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Abstract: Urease is a metalloenzyme that catalyzes the hydrolysis of urea, and its modulation has
an important role in both the agricultural and medical industry. Even though numerous molecules
have been tested against ureases of different species, their clinical translation has been limited due to
chemical and metabolic stability as well as side effects. Therefore, screening new compounds against
urease would be of interest in part due to rising concerns regarding antibiotic resistance. In this
work, we collected and curated a diverse set of 2640 publicly available small-molecule inhibitors of
jack bean urease and developed a classifier using a random forest machine learning method with
high predictive performance. In addition, the physicochemical features of compounds were paired
with molecular docking and protein–ligand fingerprint analysis to gather insight into the current
activity landscape. We observed that the docking score could not differentiate active from inactive
compounds within each chemical family, but scores were correlated with compound activity when
all compounds were considered. Additionally, a decision tree model was built based on 2D and
3D Morgan fingerprints to mine patterns of the known active-class compounds. The final machine
learning model showed good prediction performance against the test set (81% and 77% precision
for active and inactive compounds, respectively). Finally, this model was employed, as a proof-of-
concept, on an in-house library to predict new hits that were then tested against urease and found to
be active. This is, to date, the largest, most diverse dataset of compounds used to develop predictive
in silico models. Overall, the results highlight the usefulness of using machine learning classifiers
and molecular docking to predict novel urease inhibitors.

Keywords: urease; machine learning; random forest; protein–ligand interactions; QSAR; H. pylori;
jack bean urease

1. Introduction

Urease is a metalloenzyme conserved in several organisms, including plants, fungi
and bacteria, that catalyzes the rapid hydrolytic decomposition of urea into ammonia
and carbamate [1]. This reaction is key in the global nitrogen cycle of organisms, and
urease is also an important pathogenic factor that confers resistance to bacteria such as
H. pylori and P. mirabilis. In particular, the former relies on urease for survival in the highly
acidic environment of the stomach. Due to the role of ureases in pathogen survival, their
inhibition has shown tremendous potential both for agricultural and medical applications
as well as in the development of sensors.
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A wide array of small molecules of both synthetic and natural origin have been tested
against ureases of different species to modulate their activity [2–4]. Generally, inhibition is
achieved through targeting the conserved bimetallic nickel ions using substrate-like com-
pounds, transition-state analogues and metal chelating moieties. However, other strategies
that involve covalent modification of an important cysteine that is essential for the catalytic
mechanism [5,6], non-competitive inhibition, as well as other non-specific mechanisms
(e.g., precipitation, denaturation), have shown promising results [6]. However, so far, these
compounds have had limited translation to the clinical setting due to issues of cost, potency,
solubility, and chemical and metabolic stability as well as toxicity due to promiscuous
binding to other enzymes. Recently, high-throughput screening of FDA-approved drugs as
a re-purposing strategy was carried out to find inhibitors of urease, but the most potent
compounds were found to be anti-cancer drugs and consequently not appropriate for this
application [7]. Therefore, there is still much interest and potential in developing new
inhibitors, but the de novo design of lead molecules is still a difficult challenge.

Data-driven design of new compounds in medicinal chemistry is essential at various
stages of lead development. In particular, searching for novel compounds that display
activity greatly benefits from insights gained from other classes tested. Recently, we
reported on the chemical space of urease inhibitors and found a diverse range of scaffolds
and key features associated with activity [4]. Several in silico approaches, including
simple quantitative structure–activity relationship (QSAR) models, molecular docking and
machine learning methods, have been applied to successfully predict urease inhibition
activity and to screen new compounds [8,9]. However, these studies generally do not
combine different approaches (e.g., docking score, protein-ligand interactions and machine
learning) for predictive analysis and use a limited number of total compounds and classes
of compounds and, therefore, lack the structural features that contribute to activity. As
a result, constructing a predictive model with wide applicability and high performance
has not been done yet. Furthermore, the models in these studies were built with limited
complexity (i.e., using only one type of feature/descriptor), which potentially compromises
capturing more complex patterns that define inhibitors and may, in turn, compromise the
model’s performance when screening new compounds. Moreover, to date, there is no
study that carried out molecular docking on all urease inhibitors using the same protocol
and enzyme. Therefore, in order to further expand on our previous analysis [4], we
applied computational methods of molecular docking and machine learning to identify
scaffolds with activity. Since jack bean urease is typically used as a surrogate to test the
inhibitory activity against other species as its active site is well conserved, this enzyme
was selected due to the higher number of compounds tested against it. To the best of
our knowledge, this constitutes the largest dataset of urease inhibitors and, therefore, this
work is the most comprehensive and most thoroughly validated modelling effort for this
enzyme. Furthermore, we highlighted potential residues to target when designing novel
urease inhibitors. Finally, we also reported on the use of machine learning algorithms to
design a transparent classifier based on molecular descriptors and features derived from
molecular docking and how they can be useful in screening new compounds, as well as
their limitations. Additionally, we used this in consensus with the docking scores produced
by a molecular docking model to predict new active compounds. After validation on two
external datasets gathered after the model has been built, both models were used, as a
proof-of-concept, to screen an in-house set of compounds tested against jack bean urease.

2. Results and Discussion
2.1. Active and Inactive Classes Show Similar Key Chemical Properties

A diverse collection of scaffolds has been tested against ureases of different species,
but the majority of studies have used jack bean urease as a surrogate due to its relatively low
cost and commercial availability. Jack bean urease also shows generally good translation
into the other species due to the highly conserved active site [4]. Nevertheless, to avoid
noise from aggregating data from different species when training our model, we chose to
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restrict our data to jack bean urease exclusively due to this organism having the largest set
of activity data.

An initial dataset of 1614 active and inactive compounds (~1:1 ratio) tested against jack
bean urease was assembled (Table 1). Considering that compounds are assigned to either
activity class according to their ratio of activity against the control in the corresponding
assay, it is worth noting that the majority of the inactive compounds showed a maximum
activity ratio of 2 (i.e., twice the control activity). This dataset was then split into two
additional subsets: training and test set (75%:25%) (Table 1) using clustered sampling (see
methods) [4], to avoid entire clusters being left out from training. An external validation
set was also assembled in order to extend validation (external validation set). Additionally,
while building the predictive model, newly reported compounds were continuously being
collected, and these were used as a temporal dataset to assess the performance throughout
time with newly reported scaffolds. All datasets showed a low Tanimoto mean value
(0.13–0.15), and therefore, a high diversity in each dataset was identified (Table 1). For all
datasets, the majority of both active and inactive compounds had similar distributions of
molecular weight and number of heavy atoms, lipophilicity (MolLogP) and topological
polar surface area (TPSA) (Figure S1).

Table 1. Description of the datasets of compounds tested against jack bean urease that were used to
construct and validate the machine learning model. Tanimoto mean was calculated as the average of
pair-wise Tanimoto coefficients among all compounds in each set.

Dataset Total Compounds Number of Active
Class Compounds

Number of Inactive
Class Compounds Tanimoto Mean

Training Set 1210 613 597 0.13

Test Set 404 216 188 0.13

External Validation Set 298 215 83 0.15

Temporal Validation Set 728 450 278 0.13

2.2. Docking Score Is Predictive of Urease Inhibition

Having an understanding of the key structural underpinnings that drive ligand bind-
ing at the active site is an important step in the design of novel inhibitors. In this regard,
docking is a very important tool, as it generally produces binding poses that can then be
analyzed to determine key interactions that correlate with activity and can thus be used for
screening. We carried out molecular docking calculations for all datasets using the X-ray
structure of jack bean urease in the bound state (PDB 4H9M). We first validated the docking
protocol with self-docking of acetohydroxamic acid and observed a high performance in
predicting the crystallographic ligand pose (root mean square deviation < 1 Å). This proto-
col was then extended to the rest of the compounds. Since docking generates a number
of energetically acceptable binding modes (poses), we compared the first docking pose
and the top five poses and did not observe any significant differences in terms of docking
scores between all poses, which varied mostly within 0.5 kcal/mol of each other (Figure S2).
However, since docking poses are determined by their docking score, which is often poorly
correlated with the binding affinity [10], we used all top five poses for subsequent analysis.

Typically, the correlation between the experimental inhibition and the docking energy
is a poor surrogate for describing activity, and overall, we observed these limitations for a
significant number of scaffolds produced from clustering the data. Indeed, docking scores
failed to identify the majority of the most potent inhibitors (Figure S3). Nevertheless, when
considering the full training set, a high docking score was a good predictor of the active
class (p = 8.6 × 10−19 Spearman’s test for the correlation between score and activity), and
using an increasingly lower docking score cut-off led to the enrichment of compounds from
the active class (Figure 1). Indeed, all of the lowest docking scores (<−11), across all training
and tests, corresponded entirely to active compounds (Figures 1 and S3). Furthermore, we
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carried out docking on the macromolecular assembly made available in PDB (for the same
PDB record, 4H9M), which consisted of a urease homodimer where the binding pocket is
additionally shaped by a portion of the other monomer in the dimer. The calculations on
this assembly structure interestingly did not improve the enrichment of the active class,
but rather, degraded the predictive performance of the docking score, which could be
observed with a smaller enrichment for the active class as a function of docking score
cut-off (Figure 1). Overall, the steadily increasing enrichment of actives for the “monomer”
docking calculations shown in Figure 1 shows that the docking score is a good predictor of
activity and can be used as a filter in virtual screening.
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Figure 1. Enrichment curve of the ratio of active class vs. docking score for both the monomer (blue)
and assembly of urease (orange). Our results suggested a better enrichment when the monomer was
utilized, with a direct correlation between high docking score and the activity being at least as active
as thiourea or acetohydroxamic acid. The data used to produce this plot correspond to the training
and test sets together.

The analysis of the 100 top-scoring compounds from docking revealed that these were
predominantly substrate analogues and transition-state analogues as well as sulfonamides
(known to be good binders of zinc). These top 100 compounds showed an average dock-
ing score of −10.86 and an average molecular weight of 527.20 g/mol (with 524.73 vs.
540.16 g/mol for active and inactive class, respectively). This small discrepancy between
the averages for actives and inactives suggests that the relatively larger size of the inactive
class may explain their apparently “improved” docking scores.

Even though the average activity ratio for the top 100 compounds was 2.414, the
median was rather low, at 0.169, which means that the top-scoring compounds tend to be
rather potent. Indeed, 84% of these compounds were actives (i.e., below a ratio of 1), 45%
were under a ratio of 0.1, 13% under a ratio of 0.01 and 11% under 0.001. This means that
the docking score would be theoretically able to find a compound with close to 2 µM of
inhibitory activity with a 45% chance, and around 11% chance of finding one around with
200 nM of activity.

Since the docking score tends to penalize smaller molecules, there have been var-
ious approaches to cope with this bias and to allow finding more selective and potent
inhibitors [11]. One common approach is to calculate the ligand efficiency (i.e., docking
score divided by number of heavy atoms). However, when we used ligand efficiency to
sort the compounds in our training set, we observed that its predictive power was much
lower (around 55%), with a Spearman’s test showing a non-significant correlation (p = 0.21)
even within categories of the same number of heavy atoms (Figure S3).

Considering that the docking score allowed for a good enrichment profile for the active
compounds (Figure 1, monomer curve), we used this metric to predict actives. Whenever
the docking score was used to filter compounds, we considered a cut-off of −9.43 kcal/mol,
which corresponded to the 10th percentile of all docking scores. This cut-off was selected for
being associated with an acceptable precision (0.74) when predicting actives (see Figure 1).
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The predictive performance of this docking model was also validated on the external set
and temporal set, and the previously selected cut-off yielded a precision for the active class
of 0.76 and 0.87, respectively. On the other hand, docking scores ranged between −1.98
and −11.45 kcal/mol.

Azizian et al. used docking to screen 737,685 compounds from ZINC8 which led
to the selection of three compounds of different classes, one of which showed inhibitory
activity and was further modified to generate barbituric acid analogues with moderate
activity [12]. Similarly, docking of an in-house dataset of approximately 10,000 compounds
led to the discovery of compounds with moderate activity [13]. Even though these studies
proposed moderate activities, the predictive power of docking was not validated with
a set of known actives, and the docking score was used with sole reliance on a good
self-docking performance.

2.3. Protein–Ligand Interaction Fingerprints (PLIF) Identify Key Residues of Interactions

A useful way of drawing information that helps guide drug design is to analyze the
protein–ligand interactions in the docking poses. Even though the docking score itself
showed good predictive performance, it lacked information regarding what structural
elements were contributing to the activity. This can be addressed with PLIFs, as they
provide additional three-dimensional information on the types of interaction observed. If
many inhibitors interact with a protein via a similar type of interaction, potentially they
have similar activity. Therefore, this allows “rescuing” compounds that may have been
penalized by both the scoring function of docking or missed by the machine learning
model [14].

Both active and inactive classes of compounds on average interacted with a similar
number of residues (5.85 ± 1.99 residues for actives vs. 5.97 ± 2.09 residues for the
inactives), and similar amounts of interactions for each interaction type were observed for
both classes (Table S1). Surprisingly, despite several families of inhibitors being designed
to bind to the metal center, slightly more metal interactions per compound were observed
for the inactive class (0.740 and 0.925, respectively).

Moreover, by looking at each interaction type, we observed that there was a significant
difference in hydrogen bonds established by active and inactive classes (Figure 2). On
one hand, the inactive compounds were more likely to have no hydrogen bonds with
urease. Then, having one or two interactions seemed to be a better predictor of the active
class. However, when five or more hydrogen bonds were established, this seemed to
either (1) deteriorate activity (occurring more in inactives) or (2) become increasingly more
irrelevant toward generating activity (Figure 2). Therefore, having many interactions via
hydrogen boding might be either detrimental or at least unhelpful.

Together with the type of interaction, the types of residues that interact with com-
pounds also appears to dictate activity in general. Surprisingly, we observed that more
inactives interacted with the Zn atom (replacing Ni in the docking calculation) (Figure 3).
Furthermore, we also noticed a general trend where the residues most associated with
the active class were those farther from the metal center (Figure S4). However, given that
a relatively large percentage of actives bind to the metal ions (~30% and ~40% to Zn901
and Zn902, respectively (Figure 3), this suggests that lengthier compounds that are able
to extend from the metal center outward and establish interactions away from the Zn (Ni)
atoms may be desirable. The pattern of inhibitory interaction was also not solely due to a
single residue, as compounds showed a complex interaction pattern with many residues.
Nevertheless, it should be noted that there were clearly residues that interacted more
than others with compounds of either class (Figure 3). Besides Zn, several residues that
interacted more frequently with inactive compounds were HIS492 (OR of 0.58), and to a
lesser degree, ALA440 (OR = 0.87), ASP494 (OR = 0.90), ASP633 (OR = 0.65) and MET637
(OR = 0.79). Contrarily, interactions with ARG439 (OR = 1.22) were more frequently ob-
served in the active class, which, alongside the higher percentage of pi-cation interactions,
may explain their favorable profile (Table S1). Indeed, pi-cations with ARG439 were almost
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double in active over inactive classes of compounds. Other important residues for activity
were CYS592 (OR = 1.52), GLN635 (OR = 1.74) and GLU493 (OR = 1.55).
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urease residue. act: active, inact: inactive.

Next, we exhaustively mined interaction patterns that were predictive of activity by
evaluating all combinations of urease residues (three, four or five simultaneous residues)
where at least a minimum of 70% of 40 compounds were shown to be from the active class
(see Table 2). Starting with combinations of three residues, we observed the combinations
of the same residues to be the most relevant to make predictions. In particular, it seems
that ARG-609 is a very important residue and appears in many of these combinations to
contribute to the enrichment of compounds belonging to the active class. Curiously, these
combinations also pointed to the importance of ASP494. After mapping these residues
in the crystal structure, we observed that ASP494 was right in front of the ARG609 and,
therefore, they probably interact with one another via salt bridges, and it is likely that
compounds that can insert into that site may disrupt this interaction.
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Table 2. Combination of residues where at least 70% of compounds are from the active (i.e., minimum
70% hit rate) class and occur in at least in 40 compounds.

Combination Residues in the Combination

1 ALA636, ASP494, GLU493

2 ARG609, ASP494, LEU523

3 ARG609, ASP494, PHE605

4 ARG609, HIS593, PHE605

5 GLY550, HIS492, MET637

6 ALA636, ARG609, ASP494, GLU493

7 ARG439, ARG609, HIS519, MET637

8 ARG609, ASP633, HIS492, MET637

9 ASP633, GLY550, HIS519, ZN901

10 ALA636, ARG439, HIS492, MET637, ZN902

11 ARG439, ARG609, HIS492, HIS519, MET637

12 ARG439, ARG609, HIS519, MET637, ZN901

13 ARG439, ARG609, HIS519, MET637, ZN902

14 ASP633, GLY550, HIS519, ZN901, ZN902

Increasing the length of combinations to four residues resulted in different combina-
tions of nearby residues but generally evidenced the positive role of ARG609, HIS519 and
ASP633 in combinations associated with activity.

Further increasing the length of combinations to five revealed that the combination
ALA636/ARG439/HIS492/MET637/ZN902 (combination 10) had a hit rate of 70% for
54 compounds (Table 2). Again, ARG609 was found to be important for activity, and
another interesting combination found was ASP633/GLY550/HIS519 with both metal ions
of the active site (combination 14). In combination with these residues, HIS593 was relevant
but only in combination with ASP494 and not GLU493. This was expected since in the
pocket in this residue is positioned next to ARG609 and in front of ASP494, while relatively
far from GLU493.

Building a decision tree with PLIFs revealed interesting patterns that differentiated
the active from inactive class. For example, interaction with HIS492, MET637, and HIS593,
but not with ALA636 and ZN901, was able to enrich the number of active over inactive
compounds (126:51 ratio). This rule was even more interesting when we considered that
the residues at the top of the corresponding branch individually interacted more frequently
with inactive compounds (Figure 3). Similarly, interaction with HIS492, MET637, not with
HIS593, and with ARG-439 and GLY-638, enriched actives over inactive compounds (110:17).
This highlights that even if interactions with ASP494 and MET637 are unfavorable, the
interaction with ARG439 is overwhelmingly correlated with activity. For compounds that
did not interact with HIS492 but interact with GLY550 and PHE605, if they then interacted
with HIS593, we found a small enrichment of 102/78 for the active over inactive class, but
if they did not interact with HIS593 but rather with MET637, the rule enriched with the
inactive class (61 active to 122 inactive). Despite the observations that interactions with
the metal centers seemed unfavorable, the decision tree algorithm found that compounds
not interacting with HIS492 and GLY550 but interacting with ASP494, MET637 and ZN901
were two times more likely to be active (68/33). Even though decision trees provided
interesting patterns of interaction, they performed the worst in separating active from
inactive compounds compared to the combinations described above.

Overall, the PLIF analysis suggested a complex network of interactions between
compounds and the jack bean urease active site. Many different combinations of residues
seem to “fine tune” the interaction between a ligand and the protein and dictate inhibitory
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activity. In particular, a small set of residues appeared to be dominant in defining the type
of interaction and activity.

2.4. Machine Learning Can Accurately Predict Activity of Urease Inhibitors

Many QSAR models have been developed for different classes of urease inhibitors [15–17].
However, achieving a general and accurate prediction model that can be applied in
structure-based virtual screening is still a very demanding task. For this purpose, we
built a machine learning to produce a classification model that predicts whether a com-
pound is active or not (activity defined by the ratio against a control) using aggregated
chemical information extracted from docking and general chemical features.

We used three tree-based machine learning algorithms to build models that the predict
active and inactive compounds: random forest (RF), extreme gradient boosting (XGBoost)
and decision tree. The three candidate models were optimized through hyperparameter
tuning using the grid search function (GridSearchCV), and optimized models were then
tested against the test set (performance results are summarized in Table 3). The RF model
(built with 200 trees) showed the highest F1-score values for both active and inactive (0.80
vs. 0.77) and was selected as the best model. This model also outperformed the other two
in terms of precision and recall, with the only exception being the recall of the inactive class,
which showed the highest value in the XGBoost model.

Table 3. Performance measured as precision, recall and F1-score on the test set for the three candidate
machine learning models. Value in bold indicate the best performance for each metric.

Precision Recall F1-Score

Actives Inactives Actives Inactives Actives Inactives

Random Forest 0.81 0.77 0.79 0.78 0.80 0.77

XGBoost 0.71 0.72 0.73 0.80 0.77 0.76

Decision Tree 0.74 0.72 0.76 0.69 0.75 0.70

Regarding the features that composed our model, the majority of the top features
included physicochemical descriptors, and interestingly, many of these were 3D in nature:
SpherocityIndex, RadiusOfGyration, Eccentricity and Asphericity (see details in RDKit’s
documentation https://www.rdkit.org/docs/source/rdkit.Chem.Descriptors3D.html, ac-
cessed on 2 April 2023). Furthermore, among the top 50 most important features, we also
found Morgan Fringerprint bits and PLIF bits (such as HIS492, HIS593 or ALA636) to be
relevant. Both the high importance of 3D physicochemical features as well as PLIFs sug-
gested that addressing the three-dimensionality of the binding is important and provides
useful information when modelling urease inhibition. This is something that has not been
accounted for by other models previously published.

The optimal modelling conditions for the RF model were then selected to build an
ensemble of 100 RF models where varying random seeds were used for the sampling of
data and features during training. The resulting 100 predictions for each compound were
then aggregated using majority voting to produce the final classifications. The trained
model was subsequently tested on the test validation set (Figure 4A) and the external set
(Figure 4B) and showed precision similar to that of the base model for the active class.
However, enhancing the prediction with an applicability domain (AD) method, this model
was able to effectively filter out unreliable predictions (i.e., mispredictions). As the AD
cut-off became more stringent (lower value), the precision of predictions in both active
and inactive classes steadily increased. In fact, using the most stringent cut-off, it was
possible to achieve 100% precision when predicting the active class. The drawback of using
such a stringent cut-off is that data coverage becomes very low (i.e., only 5.2% and 7.38%
of predictions were accepted to be reliable). Based on these results, in order to use the
model for screening purposes, we used the reliability-density neighborhood method to
established an AD cut-off that corresponded to the maximum value at which we accepted

https://www.rdkit.org/docs/source/rdkit.Chem.Descriptors3D.html
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predictions with sufficient reliability. This value was selected from the AD performance
curve measured in the test set (Figure 4A), where a cut-off of 0.258 was the highest value
associated with ~90% precision for both active and inactive classes. This result not only
validated the reliability of the predictions produced by the machine learning model but also
validated the usefulness of the AD cut-off selected. Additionally, it is worth noting that both
the AD curves for the test set and the external set showed an overall indirect correlation
between the AD cut-off and precision of predictions. This meant that the method used to
define the model’s AD has the desired relationship with prediction performance (i.e., as the
cut-off becomes more stringent, prediction performance tends to increase steadily).
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performance measured on the external set (N = 298), for different AD cut-offs. Decreasing values of
AD cut-off indicate a more stringent AD has been enforced (i.e., higher confidence in predictions is
theoretically expected). The values above the plot indicate data coverage (i.e., predictions allowed by
the AD cut-off).

To further validate our model’s predictive performance, we tested it on data published
after the publications in the training set (i.e., from 2021 to 2023). After curating this dataset,
we were left with 728 compounds with activity data against jack bean urease. Contrary to
previous tested datasets, we observed a precision of 0.67 and recall of 0.82 for the active
class. Given the passage of time and its inherent chemical space drift, a portion of these
predictions were extrapolated from the chemical space covered by the model (Figure 5).
Therefore, employing an AD filter was even more important in this scenario and, indeed,
doing so yielded a significant increase in the precision and recall of the active class (i.e., 0.67
and 0.71, respectively). However, we should note that, in this case, an even more stringent
AD (0.25) cut-off was used compared to the test set, since the original cut-off produced
significantly poorer precision (0.67). This indicates that the model performance should be
“recalibrated” periodically as new scaffolds are being published.
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Previous in vitro screening efforts for sets of 84 and 3904 compounds were able to
discover new urease inhibitors with different mechanisms of action [6,7]. Screening a large
number of compounds is, however, usually costly, and for this reason, there has been
an interest in predicting urease inhibition for virtual screening. Recently, using machine
learning classification and regression models such as associative neural networks, k-nearest
neighbors, XGBOOST, and WEKA-RF (RF model in WEKA), with cross-validation on a
small dataset containing 647 compounds (518/129 split) showed the potential of predicting
activity [8]. Even though the experimental compounds (thiazole based scaffold) were all
weaker than thiourea (around 50 µM and, therefore, classified as inactive by our model),
the predicted activity was accurate [8]. Using the combination of docking with a Monte
Carlo method-based QSAR model using simplified molecular-input line-entry system
(SMILES) and GRAPH descriptors on a dataset of 436 urease inhibitors from BindDB
similarly achieved high prediction performance for the test sets but was not tested against
an experimental validation or any external dataset [18]. Alternatively, virtual screening
with the 3D shape-based Rapid Overlay of Chemical Structures Tanimoto score based on
the compound o-chloro-hippurohydroxamic acid was used to screen the enamine library of
1.83 million compounds, of which 1700 were then docked into urease. Afterwards, eight
compounds of different classes from the top 100 ranked compounds were tested in vitro,
and all showed activity lower than thiourea (0.32–12.53 µM vs. 22.61 µM respectively)
and were shown to be competitive and mixed-type inhibitors [9]. Even results from the
virtual screening described above are promising; these models were still very limited in
the number of compounds used. Based on our results, this is very important, as even after
using a relatively large dataset, its accuracy dropped significantly for new compounds
with distinctive scaffolds. For instance, the loss in prediction power in the temporal dataset
can be attributed to the drift from the original chemical space known by the model, given
that the collected data for this dataset were published after the data that made up the
training and test sets. On the other hand, a limitation of using docking-based methods for
urease is the assumption of “competitive” binding. However, from the reported literature
that was used to assemble this dataset, compounds tested against urease were mostly
mixed-type inhibitors and several uncompetitive and non-competitive inhibitors as well as
covalent inhibitors that were also present. Their inclusion thus may skew the results, as
their binding to the active site is not realistic, and current models do not discriminate the
type of mechanism by which compounds may act.

2.5. Proof-of-Concept Shows the Usefulness of Our Machine Learning Model: In Vitro Urease
Inhibition Assay of an in-House Library

We then screened an in-house library of 106 compounds. Molecular docking yielded
no actives, but the machine learning model predicted eight actives (albeit outside of the
applicability domain), from which five were visually selected for in vitro testing. The
compounds predicted to be active included some sulfonamide and sulfinamide analogues
(Figure 6), and these were further selected to test in vitro against jack bean urease (Table 4).
Benzene sulfonamides are a well-established class of urease inhibitors, with very potent
compounds having been reported [19], whereas the sulfinamide group has never been
tested against urease, to the best of our knowledge. The selected compounds were, however,
very closely similar to sulfonamides previously reported to have weak activity [20].
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Table 4. Shortlisted compounds among virtual screening hits accompanied by their predictions from
both in silico models, inhibitory activity and mode of inhibition from in vitro testing against jack
bean urease.

Compounds Docking Score *
(Kcal/mol)

Docking
Prediction ML Prediction % at 1 mM or IC50

± SEM (µM)
Mode of

Inhibition

1 −5.92 Inactive Active 43.85% –

2 −5.70 Inactive Active 100.12 ± 10.18 Mixed-type

3 −5.96 Inactive Inactive 6.15 ± 0.99 Uncompetitive

4 −5.48 Inactive Active 0% –

5 −6.42 Inactive Inactive 155.19 ± 2.02 –

Thiourea −3.48 Inactive – 144.37 ± 5.08 –

* Docking score refers to the score from the top-scoring pose.

As described in Table 4, all compounds predicted by the ML model were outside the
applicability domain and, therefore, the predictions should not be accepted. However,
these were still tested, as they belong to an often-active scaffold. Indeed, using the AD
filter would have prevented us from accepting two mispredictions. All active compounds
showed moderate-to-strong activity, and compound 2 and 3 with the lowest IC50 were
further investigated for their mechanism of inhibition by a preliminary enzyme kinetics
assay using different concentrations of compounds and substrate. A Lineweaver–Burk
curve was then fitted to these data, being used to provide an initial indication of the mode
of inhibition. For compound 2, the decrease in Vmax and increase in KM indicated a mixed-
type inhibition (Figure S5). On the other hand, for compound 3, it produced parallel lines
in the double reciprocal plot, and both Vmax and KM decreased with increasing inhibitor
concentration, suggesting an uncompetitive inhibition pattern. Even though our docking
protocol is specifically meant to find competitive inhibitors, the fact that compound 3
was shown to be uncompetitive further highlights the difficulty in predictions based on
this approach.

From the limited number of compounds, it appeared that the methyl group (com-
pound 1) was detrimental for the activity of this class of compounds. On the other hand, the
sulfinamide group seemed to be significantly more potent but led to an uncompetitive type
of inhibition (compound 3). However, restricting the degrees of freedom of the compound
with the introduction of a carbonyl group led to complete loss of activity (compound 4),
even though the fragment of the molecule (compound 5) seemed to have activity similar to
that of thiourea.

3. Materials and Methods
3.1. Dataset Preparation

A dataset consisting of compounds tested against jack bean urease was used from
a previously assembled dataset [4]. Briefly, compounds were manually retrieved from
the available literature (up to April 2021), patents and from CHEMBL28 [21]. A total
of 1614 compounds tested against jack bean urease were obtained as SMILES, and only
compounds with available IC50 or Ki values were considered. To allow better comparison
between assays from different sources, the activity was normalized by being divided
by the activity of the control in the corresponding assay (thiourea or acetohydroxamic
acid, which are those typically reported). This is particularly important here, considering
the multiple orders of magnitude of variation in IC50 values observed for the positive
controls. Therefore, we refer to the activities in this dataset as activity ratios throughout
this work. The compounds were then divided into active and inactive classes based on an
activity ratio cut-off of 1 (actives below 1). The SMILES accompanying the activity data
retrieved were standardized and cleaned using the structure preparation library MolVS 0.1.1
(https://molvs.readthedocs.io/en/latest/, accessed on 1 March 2023) in python and then
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converted into InChIKeys. Duplicated compounds were excluded using InChIKeys (the
lowest activity value among duplicates was kept), and metal complexes were also removed.

The dataset was then divided into a training set containing 613 compounds in the active
class and 597 compounds in the inactive class and a test set containing 404 compounds.
Additionally, two datasets of 298 and 728 compounds, respectively, were assembled from
the literature, after the final model had been built, using the methodology described earlier
in this section. These two datasets were used, respectively, as an external dataset (data
collection occurred after the model was finalized, but the time of the data overlaps that of
the training data) and a temporal dataset (data collection happened after the model was
trained, and the publication time took place after the time span of the training data) to
validate our model in a way that closely emulated the real-world use of the model.

3.2. Similarity, Chemical Space Visualization, Molecular Descriptors and Morgan Fingerprints

The standardized structures of all urease inhibitors were used to calculate the 1024-bit
Morgan fingerprints with RDKit. Additionally, we used RDKit to calculate 2D and 3D
physicochemical descriptors. Visual clustering was performed with the t-SNE [22] di-
mensionality reduction, using the function implemented in scikit-learn (TSNE function)
projecting the original 1024 dimensions into two final dimensions. Additionally, the Tani-
moto coefficient value was calculated to assess the similarity within each dataset.

3.3. Protein Structure Preparation and Molecular Docking

For this, the X-ray crystal structure from the PDB 4H9M (1.52 Å resolution), deposited
in the Protein Data Bank, was chosen, as this was the only holo structure of jack bean
urease available, and it was bound to the known inhibitor acetohydroxamic acid. The
protein–ligand complex underwent structure preparation in MOE v.2020, which entailed
washing (removal of salts, ions, crystallography additives and solvent) while leaving the
two Ni atoms in the ligand’s binding site. Next, the structure was energy-minimized
through optimization of the intramolecular hydrogen bonding network within the protein
(performed with Protonate3D in MOE). Additionally, the CME residue was changed back
into a cysteine, as this alteration was originated during the crystallization process, while
KCX (carbamylated LYS) was kept unchanged, as it naturally occurs in this protein. Finally,
the Ni atoms were replaced by Zn atoms, as the parameters for the latter were already
parameterized in the docking software used (LeDock [23]) and were the most similar in
overall properties. Considering that PDB 4H9M was the only holo structure available,
we validated our docking procedure with self-docking alone using the RMSD between
top-scoring pose and the natural ligand as the evaluation metric.

The full dataset of urease inhibitors was then submitted to molecular docking calcula-
tions using LeDock. Prior to any calculations, the dataset was also prepared in MOE prior
to docking calculations, where all compounds were converted into their most probable
tautomeric and protomeric state at pH 7.4 and rendered into a 3D structure through energy
minimization using the Amber10:EHT method. The docking box was generated for the
active site of the enzyme defined from the co-crystallized ligand and extended to visually
accommodate the full cavity. Compounds were then docked for a set of 1000 poses per
compound. Protein–ligand interactions and docking scores were the two main outputs
from the molecular docking calculations.

Additionally, the enrichment profile for the active class was also used as additional
validation of docking’s predictive performance, and the docking score of both the top-
scoring and the five top-scoring poses were used for prediction and analysis.

3.4. Protein–Ligand Interaction Fingerprints (PLIFs)

The top 5 docking score poses for each compound were used to derive protein–ligand
interaction fingerprints (PLIFs) with the PLIP software v1.1.0, using the docker-based com-
mand following instructions in PLIP’s GitHub repository (https://github.com/pharmai/
plip, accessed on 1 January 2023) [22].

https://github.com/pharmai/plip
https://github.com/pharmai/plip
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Each compound’s PLIF was composed of 41 residues, which resulted from merging
all residues that interacted with at least one compound in the entire dataset (training and
test). To avoid a very sparse PLIF matrix, we opted to handle residue interactions as
binary (interaction exists or not, regardless of its type) instead of representing them as
residue-interaction type. Considering that multiple poses of the same compound may have
distinct interaction signatures, consensus of interactions was defined as interactions being
required to be present in at least 3 out of the top 5 poses.

The generated fingerprint of interactions resulted in a 1614 × 41 binary matrix that
was then further analyzed using scipy and sklearn to calculate the number of interactions,
combination of interactions and the odds ratio of each interaction, and finally, a decision tree
model was built to extract meaningful rules associated with this protein–ligand fingerprint
using the DecisionTreeClassifier function in scikit-learn.

3.5. Construction of a Machine Learning Model for Prediction of Urease Inhibition

The dataset was split into training and test sets (75:25% split) using clustered splitting.
To do this, we submitted the full data to hierarchical clustering using the Agglomera-
tiveClustering function in scikit-learn, applied to the Morgan fingerprints of the com-
pounds. This produced a total of 50 clusters (number of clusters set by us), from which
the training and test sets were randomly sampled [4]. After sampling, the training set
was used to carry out feature selection using ReliefF’s function in skrebate, where the top
30 features were selected from each of three feature sets (2D physicochemical descriptors,
Morgan fingerprints and PLIFs), and all features from 3D descriptors were kept, as they
were less than 30. As a result, a total of 70 features were used for the model building
stage. Three machine learning methods were tested: random forest (RF) in scikit-learn
(RandomForestClassifier function), XGBoost (XGB) v1.2.0 using a “binary:logistic” learning
objective, and decision tree (DT) using a min_samples_split of 10. All models were classi-
fiers (classification of active and inactive classes). Hyperparameter tuning (RF: number of
trees; XGB: learning rate, max_depth, min_child_weight, gamma) was guided by 5-fold
cross validation performance. The best machine learning method was selected based on the
test set performance (measured as F1-score), and then used to train an ensemble of 100 mod-
els with bootstrapping without replacement. The final class prediction was obtained by
taking the majority vote from all 100 models. To assess predictive performance, the trained
ensemble was tested against the external validation dataset and temporal dataset, which
were composed of data that were acquired from the literature after the model had been
built (see Table 1). The reliability-density neighborhood applicability domain method was
used to define the models’ applicability domain [24].

3.6. Evaluation and Validation Criteria

In order to measure the classification performance of our model, we used the following
metrics using sklearn: Precision (Equation (1)), Recall (Equation (2)) and F1-score (Equation (3)).

Precision =
True Predicted Positives
All Predicted positives

(1)

Recall =
True Predicted Positives

All true positives
(2)

F1 − score =
2 × Precision × Recall

Precision + Recall
(3)

True Predicted Positives represent the number of correctly predicted active or inactive
classes, as both were calculated.
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3.7. Chemistry

All reagents and anhydrous solvents were purchased from standard commercial
vendors and used without further purification. Compounds from an in-house library were
published previously [25].

3.8. General Procedure for Urease Inhibition Assay

The urease inhibition assay was carried out by measuring the release of ammonia
based on the indophenol method described by Weatherburn [26]. A set of in-house com-
pounds was initially screened against urease, first at a concentration of 500 µM, and active
compounds were then further screened to determine the IC50. Briefly, a reaction mixture
containing 25 µL of jack bean urease (5 U/mL), 5 µL of test compound at various concen-
trations, 45 µL of 20 mM urea in 0.01 M PBS buffer and 10 µL of 0.01 M PBS buffer (0.01 M)
was incubated for 10 min at 30 ◦C in a 96-well plate. Afterwards, 40 µL of phenol reagent
(1% w/v phenol and 0.005% w/v sodium nitroprusside) and 40 µL of alkali reagent (0.5%
w/v NaOH and 0.1% active chloride) were added to each well. The release of ammonia was
then determined by measuring the absorbance at 625 nm after 10 min, using a microplate
reader (SPECTRA MAX 240). The urease inhibitory activity was calculated according to
the following formula:

Inhibition(%) = 100 −
(

OD test
OD Control

)
∗ 100

where OD test and OD control represent the optical densities in the presence and absence
of testing compound, respectively. Thiourea was used as a standard inhibitor.

The mode of inhibition was determined by monitoring the inhibition effect of various
concentrations of compounds (5–100 µM) in the assay with varied substrate concentration
(0.5–5 mM) using the same method above. Lineweaver–Burk plots of 1/V versus 1/[S] of
the obtained results were then used to determine the type of enzyme inhibition.

3.9. Statistical Analysis

All assays were performed in triplicate to test the reproducibility. The results are
presented as mean ± SEM. Correlations among data obtained were calculated using Spear-
man’s coefficient (r).

4. Conclusions

Inhibiting urease is a highly appealing approach that has applications in medicine
and agriculture. This is evident from the large and ever-increasing number of publications
where new inhibitors are screened and/or designed. Predicting the inhibitory activity of
compounds against urease is, therefore, very useful, particularly through a data-driven
approach. However, to date, only small models, often built from low-diversity datasets,
have been reported. In this work, we sought to bridge this gap in the literature. To
achieve this, we first collected the largest publicly available dataset of compounds tested
against jack bean urease and carried out extensive computational analysis of features
that characterized active compounds and distinguished them from inactives. Various
features, including docking score, type and number of interactions with the active as
well as 3D physicochemical features of the compounds, were found to be correlated with
activity. Exhaustive mining of combinations of residues revealed interesting patterns that
differentiated actives from inactives, such as the observation that actives seemed to bind
further away from the metal center. Additionally, the docking score correlated closely
with activity and showed good predictive power when validated against the external and
temporal sets. These encouraging findings prompted us to further integrate these results
into a classifier using machine learning models based on decision trees. Accurate and
robust predictions were obtained using random forest and were validated against various
assembled datasets external to the one used to generate the model. The precision of the
model was also dependent on an applicability domain filter that was used in order to
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exclude likely mispredictions. Moreover, the precision of the model dropped for newly
reported scaffolds due to their chemical differences in comparison to the scaffolds used
to build the model. The final model was then used to screen an in-house library and was
able to identify new compounds with inhibitory activity in vitro. The study shows that
employing a data-driven machine learning algorithm can lead to the identification of new
chemical compounds against urease.
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