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Abstract: Chronic liver disease (CLD) has emerged as a leading cause of human deaths. It caused
1.32 million deaths in 2017, which affected men more than women by a two-to-one ratio. There are
various causes of CLD, including obesity, excessive alcohol consumption, and viral infection. Among
them, non-alcoholic fatty liver disease (NAFLD), one of obesity-induced liver diseases, is the major
cause, representing the cause of more than 50% of cases. Fucoxanthin, a carotenoid mainly found
in brown seaweed, exhibits various biological activities against NAFLD. Its role in NAFLD appears
in several mechanisms, such as inducing thermogenesis in mitochondrial homeostasis, altering
lipid metabolism, and promoting anti-inflammatory and anti-oxidant activities. The corresponding
altered signaling pathways are the β3-adorenarine receptor (β3Ad), proliferator-activated receptor
gamma coactivator (PGC-1), adenosine monophosphate-activated protein kinase (AMPK), perox-
isome proliferator-activated receptor (PPAR), sterol regulatory element binding protein (SREBP),
nuclear factor kappa B (NF-κB), mitogen-activated protein kinase (MAPK), protein kinase B (AKT),
SMAD2/3, and P13K/Akt pathways. Fucoxanthin also exhibits anti-fibrogenic activity that prevents
non-alcoholic steatohepatitis (NASH) development.

Keywords: liver; non-alcoholic; obesity; thermogenesis; fucoxanthin; lipid; fibrosis

1. Introduction

Chronic liver disease (CLD) is the leading disease resulting in death in the world.
There were approximately 1.5 billion cases of CLD worldwide in 2020, with 1.32 million
deaths in 2017, which affected men more than women by a two-to-one ratio [1,2]. Originally,
viral hepatitis was the major etiology of CLD, but recently, obesity and alcohol consumption
have become increasingly common factors for CLD. CLD caused by a viral infection can be
treated with proper medication and prevented with vaccination. It can also be easily and
precisely detected based on the tests for infection, unlike non-alcoholic liver disease [3].
Non-alcoholic fatty liver disease (NAFLD) occurs when fat accumulates excessively in the
liver due to an obesogenic diet and lifestyle [4]; hence, diagnosing NAFLD is challenging.
The metabolic dysregulation caused by obesity disrupts the body’s homeostasis and affects
the function of the liver. Prevention and treatment of obesity are thus critically important
to combatting and preventing NAFLD.

Fucoxanthin, a naturally derived carotenoid compound, has shown anti-obesity ef-
fects [5–8]. It was first isolated from brown algae and seaweed such as Fucus, Dictyota,
and Laminaria by Willstätter and Page in 1914 [9]. Brown seaweeds are a common dietary
food in many parts of Asia and are found naturally in open seas, where they are exposed to
metals as well as metalloids [10]. It is now commercially produced by various technolo-
gies [11], such as bioreactors using microalgae and diatoms. As a natural compound, it
is hypothesized to have less severe side effects with lower toxicity levels. Fucoxanthin
shows various kind of bioactivities, including anti-obesity effects that can be used for the
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treatment and prevention of NAFLD. Here, in order to better understand fucoxanthin’s
activity on NAFLD, we review the literature on the activity of fucoxanthin in NAFLD and
its signaling pathways.

2. Structure and Metabolites of Fucoxanthin

Fucoxanthin is a carotenoid mainly found in brown seaweed, acting as a photosyn-
thetic pigment along with chlorophyll a and c, and β-carotene [12]. With a molecular
weight of 658.9 g/mol, fucoxanthin (C42H58O6) is located in the photosynthetic organ of
brown seaweed and microalgae and is responsible for photochemical events [13,14]. It
has a unique structure with a wide range of inherent activities. There is an allenic bond, a
conjugated carbonyl, a 5,6-monoepoxide, and an acetyl group [15,16]. An allenic bond is a
condition where one carbon atom has two double bonds with each adjacent carbon [17].

Due to the structure of fucoxanthin, it mainly has two biological functions: singlet
oxygen quenching and free radical scavenging [18]. The singlet oxygen quenching activity
is due to the carbon double bonds located in the backbone of fucoxanthin. It mainly depends
on physical quenching without any chemical reaction [19]. It works by transferring the
energy in the singlet oxygen molecules to the conjugated double bond in fucoxanthin [20,21].
The excited fucoxanthin can dissipate energy into the environment, returning it to a ground
state [19]. That will bring the fucoxanthin molecule back to its original state. Singlet oxygen
quenching activity depends on the number of conjugated carbon double bonds [22,23]. The
higher the number of conjugated double bonds, the more energy that can be transferred
from the singlet oxygen molecule to the carotenoid.

Meanwhile, the free radical scavenging ability of fucoxanthin is due to the functional
groups in the terminal rings [19,24]. They function as electron acceptors and electron
donors, as well as in adduct formation. Moreover, there is an allenic bond in fucoxanthin.
Among the 700 carotenoids in nature, there are about 40 types of carotenoids, which have
an allenic bond, including fucoxanthin [25]. The allenic bond provides carotenoids with a
higher activity than alkenes and a peculiar axial chirality [26] that contributes to the activity
of fucoxanthin.

Fucoxanthin can be absorbed into the human body through the digestive system at
the intestinal level. Fucoxanthin is metabolized in the liver via fucoxanthinol to amarouci-
axanthin A (Figure 1), requiring the cofactor nicotinamide adenine dinucleotide phosphate
(NADP) [27–29]. Several enzymes are also involved in the gastrointestinal tract, such as
lipase and cholesterol esterase. It was reported that the proportions of fucoxanthin, fucoxan-
thinol, and amarouciaxanthin A in the adipose tissue were 13%, 32%, and 55%, respectively,
whereas in other tissues, including the liver, lungs, kidney, heart, and spleen, were 1–11%,
63–76%, and 20–26%, respectively [6,30]. Other than fucoxanthinol and amarouciaxanthin
A, another fucoxanthin metabolite derived from fucoxanthinol, halocynthiaxanthin, has
been isolated from Undaria pinnatifida [12]. This metabolite has not yet been fully studied,
and discovering other metabolites of fucoxanthin is possible.

Fucoxanthin toxicity has been tested through several experiments, including in animals
and humans. In ICR mice, fucoxanthin showed no mortality and no abnormalities in a
single-dose study at 1000 and 2000 mg/kg, as well as 500 and 1000 mg/kg in a repeated-
dose study for 30 days [14,31]. A single oral dose study was also performed on rats and
showed no toxicity with a fucoxanthin administration of 200 mg/kg body weight [32]. It is
also declared safe at 0.5% w/v for application on human skin [33]. Hence, the administration
of fucoxanthin has been determined to be safe, and the physiological activity of fucoxanthin
is considered to have great potential.
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Figure 1. Fucoxanthin and its metabolites. (A) Fucoxanthin, (B) fucoxanthinol, and (C) amarouciax-
anthin A.

3. Role of Fucoxanthin in Non-Alcoholic Fatty Liver Disease

NAFLD occurs when the rate of hepatic fatty acid uptake is greater than its oxi-
dation [34]. NAFLD is closely associated with obesity and the increase in intrahepatic
triglyceride (IHTG) [35]. This occurs with an imbalance in food intake and energy expendi-
ture, resulting in fat accumulation [36]. Triglycerides accumulate in the liver and disrupt
the body’s metabolism, from the normal state to the hypercaloric state, when the energy
produced inside the body is more than sufficient; hence, it is stored as a lipid [37]. Obesity
increases mortality in NAFLD patients [38]. The rising number of NAFLD cases is closely
related to the rising trend of obesity [39]. It is presumed that combating obesity is important
for the treatment and prevention of NAFLD.

Fundamentally, there are two ways to overcome obesity: increasing energy expen-
diture or decreasing energy gain by controlling food intake [40]. Either way, the system
works by adjusting the hypercaloric metabolic state of the body back to the homeostatic
state. Fucoxanthin is known to have an anti-obesity effect, proven through different kinds
of experiments, including cell culture, animal models, and human studies. The anti-obesity
mechanisms of fucoxanthin are categorized into two classes: inducing thermogenic activity
and altering lipid metabolism. Altering lipid metabolism is a strategy that can be effectively
used against NAFLD [41].

Fucoxanthin has also been reported to reduce hepatic injury by decreasing hepatic fat
accumulation and liver weight gain in a choline-deficient, L-amino-acid-defined high-fat
diet (CDAHFD), non-alcoholic steatohepatitis (NASH) mouse model. It decreased hepatic
lipid oxidation and NASH inflammation by inhibiting the production of chemokines [42].
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It also alleviates lipid peroxidation in hepatocytes, resulting in the suppression of lipid
accumulation [43]. Fucoxanthinol and amarouciaxanthin A have also been found to have
an anti-inflammatory effect against NASH by down-regulating the hepatic stellate cell
marker [42]. In conclusion, fucoxanthin is a promising therapeutic for inhibiting hepatic in-
flammation and preventing fibrosis in liver disease. The role of fucoxanthin in liver diseases,
especially NAFLD, can be explained through multiple mechanisms, such as thermogenesis-
induced anti-obesity activity, altered lipid metabolism, and anti-inflammatory, anti-oxidant,
and anti-fibrogenic activities (Figure 2).

Figure 2. The role of fucoxanthin against NAFLD. Fucoxanthin exhibits anti-inflammatory, anti-
obesity, anti-oxidant, and anti-fibrogenic activities and alters lipid metabolism in NAFLD.

3.1. Fucoxanthin Affects Mitochondrial Homeostasis through Thermogenic Activity

Mitochondria play a major role in human health. Their role is centered on homeostasis
and energy metabolism, including maintaining and producing the energy needed by the
human body [4]. The disruption of mitochondrial homeostasis and elevated oxidative
stress are commonly observed in fatty liver disease patients [44] and are characterized by a
reduction in respiratory chain activity and impaired mitochondrial β-oxidation [45].

Many biological activities are performed inside mitochondria. One of them is oxidative
phosphorylation. Mammalian cells synthesize energy through oxidizing substrates in inside
mitochondria. One of the chemical reactions involved is oxidative phosphorylation located
in mitochondria. During oxidative phosphorylation, free energy is converted into the
displacement of adenosine triphosphate (ATP) in an equilibrium reaction. However, with
uncoupling protein, hydrogen and heat are released instead of ATP synthesis through the
uncoupling to ATP synthase, bypassing ATP synthase, and is hence called an uncoupling
protein [46–48], as shown in Figure 3. Proton leak (hydrogen leak) in mitochondria is
expected to occur through electron escape from mitochondrial oxidoreductase to generate
superoxide [49].

Fucoxanthin exhibits anti-obesity effects, mainly through thermogenic effects via mito-
chondrial uncoupling protein 1 (UCP1) [5,8], as shown in Figure 3. UCP1, a 32 kDa protein,
is an inner mitochondrial membrane protein that is a molecular basis for the protonophore
activity in the mitochondrial inner membrane. UCP-1 allows protons to enter the mitochon-
drial matrix at a lower energy with the proton leak [48]. Fucoxanthin induces the expression
of UCP1 in abdominal white adipose tissue (WAT) [51]. This phenomenon is also known
as browning, where WAT changes in phenotype into brown adipose tissue (BAT) [52]. BAT
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plays a role in dissipating energy through heat production, unlike WAT, which stores excess
energy as triglycerides [52–54]. As the browning process occurs, energy expenditure in WAT
is upregulated [55]. Through this process, the amount of WAT is reduced, which means fat
accumulation is also reduced. This mechanism helps to treat NAFLD.

Figure 3. Fucoxanthin-induced thermogenic activity. Fucoxanthin induces the activation of UCP-1,
leading to browning of white adipose tissues. Uncoupled proton leak will occur instead of coupling
with oxidative phosphorylation along with heat release (adapted from Huang, (2022)) [50].

Fucoxanthin induces loss of WAT and alleviates hyperglycemia in an obese–diabetic
KK-A(y) mouse model [56]. The same effect was also shown in high-fat-diet (HFD)-induced
obese mice, as well as hyperinsulinemia and hyperleptinemia effects [57]. The decrease in
WAT is consistently followed by an increase in BAT weight [58–60]. Further, the expression
of UCP-1 is also increased in the WAT of KK-A(y) mice fed with fucoxanthin [61]. This anti-
obesity activity of fucoxanthin was also examined in a human study, where according to
Mikami (2017), fucoxanthin reduced HbA1c levels in subjects with G/G alleles of the UCP1
gene compared to those with the A/A and A/G alleles (thrifty allele of UCP1-3826A/G)
in a human study consisting of 60 normal weight and obese Japanese adults with a BMI
over 22 [62]. By lowering the level of HbA1c, fucoxanthin supplementation succeeded in
lowering blood sugar levels, with no significant effect on visceral fat.

UCP1 is related to other mitochondrial metabolite transporters, such as the ade-
nine nucleotide translocator, a proton channel in the mitochondrial inner membrane that
permits the translocation of protons from the mitochondrial intermembrane space to
the mitochondrial matrix. Other than the upregulation of UCP1, the expression of the
β3-adrenergic receptor (β3Ad) and peroxisome proliferator-activated receptor gamma
coactivator 1 (PGC-1) is also upregulated in WAT [57,63]. Activation of PGC-1 induces mi-
tochondrial biogenesis [62]. Fucoxanthin is presumed to induce mitochondrial biogenesis.

3.2. Fucoxanthin Alters Lipid Metabolism

Lipid metabolism can be elucidated in two ways, lipolysis and lipogenesis. Both work
in opposing manners, where lipogenesis synthesizes fat and lipolysis breaks down fat.
Fat accumulation, which leads to obesity, results when an imbalance in lipogenesis and
lipolysis occurs [64]. One of NAFLD’s characteristics is an alteration in the lipid metabolism
that is also observed in atherogenic dyslipidemia [65]. An increase in de novo lipogenesis
is considered the major alteration of lipid metabolism in NAFLD [66]. As a result, hepatic
steatosis, in which the intrahepatic fat of more than 5% of the liver’s weight is accumulated,
occurs through an increase in liver fatty acids and downregulation of β-oxidation [67].
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Other than inducing thermogenesis activity via UCP-1 activation, fucoxanthin also
functions by altering lipid metabolism and absorption [68], as shown in Figure 4 by inhibit-
ing lipogenesis while promoting lipolysis. This mechanism works against NAFLD-altered
lipid metabolism. Fucoxanthin upregulates enzymes related to lipolysis while downregu-
lating enzymes related to lipogenesis. In HFD-fed mice, fucoxanthin can decrease hepatic
lipid and plasma triacylglycerol levels [7,69]. These effects were shown through the increase
in undigested fecal lipids. Fucoxanthin also functions by reducing the activity of hepatic
lipogenesis and upregulating the activity of fatty acid β-oxidation [7]. It upregulates other
key proteins in lipid metabolism, such as AMP-activated protein kinase and acetyl-CoA
carboxylase in epididymal adipose tissue. It also induces β3Ad [51], which upregulates
lipolysis and thermogenesis [70].

Figure 4. Fucoxanthin alters lipid metabolism. (A) Lipogenesis. Fucoxanthin downregulates acetyl
CoA carboxylase and fatty acid synthase in lipogenesis, decreasing the lipid content in the liver.
(B) Lipolysis. Fucoxanthin promotes β-oxidation, hence resulting in upregulated lipolysis in the liver.
The downward arrow indicates downregulation and the upward arrow indicates upregulation.
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The supplementation of fucoxanthin in an obese mouse model induced through HFD
(20% fat) decreased the visceral fat pads without altering the food intake [69]. It also
increased adiponectin levels and, on the other hand, decreased leptin levels in plasma.
Both adiponectin and leptin are adipose-derived hormones that act as messengers to
deliver signals from the adipose tissues to other tissues and organs [71]. Adiponectin
has been reported to act as an insulin-sensitizing adipokine in heterozygous peroxisome
proliferator-activated receptor (PPAR) β knockout mice, which protects it from HFD-
induced obesity [72]. PPAR γ is also reported to be downregulated in 3T3-L1 adipocytes
with fucoxanthin supplementation [8]. Fucoxanthin supplementation through Nitzschia
laevis extract (NLE) has also been reported to decrease abdominal fat and hepatic steato-
sis in C57BL/6J mice and to avert the accumulation of lipids in HepG2 cells. It elevates
mitochondrial activity, shown through the enhanced oxygen consumption rate and mi-
tochondrial membrane potential, and phosphorylated acetyl-CoA carboxylase [67]. The
phosphorylation of acetyl-CoA carboxylase inhibits lipogenesis in the hepatocytes of rats
and prevents the accumulation of hepatic lipids [73].

Standardized fucoxanthin extract from Phaeodactylum tricornutum showed inhibitory
activity toward lipogenesis in 3T3-L1 adipocytes by decreasing intracellular lipid contents
without any cytotoxicity [8]. Another fucoxanthin extract from Petalonia binghamiae has
been reported to suppress the accumulation of lipid droplets in the liver as well as alanine
and aspartate transaminase serum levels. It functions by upregulating the adenosine
monophosphate-activated protein kinase (AMPK) signaling pathway, targeting acetyl-CoA
carboxylase in adipocytes as well as fatty acid β-oxidation [74]. The fatty acid synthase
(FAS) protein, which is also included in the AMPK signaling pathway, is involved in
lipogenesis and has also been reported to be downregulated in the livers of db/db diabetic
mice [19,75]. Further, the expression of PPAR α, phosphorylated acetyl-CoA carboxylase,
and carnitine palmitoyltransferase 1 was upregulated. Similarly, the fucoxanthin extracted
from Undaria pinnatifida also exhibits an anti-obesity effect in the HFD mouse model, which
was demonstrated by decreased visceral fat and hepatic lipid accumulation, as well as
decreased adipocyte size [9,76].

Fucoxanthin as a medication for NAFLD has recently reached clinical trials. The
administration of fucoxanthin combined with fucoidan for 6 months in 21 patients with
NAFLD attenuated hepatic lipotoxicity. The fucoxanthin–fucoidan treatment succeeded in
lowering triglyceride, total cholesterol, alanine transaminase (ALT), as well as aspartate
aminotransferase (AST) in a high fat diet mouse model administered 200 or 400 mg/kg
bw fucoidan–fucoxanthin. It also significantly reduced the NAFLD-induced inflammatory
cytokines IL-6 and IFN-γ. Leptin and adiponectin were also altered favorably to fight
against NAFLD [77]. However, fucoxanthin at low concentrations, 0.015% and 0.03% w/w,
did not effectively reduce triglycerides and total cholesterol in the high fat diet mouse
model [78]. Another study with the same high fat diet mouse model accompanied by
fucoxanthin supplementation at 0.05% or 0.2% w/w successfully decreased triglyceride
and cholesterol levels [76]. Hence, the effects of fucoxanthin on altering lipid metabolism,
specifically in the high fat diet mouse model, are dependent on dose and feed composition.
Further studies should be conducted in order to determine the minimum effective dose of
fucoxanthin in this model.

3.3. Anti-Inflammatory Activity of Fucoxanthin

NAFLD has a broad spectrum of characteristics, including inflammation. Moreover,
obesity is also categorized as low-level inflammation marked with abnormally produced
inflammatory adipocytokines [79]. Inflammation in NAFLD is triggered by an excessive
accumulation of lipids, which activates hepatic fibrosis [80]. NAFLD progression is affected
by the balance between pro- and anti-inflammatory stimuli. Once inflammatory cells in
the liver are activated, steatosis occurs, and inflammation develops. An increase in fatty
acids in the liver will also increase systemic inflammation, which is commonly observed in
NAFLD patients [81].
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In NAFLD, chronic inflammation has also been proposed to be promoted by insulin
resistance [82]. The inflammation in NAFLD is characterized by the upregulation of
several cytokines, including IL-6, IL-1β, and TNF-α. This fact was proven by an in vivo
study with the NAFLD mouse model, which resulted in elevated TNF-α levels in the
liver [83]. Another in vivo study using the NAFLD-HFD mouse model exhibited similar
results, where AST, ALP, leptin, cholesterol, triglyceride, TNF-α, and TGF-β levels were
significantly increased [84]. It can be concluded that pro-inflammatory cytokines are
upregulated in NAFLD.

Fucoxanthin exhibits anti-inflammatory activity, as proven by the various studies
indicated in Table 1. Fucoxanthin can alter PPAR signaling pathways. It is well known that
the PPAR signaling pathways are related not only to lipid metabolism but also inflamma-
tion. They control inflammation and the immune response by regulating macrophages [85].
Therefore, modulation of the PPAR signaling pathway for anti-obesity effects will simul-
taneously exhibit an anti-inflammatory effect. This theory was proven by several studies
focusing on the anti-inflammatory effect of fucoxanthin. Fucoxanthin supplementation suc-
cessfully suppressed IL-1β, TNF-α, COX-2, and iNOS in an HFD mouse model [79]. It also
suppressed pro-inflammatory factors such as NO, PGE2, IL-1β, TNF-α, and IL-6 in RAW
264.7 cells via the NF-κB and MAPK signaling pathways [86]. Fucoxanthin supplementa-
tion in a diabetic/obese KK-Ay mouse model succeeded in downregulating the expression
of inflammatory cytokines such as TNF-α, IL-6, and monocyte chemoattractant protein-1
(Mcp-1). Fucoxanthin also inhibited macrophage infiltration into the white adipose tissues
of the mice [43].

An in vitro study using Raw264.7 macrophages successfully showed the downregu-
lation of IL-10, IL-6, iNOS, COX-2, and NF-κB signals [87]. In vivo studies using the LPS-
induced sepsis mouse model also exhibited the same results, where inflammatory cytokines
such as IL-6, IL-1β, and TNF-α were downregulated after fucoxanthin supplementation.
Fucoxanthin is presumed to inhibit the phosphorylation of the NF-κB signaling pathway at
the cellular level and block nuclear translocation [88]. Fucoxanthin also downregulated
iNOS and COX-2 expression in a carrageenan-induced paw edema mouse experiment
through the MAPK, Akt, and NF-κB signaling pathways [89]. Other interleukins, such as
IL-4, IL-5, IL-8, and IL-13, were also reported to be downregulated in asthmatic mouse
models [90].

Table 1. Inflammatory cytokines altered after fucoxanthin supplementation.

Inflammatory
Cytokines Experimental Model Dose References

↓ IL-1β

High-fat-diet-induced obese
mice 0.2, 0.4, or 0.6% [79]

RAW 264.7 macrophages I. okamurae-extracted
fucoxanthin; 12.5, 25, or 50 µM [86]

RAW 264.7 macrophages 5, 10, or 20 µM [87]

↓ IL-4
↓ IL-5

OVA-stimulated (OVA) mice 10 or 30 µM

[90]Bronchoalveolar lavage fluid
(BALF) from asthmatic mice 10 mg/kg or 30 mg/kg

OVA-stimulated (OVA) mice 10 or 30 µM

↓ IL-6

RAW 264.7 macrophages cells I. okamurae-extracted
fucoxanthin; 12.5, 25, or 50 µM [86]

BEAS-2B cells 3, 10, or 30 µM

[90]Bronchoalveolar lavage fluid
(BALF) from asthmatic mice 10 mg/kg or 30 mg/kg

RAW 264.7 macrophages 5, 10, or 20 µM [87]
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Table 1. Cont.

Inflammatory
Cytokines Experimental Model Dose References

↓ IL-8
BEAS-2B cells 3, 10, or 30 µM [90]

Bronchoalveolar lavage fluid
(BALF) from asthmatic mice 10 mg/kg or 30 mg/kg

↓ IL-10 RAW 264.7 macrophages 5, 10, or 20 µM [87]

↓ IL-13
Bronchoalveolar lavage fluid
(BALF) from asthmatic mice 10 mg/kg or 30 mg/kg

[90]
OVA-stimulated (OVA) mice 10 or 30 µM

↓ TNF-α

High-fat-diet-induced obese
mice 0.2, 0.4, 0.6% [79]

RAW 264.7 macrophages cells I. okamurae-extracted
fucoxanthin; 12.5, 25, or 50 µM [86]

Bronchoalveolar lavage fluid
(BALF) from asthmatic mice 10 mg/kg or 30 mg/kg

[90]
OVA-stimulated (OVA) mice 10 or 30 µM

↓ COX-2 High-fat-diet-induced obese
mice 0.2, 0.4, or 0.6% [79]

↓ iNOS RAW 264.7 macrophages 5, 10, or 20 µM [87]

↑—upregulated; ↓—downregulated.

3.4. Anti-Oxidant Activity of Fucoxanthin against NAFLD

Inflammation is correlated with reactive oxygen species (ROS), where increased ROS
promote inflammation [91,92]. The increase in oxidative stress caused by excessive ROS
production is one of the causes of NAFLD. Excess production of ROS has also been shown
in patients with type 2 diabetes, insulin resistance, obesity, NASH, and NAFLD [81]. ROS
are highly reactive and unstable, so they often lead to an imbalance in the bioavailability of
the cellular anti-oxidant system [93]. When that occurs, it disrupts intracellular metabolism
and modifies the functional role of cellular enzymes, structural proteins, and even cell
membranes [94].

Oxidative stress may also occur as a form of lipid-induced stress. Lipid accumulation
in the liver may induce oxidative stress by altering mitochondrial activity and function
and disrupting the anti-oxidant system. ROS are involved in the mitochondrial respiratory
chain. In response to fatty acid oxidation disruption, which takes place in mitochondria, the
production of ROS may be increased. This may also lead to cell apoptosis; hence, oxidative
stress may be a factor in steatosis inflammatory progression [81]. In NAFLD, the excess
ROS affect lipid peroxidation and impair mitochondrial and peroxisomal oxidation of fatty
acids, resulting in the release of inflammatory cytokines [95], as well as the production of
pro-inflammatory cytokines via MAPK phosphorylation [91].

Although fucoxanthin lacks pro-vitamin A activity, it has unique properties as a
carotenoid that exhibits anti-oxidant activity [96]. Through its anti-oxidant activity, it
exhibits anti-inflammatory effects related to obesity. ROS formation was reduced when
PC12 cells were treated with fucoxanthin [79]. Another study using 3T3-L1 cells showed
a decrease in enzymes related to the production of ROS, such as nicotinamide adenine
dinucleotide phosphate (NADPH) oxidase 4 (NOX4), the NADPH-generating enzyme,
and glucose-6-phosphate dehydrogenase after fucoxanthin treatment [97]. Fucoxanthin
also exhibits free radical scavenging activity, as shown by several studies. Fucoxanthin
treatment succeeded in reducing doxorubicin-induced ROS compared to primary cardiomy-
ocytes treated with doxorubicin alone, indicating that the anti-oxidant effect of fucoxanthin
exerts a cardioprotective effect [98]. Fucoxanthin supplementation in a diabetic/obese
KK-Ay mouse model reduced oxidative stress by alleviating lipolysis and downregulat-
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ing lipogenesis through the sirtuin1/adenosine monophosphate-activated protein kinase
(Sirt1/AMPK) pathway in lipid-loaded hepatocytes [43].

4. Preventive Effect of Fucoxanthin on NASH Development

NAFLD is a progressive disease that may develop into non-alcoholic steatohepatitis
(NASH), fibrosis, cirrhosis, and hepatocellular carcinoma. When it develops into NASH,
fibrosis is one of its characteristics and the main cause of mortality [99]. Fucoxanthin not
only exhibits a beneficial effect on NAFLD but also has a preventive effect on averting
its development into NASH through fibrosis. The regulation of chemokine production
suppresses hepatic inflammation and infiltration of immune cells, which is the leading
cause of NASH development.

Fucoxanthin is reported to downregulate the hepatic mRNA expression of Tgfβ1, colla-
gen type I alpha 1 chain (Col1α1), and Timp1 in the CDAHFD-fed mouse model [42]. Tgfβ1,
transforming growth factor beta 1, is a pro-fibrogenic cytokine that expresses α-smooth
muscle actin (αSMA) and promotes extracellular matrix (ECM) production [100]. The
suppression of Tgfβ1 inhibits the production of ECM, which prevents fibrosis development.
Tgfβ1-induced fibrosis is strongly correlated with matrix metalloproteinase-1 (TIMP-1)
expression [101]. Timp1 plays a role in ECM degradation, where the administration of an
anti-TIMP-1 antibody ameliorated fibrosis in mice [42].

Fucoxanthin was also reported to downregulate TGFβ1-induced mRNA levels of
fibrogenic genes in LX-2 cells. It alleviated the phosphorylation of SMA- and MAD-related
protein (SMAD3), which inhibits fibrosis. It exhibited a synergistic effect with SIS3 (an
inhibitor of SMAD3) in suppressing fibrogenic gene expression. A similar result has also
been reported in hepatic stellate cells. Its anti-fibrogenic activity is further explained
through the repression of the NADPH oxidase 4 (NOX4) mRNA levels, which prevented
the accumulation of ROS by TGFβ1 [102]. Hence, fucoxanthin exhibits anti-fibrogenic
activity that prevents NASH development.

5. Signaling Pathways Altered by Fucoxanthin

Fucoxanthin alters several pathways related to NAFLD, as shown in Figure 5 and
Table 2. β3Ad is a metabolic receptor in adipose tissues. The upregulation of β3Ad has
been closely related to thermogenesis [103]. A PPAR γ coactivator, PGC-1, is a transcription
cofactor that plays a role in regulating cell metabolism [104]. Both PGC-1 and β3Ad
stimulate adaptive thermogenesis and mitochondrial biogenesis that favor anti-obesity
activity against NAFLD.

Figure 5. Signaling pathways altered by fucoxanthin. Fucoxanthin alters β-3-adrenergic recep-
tor (β3Ad), adenosine monophosphate-activated protein kinase (AMPK), peroxisome proliferator-
activated receptor (PPAR), sterol regulatory element binding protein (SREBP), nuclear factor-κB
(NF-κB), mitogen-activated protein kinase (MAPK), and AKT pathways.
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Table 2. Transcriptional factors altered by fucoxanthin.

Transcriptional Factors Experimental Model Dose Reference(s)

Thermogenesis Related

↑ PGC-1

KK-Ay mice

Undaria pinnatifida-extracted
fucoxanthin; 0.5% and 2% of control

diet;
[51]

0.2% fucoxanthin in control diet
(AIN-93G) [105]

High-fat-diet-induced obese mice 0.69% Undaria pinnatifida-extracted
fucoxanthin (2.9%) [76]

↑ β3-adrenergic receptor
(β3Ad)

KK-Ay mice
Undaria pinnatifida-extracted

fucoxanthin; 0.5% and 2% of control
diet;

[51]

High-fat-diet-induced obese mice 1.06% or 2.22% in control diet
(AIN-93G) [57]

Lipid Metabolism Related

↑ AMPK
High-fat-diet-induced obese mice

Petalonia binghamiae-extracted
fucoxanthin; 150 mg/kg/day [7]

↑ PPARα Undaria pinnatifida-extracted
fucoxanthin (2.9%); 0.69% w/w [76]

↑ PPAR β 0.05% and 0.2% fucoxanthin, w/w [9]

↓ PPAR γ

High-fat-diet-induced obese mice
0.05% and 0.2% fucoxanthin, w/w [9]

Petalonia binghamiae-extracted
fucoxanthin; 150 mg/kg/day [7]

Undaria pinnatifida-extracted
fucoxanthin (2.9%); 0.69% w/w [76]

3T3-L1
Petalonia binghamiae-extracted

fucoxanthin; 10 µM [106]

fucoxanthin, fucoxanthinol, and
amarouciaxanthin extracted from U.

pinnatifida; 10 µM
[107]

↓ SREBP1c High-fat-diet-induced obese mice Petalonia binghamiae-extracted
fucoxanthin; 150 mg/kg/day [7]

Inflammation Related

↓ NF-κB
RAW 264.7 macrophages I. okamurae-extracted fucoxanthin;

12.5, 25, or 50 µM [86]

Carr-induced paw edema in
ICR mice

Undaria pinnatifida-extracted
fucoxanthin; 4 and 8 mg/kg [89]

↓ MAPK Macrophage RAW 264.7 cells I. okamurae-extracted fucoxanthin;
12.5, 25, or 50 µM [86]

↓ Akt Carr-induced paw edema in ICR
mice

Undaria pinnatifida-extracted
fucoxanthin; 4 and 8 mg/kg [89]

Anti-Oxidant Related

↑ Nrf2
Alcoholic liver injury mouse model 10, 20, 40 mg/kg b.w. [108]

H9c2 cells 1 µM [109]

↑ AMPK HepC2 cells L. Japonica-extracted fucoxanthin;
30 µg/mL [110]

Anti-Fibrogenic

↓ SMAD2/3
Human pulmonary fibroblasts

(HPFs)
5, 10, 20 µM [111]↓ PI3K/Akt

↓ MAPK

↑—upregulated; ↓—downregulated.
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The AMPK signaling pathway regulates several metabolic organs, such as the liver,
skeletal muscle, pancreas, and adipose tissues. AMPK pathways regulate glucose transport
and fatty acid oxidation in skeletal muscle. They upregulate fatty acid oxidation in the liver
while decreasing cholesterol and triglyceride synthesis [112]. Several studies have shown
that the activation of AMPK results in acetyl-CoA carboxylase suppression, hence blocking
fatty acid synthase and decreasing hepatocytic lipid accumulation [43]. The activation
of AMPK specific to the liver has been reported to reduce liver steatosis, inflammation,
and fibrosis in NAFLD patients. Liver-specific activation of AMPK made mice resistant
to weight gain and reduced the overall level of lipid accumulation [113]. Fucoxanthin
upregulates AMPK, hence promoting fatty acid oxidation to protect against NAFLD.

Other transcription factors related to lipid metabolism, such as PPARs and sterol
regulatory element binding protein (SREBP), are also altered. Similar to AMPK, SREBP
regulates the expression of lipogenic enzymes, including fatty acid synthase, acetyl-CoA
carboxylase, and 3-hydroxy-3-methylglutaryl-CoA reductase [114]. SREBP-1C is one of the
major transcriptional factors involved in de novo lipid synthesis, which affects NAFLD
through the nuclear transcription factor farnesoid X receptor (FXR) [41]. Along with stearoyl
coenzyme-A desaturase 1 and fatty acid synthase, activation of SREBP-1C increases the
rate of fatty acid synthesis. The overexpression of SREBP-1C results in the upregulation of
lipogenesis; meanwhile, inactivation of the SREBP-1C gene can reduced triglyceride levels
up to 50% in the ob/ob mouse model [115]. Fucoxanthin has been reported to downregulate
SREBP-1C; hence, it is believed to reduce lipogenesis and is beneficial for treating NAFLD.

Meanwhile, PPARs have an important role in regulating glucose levels and home-
ostasis, as well as regulating cell proliferation, differentiation, and inflammation [116].
PPARs are sensors of fatty acids and have tissue-specific expression patterns. PPAR-α is
mainly expressed in brown adipose tissues and the liver and regulates lipid metabolism.
PPAR-α alteration may lead to hepatic steatosis. Meanwhile, PPAR-β regulates oxidative
metabolism (β-oxidation of fatty acids). PPAR-γ is mainly expressed in adipose tissues and
macrophages to regulate adipogenesis and storage of fatty acid as triacylglycerol [117]. The
activation of PPAR-γ is closely related to obesity, excess nutrients, and the storage of fatty
acids as lipids [118]. Fucoxanthin upregulates PPAR-α and PPAR-β while downregulating
PPAR-γ [7,9,76]. It functions by upregulating fatty acid β-oxidation and downregulating
lipid storage as triacylglycerol in the liver. Fucoxanthin supplementation can alter the
PPAR pathway in a favorable manner against NAFLD.

Fucoxanthin downregulated NF-κB, MAPK, and AKT signaling pathways in response
to inflammation [86,89]. NF-κB is one of these inflammatory signaling pathways [119].
It plays a role in the homeostasis and expressing the immune response during the cell
cycle [120]. Along with FOXP3, NF-κB regulates the secretion of inflammatory cytokines
and chemokines. It is a major inducible transcription factor and primarily a cytoplasmic
factor expressed in most types of cells [121]. Downregulation of this signaling pathway is
related to the alleviation of liver inflammation and improvement in liver histopathology, as
shown in rats with type 2 diabetes mellitus (T2DM) and NAFLD treated with liraglutide
or hUC-MSCs [122]. Mice with NAFLD induced by a methionine–choline deficient diet
(MCDD) showed that both the NF-κB and AKT signaling pathways were downregulated
in response to lower levels of inflammation [123].

MAPK is another fundamental inflammation signaling pathway that drives expression
of nuclear factor E2-related factor 2 (Nrf2) and NF-κB [124]. MAPK has been found to be
responsible for lipid accumulation, inflammation, and ROS production in the HFD mouse
model [125]. The suppression of this pathway reduces the inflammatory response in many
diseases. The AKT pathway plays a role in cell metabolism, mainly in glucose metabolism.
It is also closely associated with cancer and diabetes [126]. Alteration of this pathway is
also related to obesity [127]. Fucoxanthin plays a valuable role in downregulating these
three major inflammatory signaling pathways.

The anti-oxidant activity of fucoxanthin is closely related to the Nrf2 and AMPK
signaling pathway. Fucoxanthin activates the Nrf2 and AMPK signaling pathway to reduce
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oxidative stress [109,110]. Activation of the AMPK pathway in the liver has been shown
to improve the mitochondria’s ability to resist oxidative damage. Meanwhile, the anti-
fibrogenic activity of fucoxanthin is mainly through the inhibition of TGF-β1. One of
the TGF-β1-related signaling pathways is the SMAD signaling pathway. Fucoxanthin
supplementation inhibited TGF-β1 and altered the TGF-β1-dependent SMAD, MAPK
signaling pathways, and the phosphatidylinositol 3-kinase (PI3K)/Akt pathway [111]. A
recent study using an HPF cell model showed that fucoxantin’s anti-fibrogenic inhibition
of TGF-β1 is critically dependent on the SMAD2/3 signaling pathway.

6. Conclusions and Further Potential of Fucoxanthin against NAFLD

The biological activities of fucoxanthin against NAFLD hold promising prospects.
However, there are limitations in commercialization due to the high cost of extraction with
low yield, low bioavailability, and instability. Various delivery systems for fucoxanthin
are currently being developed to increase its bioavailability. Encapsulated fucoxanthin has
been proven to have a higher bioavailability in several recent studies [128]. Encapsula-
tion has been attempted using hydroxypropyl-β-cyclodextrin, gum arabic, maltodextrin,
gelatin, isolated pea protein, whey protein, zein mixed with caseinate, κ-carrageenan,
and poly(d,l-lactic-co-glycolic acid) [129–131]. All encapsulation efficiencies were higher
than 80%. In addition to encapsulation using a single material, the combination of a
protein and polysaccharide is emerging as a major trend for complex delivery systems.
Several complex encapsulations have been conducted using arabic/gelatin, whey pro-
tein isolate and Ca2+ cross-linked flaxseed gum, zein/chitosan, and nano-encapsulation
using gliadin and chondroitin sulfate [132–134]. Protein–protein combinations such as
lysozyme, protein–lipid combinations such as bovine serum albumin (BSA) and oleic acid,
and polysaccharide–lipid combinations such as chitosan–bacuri butter and tucumã oil have
also been reported [135–137].

Fucoxanthin functions against NAFLD through its thermogenic activity in mitochon-
drial homeostasis, altering lipid metabolism, its anti-inflammatory and anti-oxidant ac-
tivities. The thermogenesis activity of fucoxanthin functions against NAFLD via UCP1
activation. Recently, UCP1 has been expected to form a complex with mitochondrial cal-
cium uniporter (MCU) and essential MCU regulator (EMRE), named the thermoporter [40].
While UCP1 is associated with proton leakage, MCU and EMRE are associated with cal-
cium uptake in the mitochondria membrane. As fucoxanthin is known for its thermogenic
effect through UCP-1, if UCP-1 indeed forms a complex with EMRE/MCU, mitochondrial
calcium uptake regulation may affect UCP-1 and its thermogenic activity. Thus, fucoxan-
thin’s thermogenic activity could be optimized by finding a compound that synergistically
regulates calcium uptake.

Lipid metabolism in the human body is actively altered by changes in diet. De
novo lipogenesis plays a major role in NAFLD. It leads to hepatocytic accumulation of
triglycerides [73]. Polyunsaturated fatty acid supplementation suppresses lipogenesis
gene expression in the liver, including fatty acid synthase, spot14, and stearoyl-CoA desat-
urase [138]. Meanwhile, a high-carbohydrate diet stimulates lipogenesis in adipose tissues
as well as the liver, as indicated by the elevated level of triglycerides [139]. This mechanism
can be utilized to find a compound works synergistically with fucoxanthin that can help
fight against NAFLD. The conversion step of acetyl-CoA to malonyl-CoA by acetyl-CoA
carboxylase is the rate-limiting step in de novo lipogenesis, where malonyl-CoA also plays
a role in regulating mitochondrial fat oxidation by inhibiting carnitine palmitoyltransferase
I [73]. Soraphen A, a natural polyketide compound isolated from the bacterium Sorangium
cellulosum, has been reported to inhibit acetyl-CoA carboxylase and to increase insulin
sensitivity in an HFD-fed, insulin-resistant mouse model. Piperidinyl derivative CP-610431,
spirocyclic spiropiperidine-derived compound, olumacostat glasaretil, aryl ether-derived
analog, piperazine oxadiazole, and 1,4-disubstituted cyclohexane are also other reported
acetyl-CoA carboxylase inhibitors [140]. Finding a synergistic inhibitor of acetyl-CoA
carboxylase may help fucoxanthin in combating NAFLD.
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Further studies on the role of fucoxanthin against NAFLD should also be performed
at the level of RNA. Many RNA studies have been conducted regarding NAFLD because
of its role in signaling pathways [141]. Non-coding RNA can effectively silence gene
expression and alter signaling pathways. A long non-coding RNA highly upregulated
in liver cancer (lncRNA HULC) has been found to inhibit the MAPK signaling pathway
in an NAFLD mouse model [142]. Locked nucleic acid (LNA) was also found to inhibit
lipogenesis and upregulate fatty acid oxidation in db/db mice [143]. A microRNA, miR-
291b-3p, affects the AMPK signaling pathway by inhibiting fatty acid synthesis as well
as de novo lipogenesis [144]. The microRNA miR-378 alters the AKT signaling pathway
and reduces lipogenesis [145]. In another study of 16S rRNA, it was found that fucoxan-
thin altered high-fat-diet-induced gut microbiota dysbiosis by suppressing the growth of
obesityinflammation-related Lachnospiraceae and Erysipelotrichaceae gut bacteria and induc-
ing the growth of Lactobacillus/Lactococcus, Bifidobacterium, and butyrate-producing gut bac-
teria [146]. A similar study also showed that fucoxanthin altered the Firmicutes/Bacteroidetes
ratio and the abundance of S24-7 and Akkermansia, which attenuates obesity in a high fat
diet mouse model [147]. Fucoxanthin regulates gut microbiota to treat NAFLD through its
anti-obesity activity.
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