in a constant low-grade inflammatory state at local and systemic levels [56]. Addi-
tionally, BPA has been reported to interfere with adipogenic processes [57]; therefore, it is
important to establish the existence of a possible association between inflammatory events
during adipocyte differentiation and BPA’s influence. Several investigations have shed
light on BPA’s influence on inflammatory processes during adipogenesis. For example,
experimental results in 3T3-L1 cell lines exposed to 1 nM BPA showed an elevation of leptin,
IL6, and IFNγ during the final stage of the differentiation process towards adipocytes [58].
Similar effects were obtained by Valentino et al. [59] in cultures of adipocytes derived
from human subcutaneous adipose tissue and in cultures of adipocytes from the 3T3-L1
cell line exposed to 1 nM BPA. In these experiments, higher values of IL6 and IFNγ were
observed when compared to those of the control group (0.98 ± 0.03 vs. 5.27 ± 0.7 pg/mL
and 0.25 ± 0.09 vs. 0.86 ± 0.05 pg/mL, respectively).

More recently, Longo et al. [60] demonstrated that exposure for a period of 8 days
during the differentiation process of 3T3-L1 cells increased the mRNA levels of IL6, INFγ,
TNFα, MCP1, and IL1β. Interestingly, the proinflammatory effect observed after BPA
exposure was reversible, as removal of BPA from the culture media resulted in decreased
expression levels of proinflammatory cytokines similar to the levels found in the con-
trol group.

Furthermore, experiments were carried out in a murine model with 5-week-old male
and female C57BL/6J mice exposed to four doses of BPA (5, 50, 500, and 5000 µg/kg/day)
by oral intake for 30 days and fed chow diets (DC) or high-fat diets (DAG) [61]. Under
these conditions, it was shown that BPA, starting at daily 5 µg/kg/day concentrations, in a
non-monotonic dose-response fashion, together with a DC diet, caused an increase in body
weight and fat mass. This increase was not observed in DAG-fed mice. Additionally, in
white adipose tissue, increased expression of F4/80, Cd11c, and Mcp1 was observed in male
mice treated with BPA and fed with DC, suggesting macrophage migration to adipose tissue.
Increased IL6, TNFα, IL1β, IFNγ, and iNos2 mRNA expression was also observed in female
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and male mice exposed to the highest concentrations of BPA (500 and 5000 µg/kg/day)
and fed DC. DAG-fed mice did not exhibit these effects after BPA exposure. These results,
therefore, suggest that BPA’s effect may depend on diet composition and caloric intake,
altering the susceptibility to obesity or promoting a proinflammatory profile in adipose
tissue depending on the proportion of fatty dietary components.

Additionally, this same group demonstrated that, in normal weight women (body
mass index < 23.0 kg/m2), BPA concentration was associated with an increase in circulating
inflammatory factors, including leptin and TNFα; however, in lean male subjects and in
both sexes of overweight/obese individuals (body mass index > 25.0 kg/m2), no such
correlation was identified [61].

In a population in India, BPA and its relationship with nutritional status in patients
with type 2 diabetes mellitus (n: 150) versus a healthy individual control group with
normal glucose tolerance (n: 150) were studied. In the Indian study, it was found that
plasma BPA levels were directly related to body mass index, waist circumference, and
leptin levels. Nevertheless, BPA showed an inverse relationship with plasma adiponectin
levels [62]. In the control group, these correlations were not observed. When analyzing
the correlation between proinflammatory molecule levels and BPA’s plasma concentration,
no significant association was observed between IL6, TNFα, and IL1β plasma levels and
BPA. These results are partly explained by the ability of BPA to accumulate in adipose
tissue due to its lipophilic nature. Therefore, plasma levels do not reflect the physiological
action of this endocrine disruptor at the tissue level. These findings are in agreement with
what was reported by the National Health and Nutrition Examination Survey (NHANES)
results [63], where lower-than-expected urinary values were observed, suggesting that BPA
can be stored in certain body compartments, such as adipose tissue, from which it is slowly
released [64]. Reports of the presence of BPA in adipose tissue have already been described
in ranges between minimum values of 4.65 ng/g of tissue and maximum values of 50 ng/g
of tissue (Table 3).

Unlike the previously mentioned studies, where BPA was shown to have proinflamma-
tory effects on adipose tissue cells, other studies in exposed human subcutaneous adipose
tissue reported that BPA can reduce proinflammatory cytokine gene expression, such as
expression of IL6, IL1β, and TNFα at BPA’s supra-physiological concentrations of 1–104 nM
for 24 h or 72 h [65]. These results are interesting, since, contrary to what was expected,
there was a reduction in proinflammatory cytokines in adipose tissue, in contrast to the
hypothesis that BPA is an inflammatory agent. The authors raised the possibility that,
although, in adipocytes, BPA can stimulate the expression of inflammatory markers, it
has also been shown that this endocrine disruptor can, in turn, decrease the expression of
proinflammatory cytokines in macrophages [66,67]. Therefore, it is feasible that, under the
experimental conditions of Ahmed’s group study [65], samples collected from complete
adipose tissue displayed a different behavior in comparison with BPA’s action in isolated
adipocytes and under the concentrations of BPA used. The complexity of the interaction
between BPA and the diverse cellular component of adipose tissue reveals the difficulty of
extrapolating results from cultures of isolated adipocytes, or from adipose tissue, and even
from experiments in animal models.
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Table 3. BPA levels found in samples of human adipose tissue.

References (Year) Type of Participants (n: Number
of Participants)

Levels Found
(ng/g Tissue) Detection Method Country

Venisse et al. (2019) [68] Patients during breast or prostate
surgery (n: 5). Range: 1.19–8.73. LC-MS/MS France

Artacho-Cordón et al.
(2017) [64]

Patients undergoing trauma surgery
(n: 14). Mean: 0.60. HPLC Spain

Reeves et al. (2018) [69]

- Breast cancer mastectomy patients:
(n: 36);

- Control group: reduction
mammoplasty patients (n: 14).

Mean (SD):
- Breast cancer mastectomy patients:

- Among all samples 0.19 (0.35);
- Among samples with detectable

BPA 0.71 (0.31);
- Control:

- Among all samples 0.26 (0.37);
- Among samples with detectable

BPA 0.66 (0.27).

HPLC-ESI-MS/MS USA

Keshavarz-Maleki et al.
(2021) [21]

- Breast cancer mastectomy patients
(n: 41);

- Control group: mammoplasty
patients (n: 11).

- Cancerous patients 4.20 ± 2.40;
- Control group: 1.80 ± 1.05. ELISA assay Iran

Salamanca-Fernández et al.
(2020) [70]

Sub-cohort of the Spanish European
Prospective Investigation into
Cancer and Nutrition (EPIC)

(n: 4812):
- Breast cancer cases (n: 547);

- Prostate cancer cases (n: 575);
- Sub-cohort participants (n: 3690).

Geometric mean:
- Breast cancer sub-cohort: 1.10;

- Breast cancer cases: 1.12;
- Prostate cancer sub-cohort: 1.29;

- Prostate cancer cases: 1.33.

UHPLC-MS/MS Spain

HPLC: high-pressure liquid chromatography; HPLC-ESI-MS/MS: high-performance liquid chromatogra-
phy/electrospray ionization tandem mass spectrometry; LC-MS/MS: high-performance liquid chromatography
coupled with tandem mass spectrometry; UHPLC-MS/MS: ultra-high-performance liquid chromatography with
tandem mass spectrometry; ELISA: enzyme-linked immunosorbent assay.

5. BPA’s Inflammatory Action and Cellular Mechanisms Involved

Cimmino and collaborators [71] studied in adipose tissue possible BPA mechanisms
associated with alteration of inflammatory mediator expression. Specifically, they evaluated
GPR30’s role in the BPA-mediated inflammatory response. GPR30 is involved in estrogen-
dependent rapid signaling as well as transcriptional activation, which are not dependent
on classical nuclear estrogen receptors. Interestingly, BPA has the ability to bind to GPR30
and, consequently, activate cell signaling. The experiments were carried out on mature
adipocytes or stromal vascular fraction cells cultured with 0.1 nM BPA (low dose) obtained
from the breast tissue of overweight women. Under these experimental conditions, an
elevation in IL8, MCP1α, IL6, TNFα, and IL1β was observed. On the contrary, expression
of the anti-inflammatory interleukin IL10 was decreased. The GPR30 mechanism of action
was verified with specific receptor agonists and antagonists since similar results were
obtained when 100 nM of G1 agonist was used. In addition, this effect was reversed with
1 µM G15, a selective GPR30 antagonist. Likewise, under BPA’s induction, an increase in
the expression of GPR30 was observed. The same study [71] also demonstrated that IL8 is a
possible mediator of BPA’s effect on adipose tissue, favoring cell proliferation from stromal
vascular fraction and adipocyte expansion, because IL8 inhibition reversed the effect of
BPA on adipose tissue cell growth.

IL8 is a proinflammatory cytokine related to chronic inflammatory processes in adipose
tissue from obese patients [72–74]. Therefore, these studies suggest that IL8 plays a role as
a secondary effector of BPA.

Reactive oxygen species (ROS) are key signaling molecules in the progression of in-
flammatory disorders [75], and BPA is postulated as an enhancer of ROS generation [76].
In this context, the Artacho-Cordón group [64] demonstrated, in adipose tissue samples
obtained from 144 patients from southern Spain, a significant inverse association between
BPA values and glutathione reductase activity in addition to increased oxidized glutathione.
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These results suggest for BPA at adipose tissue local level a potential role in redox bal-
ance alteration.

Recently, in a human case-control study, Hong et al. [32] demonstrated a positive
correlation between urinary BPA levels and obesity and fasting insulin and glycemia, as well
as body mass index (BMI). Interestingly, BPA was also positively associated with elevated
plasma IL-17A, a cytokine that has been shown to be involved in chronic inflammation [77].
Similarly, an increased accumulation of IL-17A was observed in the adipose tissue of
patients undergoing bariatric surgery, where IL-17A levels were higher in patients with
greater BMI upon BPA exposure. These results were corroborated in a high-fat-diet (HFD)-
induced obese mouse model where mice were exposed to BPA, resulting in adipose tissue
with an increase in proinflammatory M1 macrophages TNF-α and IL-1β. Moreover, a
significantly higher proportion of Th17 cells, as well as an increase in adipose tissue IL-17A,
was observed. In agreement with these results, HFD IL-17A−/− mice were capable of
reversing the inflammation in adipose tissue even when exposed to BPA [32]. Collectively,
these results evidence IL-17A’s potential role by establishing an association between BPA
exposure, the risk of becoming obese, and chronic inflammation.

6. Experiments in Fetal Programming: Effect of BPA on Adipose Tissue and
Inflammation during Gestation

More than 90% of pregnant women have detectable urinary BPA concentrations,
indicating widespread exposure, including during the prenatal period [78]. There is a
consensus that during the perinatal period, when the development of the organism takes
place, a critical window for BPA exposure ensues where the immune system and metabolic
functions, including body weight regulation, can be affected [79].

Studies with BPA in the offspring of animal models during gestation have shown its
effects on adipose tissue. A prenatal response study in sheep to BPA doses of 0.05, 0.5, or
5 mg/kg/day demonstrated that adult offspring (21-month-old females) presented elevated
CD68 expression in subcutaneous adipose tissue but not in visceral adipose tissue [80].
Where CD68 has been described as a marker of macrophage infiltration, CD68 elevation
was noteworthy, and, thus, possible macrophage infiltration was limited to subcutaneous
adipose tissue, suggesting BPA’s selectivity to fat deposits, a characteristic that has been
reported for other organic contaminants.

However, other studies showed different results regarding the behavior of subcuta-
neous adipose tissue in the presence of BPA. Another study, evaluating sheep exposed
to BPA with daily doses of 0.5 mg/kg during their fetal growth, demonstrated develop-
ment of visceral adipose tissue hypertrophy at 21 months after birth [81]. This treatment
allowed free BPA concentrations of 2.62 ± 0.52 ng/mL collected from the umbilical artery
on day 90 of fetal life with values within the range observed in human umbilical cord
blood concentrations at mid-gestation [27]. In addition, differential gene expression was
evaluated by tissue type (subcutaneous vs. visceral) and by treatment (control vs. prenatal
BPA group). The results showed, when tissue type was compared, a positive regulation of
inflammation, oxidative stress, and adipose differentiation genes in subcutaneous adipose
tissue compared to in visceral adipose tissue [81]. However, when comparing subcutaneous
tissue gene expression for each treatment (control vs. BPA treatment), BPA downregulated
several genes involved in immune cell pathways, including those involved in leukocyte
activation, inflammatory response, and cytokine production. The physiological basis for
immune function gene expression regulation in subcutaneous adipose tissue in animals
with BPA prenatal treatment is unknown. These findings may reflect compensatory pro-
cesses in subcutaneous adipose tissue which overcome metabolic complications, such as
the systemic insulin resistance observed in prenatal BPA-treated female sheep.

Furthermore, Puttabyatappa et al. [82] described in visceral adipose tissue from the
mesenteric fat in female sheep prenatally exposed to 0.05, 0.5 and 5 mg/kg/day an increase
in IL1β mRNA. Additionally, an increase in MCP1 was evidenced but only at 5 mg/kg/day.
This increase in proinflammatory cytokines was accompanied by decreased adiponectin



Int. J. Mol. Sci. 2023, 24, 8231 12 of 16

plasma, which is an adipokine with an anti-inflammatory role, and, therefore, its decrease
supports the potential proinflammatory state observed in the offspring. However, in this
specific work, the comparison of the inflammatory profile of subcutaneous adipose tissue
vs. visceral adipose tissue was not evaluated.

In Refs. [27,76,79,80] additional experiments in mouse models showed the effect of
perinatal exposure to BPA (50 µg/kg body weight/day) and its influence on intestinal
physiology and the immune system in adult mice (45 postnatal days: PND45) and aged
mice (170 postnatal days: PND170). The initial findings were related to an alteration in the
Th1/Th17 ratio in the lamina propria and an elevation of Th1/Th17 in the spleen. These
modifications were associated with insulin resistance, reduced fecal IgA secretion, and
decreased bifidobacteria in feces. These features produced by perinatal exposure to BPA
were prior to an infiltration of proinflammatory M1 macrophages into the gonadal white
adipose tissue, as observed in aged mice. These results reveal that perinatal exposure to
this contaminant may have effects later in life [83].

7. Conclusions

BPA is a common disruptor and, due to its ubiquitous nature and potential for contin-
ued exposure, is detectable in a wide range of body fluids, such as plasma, urine, saliva,
breast milk, and amniotic fluid. The dramatic upsurge in the prevalence of obesity has
occurred in parallel with an excessive increase in the use of plastic and other products
containing endocrine disruptors. Because of their complex interaction with hormone re-
ceptors, endocrine disruptor mechanisms of action in the body are difficult to understand.
However, in recent years, there has been a growth in experimental research associating BPA
exposure to the pathophysiology of obesity, dysregulation of insulin and glucose signaling,
and type 2 diabetes mellitus. This relationship is supported by results demonstrating an
association between BPA exposure at different doses and increased body weight, alterations
in adipokine production, and glucose homeostatic imbalance. It is also clear that this type
of disease is related to proinflammatory processes, which aggravate its pathogenesis and
prognosis. Interestingly, scientific evidence has begun to show that there is a relationship
between BPA exposure and proinflammatory processes in adipose tissue (Figure 3). Nev-
ertheless, the precise role BPA plays as an immunomodulator remains to be elucidated.
Moreover, several aspects, such as sex, dose, exposure time, and even the type of response
the adipose tissue anatomical compartment might elicit, remain to be clarified. Therefore,
further investigations are necessary to gain a more comprehensive view on the association
between BPA and inflammation, thus, discerning the possible underlying mechanisms.
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