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Abstract: Visual perception is profoundly modulated by spatial attention, which can selectively
prioritize goal-related information. Previous studies found spatial attention facilitated the efficacy
of neuronal communication between visual cortices with hierarchical organizations. In the primary
visual cortex (V1), there is also a hierarchical connection between simple (S) and complex (C) cells.
We wonder whether and how spatial attention modulates neuronal communication within V1,
especially for neuronal pairs with heterogeneous visual input. We simultaneously recorded the
pairs’ activity from macaque monkeys when they performed a spatial-attention-involved task, then
applied likelihood-based Granger causality analysis to explore attentional modulation of neuronal
interactions. First, a significant attention-related decrease in Granger causality was found in S-C pairs,
which primarily displayed in the S-to-C feedforward connection. Second, the interaction strength of
the feedforward connection was significantly higher than that of the feedback under attend toward
(AT) conditions. Although information flow did not alter as the attentional focus shifted, the strength
of communications between target- and distractor-stimuli-covered neurons differed only when
attending to complex cells’ receptive fields (RFs). Furthermore, pairs’ communications depended on
the attentional modulation of neurons’ firing rates. Our findings demonstrate spatial attention does
not induce specific information flow but rather amplifies directed communication within V1.

Keywords: spatial attention; neuronal interaction; heterogeneous visual input; Granger causality;
primary visual cortex

1. Introduction

A primate’s brain has a limited capacity to process all visual information, whereas
attention can prioritize goal-related information selectively. Monkeys, for example, can
effectively find bananas in the wild with the help of selective visual attention. In neurophys-
iological studies, the consequences of shifting the attentional focus on the receptive fields
(RFs) of individual neurons are well understood. That is, most neurons in the visual cortex
show a modest change in their responses (i.e., firing rates magnitude, firing rate variability)
when spatial attention is directed toward their RFs (for reviews, see [1,2]). However, the
brain relies on multiple neurons working together to recognize objects and accomplish
goals. Whether and how spatial attention modulates the communications among neurons
remains unknown.

Many studies have been carried out to answer the question above. They found
spatial attention facilitated the efficacy of neuronal communication between visual areas
with the hierarchical organization for information processing, such as lateral geniculate
nucleus (LGN)—V1 [3], V1—V4 [4,5], V4—frontal eye field (FEF) [6], V1—middle temporal
(MT) [7], and superior colliculus (SC)—MT [8]. Neurons in V1 can be classified as simple
and complex cells, with a hierarchical functional connection between them [9–11]. That is,
complex cells integrate convergent inputs from simple cells [12,13]. We wonder whether
spatial attention also modulates neuronal communication within V1 as in those across
visual areas. Hembrook-Short et al. found feedforward local circuits from simple to
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complex cells within V1 displayed the largest improvement with spatial attention [14].
However, as with the cross-cortical studies, they used a large grating stimulus covering
both the RFs of paired neurons. Spatial attention plays the same role in both neurons under
such an experimental design. Therefore, we simultaneously recorded paired single units
in V1 and used likelihood-based Granger causality (GC) analysis to further explore how
spatial attention influences neuronal communication when the attentional focus is shifted
from one neuron’s RF to the other’s.

Granger causality (proposed by [15]) is an efficient algorithm for studying causative
connections in sensorimotor, visual, and prefrontal cortical networks [4,6,16]. Given neuronal
spike-train activity occurs as the point processes rather than samples of continuous processes,
we applied the Granger causality analysis based on the likelihood approach [17]. This analysis
distinguished excitatory effects on the neural interactions by a positive GC value and inhibitory
communications by a negative GC value. Researchers have applied it to assess directional
interactions among neuronal signals for both monkeys (i.e., [18]) and mice (i.e., [19]).

Our goal was to determine whether and how spatial attention modulated communica-
tions between neuronal pairs in V1 with heterogeneous visual input. We proposed that spatial
attention would enhance communication within the S-C hierarchy, following the findings
reported in cross-visual-area studies. Moreover, pairs’ communication would be inhibitory
due to heterogeneous visual input. Therefore, we recorded the responses to heterogeneous
gratings of neuronal pairs by two independent electrodes from V1 of awake monkeys while
they performed a spatial-attention-involved task (Figure 1). The attentional focus could be
directed to each neuron’s RF separately. We first explored whether there is an attentional
enhancement of communication in V1 or solely within the S-C hierarchy. We then examined
how spatial attention modulated the communications within this hierarchy, as well as the key
factors that influenced the attentional modulation of hierarchical communications.
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tional conditions based on the relative position of the a entional focus and recorded neu-
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Figure 1. Study schematic. We simultaneously recorded neuronal pairs from V1 while monkeys per-
formed a spatial attention task. The pairs we recorded had non-overlapping RFs and heterogeneous
visual inputs. The neurons in yellow are complex cells, whereas those in green represent simple cells.
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2. Results

To investigate how spatial attention affects interactions between two V1 neurons, we
recorded single-unit activities by using a 32-electrodes micro-drive system. We simultane-
ously recorded the activity of two V1 neurons responding to the heterogeneous gratings
while monkeys were performing a covert, top-down, spatial attention task, then were re-
warded after successfully detecting the color change of the cued grating (Figure 2, left). The
attentional focus was manipulated by the peripheral cue. We determined the attentional
conditions based on the relative position of the attentional focus and recorded neurons’
RFs (Figure 2, upper right). Then the interactions between paired neurons were estimated
by Granger causality.
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Figure 2. Illustration of behavioral task (left) and attentional conditions (upper right). Following
fixation on the central spot, a red attention-directing cue appeared peripherally. Then four gratings
were presented equidistant to the central spot: two stimuli covered pairs’ RFs, and the other two
were located outside the RF. The color of the stimulus changed at unpredictable times. Monkeys were
rewarded for making a successful saccade to that grating within 500 ms. The conditions in which
the red ring encircled one of the neurons’ RF were defined as attend toward (AT), while the other
conditions were defined as attend away (AA). The AT conditions were further divided into AT_In
and AT_Out conditions according to the relative position of neurons’ RFs and cues.

We calculated detection accuracy between trials with valid and invalid cues to examine if
the cue successfully directed the animals’ attentional focus. We found that when target stimuli
were presented in the cued location, the accuracy increased significantly (t = 5.08, p = 3× 10−3,
paired t-test), whereas the position of the cue had no significant impact on either detection
accuracy (F = 0.53, p = 0.47, rmANOVA) or reaction time (F = 0.02, p = 0.90, rmANOVA).

2.1. Neuronal Classification and Attentional Modulation on Firing Rates

Recorded neurons were classed as simple (S) and complex (C) cells by calculating the
response linearity (F1/F0). The distributions for neurons’ response linearity are shown in
Figure 3A. After classification, we paired the recorded neurons as S-S, C-C, and S-C pairs.
The magnitude of attentional effects on individual neurons’ firing rate was estimated by
the attentional ratio (AR = (AT_In − AT_Out)/(AT_In + AT_Out)). Figure 3B shows the
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AR distributions of simple and complex cells. A positive AR indicates attention-related
enhancement of firing rates (Figure 3C, upper); conversely, a negative AR shows attention-
related suppression (Figure 3C, down). We also multiplied the AR of each neuron to
measure the attentional effects on neuronal pairs and defined it as multiplicative attentional
ratios (MAR). Figure 3D shows the MAR distributions of S-S, C-C, and S-C pairs. See
Materials and Methods for the detailed calculation of AR and MAR.
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Figure 3. The characteristics of recorded neurons and examples of activities in V1. (A) The response
linearity distribution of recorded neurons. (B) The distribution of simple and complex cells with
varied attentional ratios. Attentional ratio = (AT_In − AT_Out)/(AT_In + AT_Out). (C) Neurons
whose firing rates were influenced by attention. One of the neurons (upper) showed attention-related
response enhancement (AR > 0), whereas the other one (down) showed suppression (AR < 0). (D) The
number of pairs with different multiplicative attentional ratios among C-C, S-S, and S-C pairs.

2.2. Attentional Modulation of Neuronal Interactions

We found that spatial attention significantly influenced the interactions between
simple and complex cells (F = 4.72, p = 0.032, rmANOVA). Although the strength of com-
munications between S-to-C and C-to-S was not significantly different (F = 2.87, p = 0.093,
rmANOVA), they were significantly modulated by spatial attention (F = 6.19, p = 0.015,
rmANOVA). As seen in Figure 4A, attending toward the RFs of pairs significantly decreased
the GC value to be negative in the feedforward S-to-C direction (t = −2.31, pbonf = 0.020,
Bonferroni post hoc test), but it had no significant effect on the C-to-S direction (t = −1.96,
pbonf = 0.052, Bonferroni post hoc test). Furthermore, only under the AT conditions was
the communication strength of the S-to-C direction significantly stronger than the C-to-S
direction (t = −2.31, pbonf = 0.023, Bonferroni post hoc test). For S-S (Figure 4B) and C-C
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pairs (Figure 4C), spatial attention did not affect the communication strength and directions
(all p > 0.05, rmANOVA).
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Figure 4. Attentional modulation of pairwise GCs among different groups of pairs. (A) GCs between
simple and complex cells in AT (red) and AA conditions (blue). (B,C) Same as (A) but analyzed
on S-S pairs and C-C pairs separately. Neurons from neuronal pool 1 were marked as S1 or C1,
while those from neuronal pool 2 were labeled as S2 or C2 (neuronal pools 1 and 2 are shown in
Figure 1). Repeated-measures ANOVAs and Bonferroni-corrected post hoc analysis, * p < 0.05. Error
bars represent ± SEM.

2.3. The Attentional Focus Influenced S-C Pairs’ Interactions

Under the AT conditions, the attentional focus was directed to one of the neuronal pairs’
RFs by the cue (Figure 5A). We classified cued stimuli as targets and others as distractors. To
investigate how the attentional focus affected neuronal communications in the AT conditions,
neurons were divided into target-stimuli-covered neurons (T neurons) and distractor-stimuli-
covered neurons (D neurons). We calculated GC from T neuron to D neuron (T→ D), and
vice versa (D→ T). Figure 5B demonstrates that there was no significant difference between
these two communicating directions (F = 1.63, p = 0.20, rmANOVA) and that the types of
neuronal pairs had no significant effect on it (F = 1.54, p = 0.22, rmANOVA).

We further investigated whether and how the attentional focus might affect com-
munication patterns between simple and complex cells in the AT conditions. When the
attentional focus shifted from simple cells’ RFs to those of complex cells, ∆GC significantly
changed from positive to negative (F = 5.54, p = 0.021, rmANOVA; Figure 5C). Moreover,
the GC of T→ D was significantly more negative than D→ T when cued stimuli covered
complex cells’ RF (t = −2.11, pbonf = 0.038, Bonferroni post hoc test; Figure 5C) instead of
simple cells’ RFs (t = 1.44, pbonf = 0.16, Bonferroni post hoc test; Figure 5C).

2.4. Pairs’ Interactions Depend on Attentional Modulation of Firing Rates

As spatial attention exhibited either enhanced or suppressed effects on neuronal firing
rates (i.e., [20]), we further investigated whether the sign of attentional modulation of each
neuron’s activities influenced their interactions. When MAR was negative, the communication
strength of S-to-C was significantly stronger than that of C-to-S (t = −2.15, p = 0.037, paired t-
test; Figure 6A). The differences vanished when MAR was positive (t = −1.05, p = 0.30, paired
t-test; Figure 6A). Furthermore, only when MAR was negative were the communicating
directions between T and D neurons reversed as the attentional focus placement shifted
(F = 4.54, p = 0.038, rmANOVA; Figure 6B). Only when the attentional focus was directed
toward complex cells’ RFs did GC of T→ D become significantly more negative than the
opposite directions (t = −2.07, pbonf = 0.049, Bonferroni post hoc test; Figure 6B).
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Figure 5. Attentional focus conditionally influenced neuronal interactions. (A) Illustrations of
experimental conditions. The dashed red ring enclosed the target stimuli and attentional focus
was directed to it by cue. The communicating directions from target-stimuli-covered neurons to
distractor-stimuli-covered neurons (T→ D) were highlighted in pink, and the opposite directions
(D→ T) were highlighted in purple. (B) The GC of these two directions among S-S, C-C, and S-C
pairs. (C) ∆GC [(T→ D) − (D→ T)] among S-C pairs when the attentional focus covered simple
or complex cells’ RFs. Repeated-measures ANOVAs and Bonferroni-corrected post hoc analysis,
* p < 0.05. Error bars represent ± SEM.

2.5. Attentional Impacts on Interactions Depending on the Layers Neurons Originated from

In our study, most of the recorded neurons were from the supra-granular layer. We
observed the similar attention-modulating effects described above when pairs were placed
within the supra-granular layer (Figure 7A). That is, spatial attention significantly affected
the strength of S-C pairs’ communications (F = 5.02, p = 0.028, rmANOVA). In addition, it sig-
nificantly modulated the communicating directions (F = 4.75, p = 0.033, rmANOVA). More-
over, attention significantly decreased the GC values of both S-to-C (t = −2.31, pbonf = 0.024,
Bonferroni post hoc test) and C-to-S (t = −2.12, pbonf = 0.037, Bonferroni post hoc test)
directions to be negative. S-to-C communication strength was significantly stronger than
C-to-S direction only under the AT conditions (t = −2.24, pbonf = 0.028, Bonferroni post
hoc test). When neither of the neurons came from the supra-granular layer, these spatial
attentional effects disappeared (all p > 0.05, rm ANOVA and Bonferroni-corrected post hoc
analysis; Figure 7B).
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3. Discussion

We used the likelihood-based GC as a measure of directional communication to
investigate how spatial attention affected neuronal interactions within V1. The recorded
neurons with non-overlapping RFs received heterogeneous visual input. Therefore, our
observation of significant attentional enhancement of inhibitory communication in the
S-C hierarchy supports the hypothesis we came up with. Subsequently, we compared our
findings with previous publications, elucidated the physiological implications of the results,
and then pointed out the limitations and prospects for potential future explorations.

3.1. Comparison to Previous Neuronal Communication Studies

We observed that GC decreased to negative when spatial attention was directed into
one of the neurons’ RFs between simple and complex cells. These results indicated the
enhancement in competing connections between pairs with hierarchical architecture, which
supported our hypothesis. Moreover, it was also consistent with previous trans-cortical [3–6]
and homo-cortical studies [14,21], which demonstrated attentional-related facilitation in
neuronal communications.

However, the underlying mechanism in our study may differ from previous studies.
In these previous studies, neurons’ RFs were covered by a sufficiently big stimulus, which
means they cooperated to recognize the target. However, neurons in our study received
different visual inputs, implying that the pattern of communication was different. That is,
when the attentional focus switched away from neurons’ RFs, pairs performed a similar
interference function in identifying targets. In this case, the communication between them
is meaningless and energy-consuming. However, when the attentional focus shifted to one
neuron’s RF, the information from the other neuron became interference [20,22,23]. Based
on that, spatial attention would suppress the noise to improve the efficacy of encoding
sensory. Another aspect might be the synchronization of neural responses. Previous
studies calculated phase-amplitude coupling [24], spike-phase coupling [25], and phase
coherence [26] to investigate the effect of spatial attention on neuronal synchronization.
They discovered a spatial-attention-induced reduction in neuronal synchrony in both the
pre-stimulus period [26] and stimulus presentation period [24,25]. What is more, numerous
studies have found gradual increases in the attentional modulation of neuronal firing rates
throughout hierarchically structured areas [6,27–30]. It could also partially explain why
relatively stronger effects of spatial attention were found between simple and complex cells
in our experiment.

The attentional modulation of GC was prominently seen in the bottom-up directions.
It was consistent with previous studies [4,14], which also discovered that feedforward in-
teractions displayed a larger enhancement with spatial attention. Our studies provide new
evidence on the hierarchical progression of attentional modulation. Furthermore, under AT
conditions, we found that GC was substantially stronger in the feedforward S-to-C direction
than vice versa. The results support the concept of hierarchical structure between simple and
complex cells: complex cells’ RFs are generated from simple cells, indicating that they further
integrate input from simple cells [12,13]. These results also shed further light on how spatial
attention modulates communications within the S-C hierarchy. That is, attention specifically
amplifies feedforward information flow, thus enhancing visual perception.

However, in this study, spatial attention did not affect the communication strength
and directions for S-S and C-C pairs. It could be attributable to anatomical characteristics.
Both S-S and C-C pairs belong to the same level of the hierarchy within V1. Hence, it
is plausible that spatial attention did not have an impact on their information flow. For
S-S pairs, another reason might be the lack of sufficient statistical power. Most of the
neurons we recorded were from the supra-granular layer because attention predominantly
modulates neuronal activities in the supra-granular layers [31–34]. However, previous
studies reported that simple cells are mostly observed in layer 4 [35,36] and converge into
the superficial layer to generate complex cells’ RFs [10,12,37]. Thus, in this study, we rarely
recorded two simple cells simultaneously. We applied a priori power analysis by G*power
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(software based on hypothesis testing) to determine the sample size (α = 0.05, power = 0.8)
with a medium effect size for every statistical test we used (the parameters were set by
referencing [38,39]). It suggested a minimum sample size of 17 for rmANOVA and 15 for
paired t-tests, both of which were slightly smaller than the S-S pairs’ sample size.

3.2. The Influence of Attentional Focus Placement on S-C Pairs

Considering target and distractor stimuli would compete with one another for better
representation, we classified neurons as target-stimuli-covered and distractor-stimuli-
covered neurons. We found that there were no significant information flow differences
between these three types of pairs. It implies that spatial attention itself does not induce
specific information flow but rather amplifies directed communication within V1. It clarifies
that spatial attention acts as an amplifier of neuronal communications.

When the attentional focus switched from the RFs of simple cells to those of complex
cells, the communicating directions between T and D neurons were reversed. Since simple
and complex cells were competitively connected under AT conditions, this result indicated
that information flowed more from simple to complex cells regardless of which neurons’
RFs were covered by attentional focus. It further supports the hierarchical hypothesis of
simple and complex cells mentioned above. What is more, we discovered that it was only
when the attentional focus shifted to complex cells’ RFs that the information exchange
directions made a significant difference. To detect external visual information more effec-
tively, complex cells in V1 need to integrate input from simple cells, while simple cells
mainly handle input from LGN [40]. Thus, it was simple to discover in this study that
complex cells received significantly more competing input from simple cells when cued
stimuli covered complex cells’ RFs.

3.3. S-C Pairs’ Communication Depends on Their MAR

Given that attentional modulation of neuronal activity varies even with a visual brain
area [20,41,42], we further investigated whether and how attention-related enhancement
or suppression effects on individual neurons’ activities influence their interactions. When
multiple stimuli are presented, selected and unselected stimuli compete with one another for
better representation [23,43–45]. The V1 neuronal pairs recorded in our study simultaneously
received two competing stimuli inputs when attentional focus covered one of the neurons’ RF.
We discovered that the communication strength was significantly stronger in the feedforward
S-to-C direction when MAR was less than zero, while these differences vanished when MAR
was larger than zero. Furthermore, only when MAR was less than 0 could the similar effects
of attentional focus placement be found between simple and complex cells.

This is probably because spatial attention has the same effect on both neurons’ firing rates
when MAR is positive. When cued stimuli cover one neuron’s RF, neuronal pairs display an
increase in one neuron’s firing rate and a decrease in the other neuron’s firing rate. Previous
studies suggested that neuronal spiking activities enhance neuronal connectivity [46–48]. The
firing rates of one neuron decrease under AT conditions, causing the interactions between
the neuronal pairs to converge to zero. Therefore, we cannot observe the differences in
information flow between simple and complex cells. However, spatial attention plays the
opposite role in pairs’ firing rates when MAR is less than zero, causing both neurons’ firing
rates to vary in the same way when the attentional focus shifts to one neuron’s RF. In such
cases, the relative input from another neuron was stronger. Thus, there is a greater need for
the target-stimuli-covered neuron to suppress the noise from another neuron.

3.4. The Layers Neurons Come from Explains Attentional Impact on S-C Pairs’ Interaction

The fact that most neurons recorded in our study came from supra-granular layers
might explain why we discovered significant attentional modulation of neuronal com-
munication between simple and complex cells. In this study, 72 out of 96 S-C pairs we
recorded were placed within supra-granular layers, 20 out of 96 had one neuron from
the supra-granular layers and another from the infra-granular layers, 2 out of 96 had one
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neuron from the granular layers and another from the infra-granular layers, and the rest
were simultaneously originated from infra-granular layers. We found top-down attention
had a significant impact on neuronal communication only when both neurons of S-C pairs
were from the supra-granular layers. Three pieces of evidence are available to help under-
stand it. First, a previous study found attentional modulation of neurons’ correlations was
strongest when neurons came from the same layer [41]. In this study, up to seventy-seven
percent of neuronal pairs recorded simultaneously were from the same layer. Second,
neuronal spiking is almost exclusively synchronized in the superficial layers in both V1
and V4, while it lacks synchronization in infra-granular layers [49]. Third, neurons from
V1 that project to V4 are virtually entirely found in the supra-granular layers [4,50]. These
neurons are therefore more susceptible to top-down, spatial attention. Researchers also
found top-down attention predominantly modulates neurons’ firing rates and correlations
in the supra-granular layers [31]. Thus, the finding in S-C pairs matches well with the
known anatomy characteristics of cortical interactions [33,34].

3.5. Other Potential Confounders That Cannot Explain Our Findings

First, we analyzed the eye position across attention conditions of 1000 ms time win-
dows before the color change. The average deviation of eye position away from the central
fixation was only about 0.11◦ (SD = 0.01◦) in all sessions. Given that micro-saccades (also
called fixational eye movements) have been reported to modulate neuronal spiking activ-
ities (i.e., [51]) and neuronal response variability (i.e., [52]), we found the direction and
frequency of micro-saccades did not vary across attentional conditions (all p > 0.05, paired
t-test).

Second, we chose the parameters of gratings to evoke a strong enough response in
neurons and fixed these parameters in our experiment. The spatial frequency preferences
for neurons in V1 ranged from 0.5 to 8 cycles/degree, while these neurons responded well
at the temporal frequency up to 5.6 cycles/s and dropped off their responses at a higher
temporal frequency [53]. The low-contrast stimuli result in extremely low neuronal firing
rates [7,54], while gratings with a diameter of 2–3◦ evoke higher neuronal responses by
fitting the size-tuning curves [54]. Thus, we designed the grating’s characteristics based
on the typical preference of neurons in V1 to elicit a strong enough neuronal response and
minimize the impact of variables other than spatial attention on neuronal responses.

Third, considering that the individual neuron’s activity would influence its interaction
with other neurons, we further analyzed the possible effect of attention modulation on
the individual neuron’s firing rate. We found neither the AR sign of the T neuron nor the
D neuron affected the communicating directions between simple and complex cells (all
p > 0.05, rmANOVA).

3.6. Limitations

There are still some limitations in our study. First, most neurons recorded in our study
were obtained from supra-granular layers to ensure that the effect of attention on neuronal
activities was strong enough. Follow-up studies could use multichannel linear electrodes
to record neuronal activities from multiple layers simultaneously. By doing so, we can
better understand the hierarchical structure of simple and complex cells in V1 and the role
of attention in the early stage of visual processing. Second, although the sample size of
S-S and C-C pairs exceeded the minimum number calculated by prior power analysis, it
would be better if the number of these two types of pairs was closer to that of S-C pairs.
Third, each electrode in the recording system we used can be controlled independently by
a screw. However, compared to other electrophysiological recording systems (such as the
Utah array), the channel spacing is large and the number of neurons that can be recorded in
each session is limited. It may be advantageous to utilize the Utah array to simultaneously
record the activities of pairs that received homogeneous or heterogeneous visual input.
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4. Materials and Methods
4.1. Subjects

Two adult male rhesus macaque monkeys (Macaca mulatta; monkey P: 7.5 kg; monkey
S: 9 kg) were included in this study. Animals were individually housed with four other
monkeys on a 12 h light/dark cycle. Husbandry, surgeries, and experimental procedures
were carried out according to the NIH guidelines and the Institutional Animal Care and
Use Committee of Shanghai Jiao Tong University.

4.2. Spatial Attention Behavioral Task

During the experiment, monkeys’ eye movements were measured by eye-tracking
equipment (1000 samples/s; ScleraTrak 4000, Crist Instrument Co., Hagerstown, MD, USA).
Monkeys had to direct and keep their gaze at the centrally placed white spot, with a fixation
window of 0.8–1.0◦ of visual angle. At 100 ms after monkeys fixated the central spot, a red
ring (diameter: 3◦) was presented peripherally for 400 ms.

After the cue vanished, four gratings occurred (temporal frequency: 2 cycles/s; spatial
frequency: 0.5 cycles/degree, contrast: 90%), located equidistant from the central spot. Two
stimuli covered recorded pairs’ RFs separately (attend toward condition), and the other
two were located outside the RF (attend away condition). The direction of the grating that
covered the recorded neuron’s RF was the preferred direction of that neuron (the direction
that evoked the strongest neuronal activities). If the preferred directions of the recorded
pairs were matched, the directions of two gratings outside the neuronal RFs would be the
same. Otherwise, the other two gratings’ directions would be chosen at random and would
differ from one another.

After a random delay, cued stimuli started to turn red. Monkeys had to make a saccade
to the color-changed stimuli within 500 ms to receive a juice reward. We adjusted the red
value of the target stimuli (range from 8 to 100) under the performance curves of two monkeys
to maintain a steady behavioral performance (the detective accuracy was more than 70%).
Supplementary Figure S1 shows the performance curves of monkeys across sessions.

We applied the cued block design to reduce monkeys’ confusion about the behavioral
task. The cue appeared in the same location for at least 20 trials. To ensure that the cue
directed the monkey’s spatial attention successfully, we applied the pre-experiment where
the cue validity was 90% (n = 29). In the formal experiments, the color change only occurred
at the cued position.

4.3. Electrophysiological Recordings

The micro-drive system with 32 electrodes (1.5 mm inter-channel spacing and 1.6 cm
traveling length; Gray Matter Research, Bozeman, MT, USA) was used to obtain the
electrophysiological data collected over 77 sessions (40 for monkey P, 37 for monkey S). As
each electrode was separately regulated by a lead screw (125 µm/turn), we were able to
change the depth of electrodes to obtain well-isolated neuronal activities.

4.4. Data Analysis
4.4.1. Electrophysiological Data Analysis and Classification of Neurons

We performed spike sorting offline by Offline Sorter (Plexon Inc., Dallas, TX, USA).
Data were band-pass-filtered at 300 to 4000 Hz and waveform segments were digitized
at 40 kHz. We excluded the neurons whose waveform shape signal-to-noise (SNR) ratios
were less than 2.4, amplitude SNR ratios were less than 1.2, and the percentage of short
inter-spike interval (ISI < 1 ms) was over 0.2%. One hundred and sixty-five well-isolated
neurons met the criteria above (monkey P: 80; monkey S: 85). One hundred and fifty-four
neurons whose RFs were covered by gratings with neurons’ preference directions were
paired and analyzed further. The average horizontal distances between two electrodes that
recorded pairs simultaneously were 6.22 mm (range from 3.35 to 7.50 mm).

Recorded signals were extracted 500 ms time windows before the color change. Then, we
calculated the spike counts in 10 ms bins and fitted them with the Gaussian function. Then,
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we calculated the response linearity (F1/F0) of the recording neurons. Simple cells produce
a heavily modulated sinusoidal response to gratings (F1/F0 > 1) due to their segregated
ON/OFF subregions within RFs. In contrast, complex cells feature overlapping ON/OFF
subregions and generate a comparatively weak modulated response (F1/F0 < 1) [55].

4.4.2. Receptive Field Mapping

Before starting the attention tasks, the location and size of the RFs were measured by
the reversed subspace correlation method [56]. The RF centers of the recorded neurons
remained stable across sessions (Supplementary Figure S2). The average size of RFs across
sessions (diameter: 1.11 ± 0.44◦) was much smaller than the distance between the RF
centers (2.41 ± 0.52◦).

4.4.3. Granger Causality Analysis

Multivariate autoregressive-based GC analysis treated signals as discretely sampled
values of the continuous process, whereas spike trains were sequences of the point process.
Thus, we measured directed causal communication between neurons’ spike trains by the
likelihood-based point process framework GC analysis [17]. The likelihood functions of the
spike trains of neuron i were calculated by the conditional intensity function (CIF). Then,
we measured the causal relationship from neuron j to neuron i by calculating the reduction
in the likelihood of spike trains of neuron i after excluding the spiking history of neuron j:

Γij = log
Lj

i
Li

, (1)

where Li was the likelihood of neuron i that contained all of the available covariates, while
Lj

i represented the likelihood of excluding the spiking history of neuron j.
Since the likelihood ratio was always less than or equal to 0, we further distinguished

the excitatory and inhibitory influences of neuron j on neuron i by the sign of
Mi
∑

m=1
γi, j, m

(average influence of the spiking history of neuron j on neuron i):

Φij = −sign

(
Mi

∑
m=1

γi, j, m

)
Γij, (2)

The time interval was divided into Mi non-overlapping rectangular windows. γi, j, m
was the influence of neuron j on neuron i at the mth time window. A positive outcome
indicates that neuron j has an excitatory impact on neuron i, while a negative result
represents an inhibitory impact.

4.4.4. Attentional Ratios and Multiplicative Attentional Ratios

We applied the widely used index to quantify the magnitude of spatial attentional effects
on neuronal firing rates. The attentional ratios (AR) on firing rate (FR) were calculated as:

AR =
FRIN − FROUT
FRIN + FROUT

, (3)

The AR was calculated under AT conditions in this study, where FRIN represented the
average firing rates when the attentional focus was inside the RFs. FROUT were the average
firing rates when the attentional focus was directed to the RFs of other neurons in pairs.

We then calculated the multiplicative attentional ratios (MAR) between neuron i and
neuron j by multiplying the AR of each neuron.

4.4.5. Laminar Alignment

As there were no multiple laminar probes on a single electrode in the electrophysiolog-
ical recording array, we cannot use the current source density (CSD) methods to precisely
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identify the reference coordinate. Thus, the reference coordinate in our study was defined
as the minimum depth at which electrodes can record the neurons’ activities. Based on
the recording electrodes’ distance from the reference coordinate, neurons were divided
into the three main laminar compartments: supra-granular (0–800 µm below the reference
coordinate), granular (800–1200 µm below the reference coordinate), and infra-granular
(1200–2000 µm below the reference coordinate). Supplementary Figure S3 shows the depth
distribution of recorded neurons.

4.5. Statistical Analysis

We treated the session averages as independent samples to avoid underestimating
confidence intervals and inflating false positive rates. Paired t-tests were applied to examine
differences in detection accuracy between valid and invalid cues. For reaction time and
detection accuracy, we used repeated-measures ANOVA (rmANOVA) involving cues’
positions as within-subject factors. For electrophysiological data, two-factor rmANOVA
was used to test the changes in Granger causality. The contrast between various conditions
was evaluated by using the Bonferroni-corrected post hoc analysis. At p < 0.05, statistical
comparisons were considered significant.

5. Conclusions

Overall, we found spatial attention enhanced inhibitory connections between pairs
with heterogenous visual input, which solely occurred in the S-C hierarchy within V1.
Such an attentional-related enhancement is displayed significantly in the feedforward
connection from simple to complex cells. Furthermore, information flowed more from
simple to complex cells when attentional focus covered one of the paired neurons’ RFs.
By exploring the effects of attentional focus placement, we found spatial attention did
not initiate distinct information flow but rather amplified the directed communication in
the S-C hierarchy. Furthermore, we found the attentional enhancement on hierarchical
communications depended on the attentional modulation of neurons’ firing rates. Our
findings enrich the hierarchical connection model of simple complex cells and help to better
understand how spatial attention influences neuronal interactions within V1.
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