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Abstract: Megakaryocytes are the main members of the hematopoietic system responsible for regulat-
ing vascular homeostasis through their progeny platelets, which are generally known for maintaining
hemostasis. Megakaryocytes are characterized as large polyploid cells that reside in the bone marrow
but may also circulate in the vasculature. They are generated directly or through a multi-lineage
commitment step from the most primitive progenitor or Hematopoietic Stem Cells (HSCs) in a process
called “megakaryopoiesis”. Immature megakaryocytes enter a complicated development process
defined as “thrombopoiesis” that ultimately results in the release of extended protrusions called
proplatelets into bone marrow sinusoidal or lung microvessels. One of the main mediators that play
an important modulatory role in hematopoiesis and hemostasis is nitric oxide (NO), a free radical gas
produced by three isoforms of nitric oxide synthase within the mammalian cells. In this review, we
summarize the effect of NO and its signaling on megakaryopoiesis and thrombopoiesis under both
physiological and pathophysiological conditions.

Keywords: megakaryocyte; platelet; nitric oxide; endothelial nitric oxide synthase; inducible nitric
oxide synthase

1. Basic Megakaryocyte Biology

Megakaryocytes are large (50–100 µM), multi-nucleated cells that are responsible for
releasing platelets into the blood [1]. They are characterized by a multilobulated nucleus
accumulating 2n, 4n, 8n, 16n, 32n, up to 128n DNA content and constitute ~0.01% of bone
marrow cells [2]. Recent evidence sheds light on the different roles of megakaryocytes
in various physiological and pathophysiological processes. Until recently, it had been
thought that megakaryocytes solely serve as progenitors or precursor cells responsible
for platelet production. This simple notion may no longer be valid as recent reports have
uncovered various roles of megakaryocytes in the immune response and in modulating
the proliferation and differentiation of different cell lineages, particularly osteoblasts and
osteoclasts within the bone marrow [3–5]. Megakaryocytes are capable of antigen en-
docytosis and, ultimately, its presentation within MHC I to CD8+ T cells [6]. Moreover,
recent studies revealed that megakaryocytes release several immune-modulatory cytokines,
including TGF-β and IL-1, and express co-stimulatory molecules such as CD40L and B7-2
(CD86) on their surface, suggesting they act as antigen presenting cells (APCs) within the
bone marrow microenvironment [5,7–10]. Of interesting note, recent evidence suggests
that megakaryocytes may act as the first line of defense against cancer metastasis to the
bone [3,4]. Therefore, like platelets, which are increasingly recognized for their diverse
roles beyond hemostasis [11–14], megakaryocytes may have functions beyond platelet pro-
duction. As such, a greater understanding of how important chemical mediators influence
megakaryocytes in platelet production and newly recognized functions is required.

According to conventional or classic hematopoiesis, hematopoietic stem cells (HSCs)
give rise to megakaryocyte-biased progenitors after passing through several strict com-
mitment points or lineage-biased steps like a hierarchical-branched tree [15,16]. However,
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more recent evidence demonstrates that although hematopoietic stem cells are capable of
reconstituting all blood cell lineages, they may exhibit megakaryocyte or platelet-biased
phenotypic and functional characteristics. Therefore, these multipotent progenitor cells
may bypass differentiation pathways and directly give rise to megakaryocyte or platelet-
committed progenitors at a very early step in differentiation [17–23]. Consistently, bone
marrow transplantation in humans demonstrates that platelet reconstitution takes place
earlier than that of other blood cell lineages [24].

It has been reported that HSC differentiation toward megakaryocytes and their matu-
ration, endomitosis, and invaginated membrane system (IMS) development takes place in
the osteoblastic niche, whereas a later generation of proplatelets, megakaryocytye-platelet
intermediate pseudopodia-like structures, requires vascular niche localization [2]. Within
these bone marrow niches HSC/megakaryocyte progenitor cell interactions with microen-
vironment extracellular matrix proteins help to regulate megakaryocyte differentiation and
platelet production. HSC interaction with type I collagen within the osteoblastic niche via
VLA-2 (integrin α2β1) promotes commitment to megakaryocyte-biased progenitor forma-
tion and maturation, but suppresses megakaryocyte terminal development, which results
in proplatelet generation [25–27]. Similarly, megakaryocyte glycoprotein (GP) VI–collagen I
interaction has inhibited proplatelet formation [28]. However, double knockout of collagen
receptors (GPVI−/− integrin α2β1−/−) shows no difference in megakaryocyte distribu-
tion, size, or blood platelet levels compared to that of wild type mice, suggesting other
regulatory mechanisms may exist to suppress ectopic proplatelet generation within the
osteoblastic niche [29]. In contrast, the vascular niche contains extracellular matrix proteins
including collagen IV, fibronectin, fibrinogen, and von Willebrand factor, which induce
proplatelet generation [30–33]. Other factors, including megakaryocyte-active mitogens
such as fibroblast growth factor 4 (FGF-4) and the chemokine stromal cell-derived factor 1
(SDF-1) also promote survival, maturation, and platelet production from megakaryocytes
by facilitating their chemotaxis toward and affinity for bone marrow sinusoid endothelial
cells [34,35]. Once in the vascular niche, several hypotheses have been proposed to explain
the mechanism behind the proplatelet extension from megakaryocytes into the lumen of
bone marrow blood vessels [36–38]. A concentration gradient of sphingosine-1 phosphate
(S1P) has been shown to exist at the contact site between the megakaryocytes and sinu-
soidal blood, which directs proplatelets into lumens in a sphingosine-1-phosphate receptor
1 (S1prP1)-dependent manner [39]. Ultimately, blood flow shear forces facilitate proplatelet
release from the megakaryocyte and their fission to produce platelets.

In addition to extracellular matrix proteins, various soluble factors have been pro-
posed to play important roles in regulating megakaryopoiesis and thrombopoiesis. Of
these, particularly important is the glycoprotein hormone thrombopoietin (TPO). Through
its receptor c-mpl, which is expressed on the most primitive HSCs, TPO plays a key
role in megakaryocyte differentiation from HSCs and their maturation toward platelet
generation [15,40]. TPO plays a central role in maintaining platelet/megakaryocyte-biased
HSCs, as TPO knockout (TPO−/−) bone marrow cells give rise to lymphoid-biased bone
marrow reconstitution in irradiated recipient mice [18]. As such c-mpl and TPO knockout
mice demonstrate 90% reductions in megakaryocyte and platelet numbers [41], while loss
of function mutations to Mpl within humans cause congenital amegakaryocytic thrombocy-
topenia, resulting in a severe phenotype only rescued by bone marrow transplantation. In
addition to TPO, several other factors have been identified which promote megakaryocyte
proliferation and maturation, including interleukin 3(IL-3), interleukin 6(IL-6), and stem
cell factor (SCF) [42–44].

TPO also induces megakaryocyte polyploidization, which results in the accumulation
of lipids and proteins required for the constitution of a vast invaginated membrane network
connected to the megakaryocyte surface membrane. This membrane network forms the
surface membrane of proplatelets and the cytoskeletal ultrastructure that supports the
elongation of proplatelet tubular structures [1,45–47]. The process of proplatelet formation
and the release of platelets into the sinusoidal blood vessels in the bone marrow is highly
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regulated [48], During this process, cytoskeletal proteins, including β1-tubulin, dynein,
F-actin, and myosin II, facilitate proplatelet generation by providing assembly lines for
elongation, organelle transportation, and ultimately platelet release [35,47,49,50]. Of partic-
ular importance is the role of the transcription factor NF-E2 and its expression of β1-tubulin
that plays a pivotal role in proplatelet biogenesis, structure, and function by polymerizing
into microtubule bundles and coils that extend throughout these cytoplasmic extrusions.
Consequently, NF-E2 and β1-tubulin knockout mice suffer from thrombocytopenia because
of a significant reduction in proplatelet formation [49,51–55]. TPO also induces reactive
oxygen species (ROS) production, which play an important role in driving HSC differentia-
tion toward mature megakaryocytes and platelet production. This ROS generation likely
involves nicotinamide-adenine dinucleotide phosphate (NADPH) oxidases (NOXs) and
increased oxygen tension, resulting in enhanced tyrosine phosphorylation, proliferation,
and polyploidization [56,57]. Moreover, NF-E2 in addition to expressing platelet genes also
maintains a moderate expression of cytoprotective genes allowing for ROS accumulation
during megakaryocytic maturation [58]. The initiation of platelet formation from mature
megakaryocytes has also been shown to be governed by a reciprocal interplay between
mitochondrial dynamics and ROS, in which increased ROS levels stimulate mitochondrial
fission, leading to the production of more mitochondrial ROS [59]. Most recently, a role
for ROS has also been identified in the pulling of megakaryocyte intravascular proplatelet
extensions by so-called “plucking” neutrophils to enhance platelet formation [60].

However, it is worth noting that platelet generation via megakaryocyte proplatelet
formation at steady state may differ mechanistically from platelet production in response
to stress or injury. Stress thrombopoiesis, or the process of platelet production under
inflammatory or acute thrombocytopenia conditions, can occur much faster than physio-
logical platelet production [61,62]. This may occur in part due to the presence of platelet-
or megakaryocyte-primed hematopoietic stem cells (HSCs) in the bone marrow that can
bypass the traditional route of multi-step lineage-biased progenitor differentiation and give
rise to platelets more quickly [18,19,23,62,63]. However, equally important to stress throm-
bopoiesis is whether platelet generation proceeds through or bypasses the need for TPO
and classic proplatelet formation. Although proinflammatory cytokines, such as IL-1β, can
upregulate the expression of TPO and other megakaryocyte-related transcription factors
to further promote platelet production [64], recent studies have shown that in response to
IL-1α megakaryocytes undergo rupture to rapidly produce platelets in a TPO-independent
manner after platelet loss or inflammatory stimulus [65,66]. This rupture-dependent throm-
bopoiesis also displays caspase-3 dependence [65], and platelet generation differences at
stress vs. steady state may help to explain whether or not megakaryocyte apoptosis needs
to be restrained for platelet generation and which apoptotic pathways may or may not be
involved [67–70].

While much is known about the roles of extracellular matrix proteins, soluble protein
mediators, and even gaseous chemical mediators such as ROS in megakaryopoiesis and
thrombopoiesis, relatively little is known of the role of nitric oxide (NO) in these processes.
This is somewhat surprising considering NO’s pleiotropic biological activity, and the impor-
tant role it plays regulating hematopoiesis and platelet function [71–75]. Therefore, in this
mini review we summarize the role of NO and its signaling on megakaryocyte function.

2. Basic Nitric Oxide Biology

Nitric oxide (NO) is a highly diffusible free radical gas with a short half-life that plays
an important role in many physiological and pathophysiological processes [76], including
regulating vascular tone and signal transmission by neurons [77–81]. Importantly, it also
plays a major role in immune function as well as within the hematopoietic system [82–86].

NO is produced enzymatically from the oxidation of L-arginine by NADPH-dependent
family oxidation-reduction enzymes called nitric oxide synthases or NOSs [87–89]. These
enzymes utilize flavin adenine dinucleotide (FAD), flavin mononucleotide (FMN), and
(6R-)5,6,7,8-tetrahydro-L-biopterin (BH4) as cofactors to generate NO from the substrate
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L-arginine and co-substrates oxygen and NADPH. Three isoforms of nitric oxide synthase
exist, including NOS I (nNOS, neuronal nitric oxide synthase), NOS II (iNOS, inducible ni-
tric oxide synthase), and NOS III (eNOS, endothelial nitric oxide synthase) (Figure 1) [90,91].
Although all three enzymes bind to calmodulin (CaM), nNOS and eNOS bind CaM upon a
rise in intracellular Ca2+ concentration and become activated [92–94]. Of further importance
for eNOS regulation is its localization to cell membrane caveole wherein the caveolae coat
protein caveolin-1 is a tonic inhibitor of eNOS activity and recruitment of CaM and heat
shock protein 90 displaces caveolin-1, leading to eNOS activation [95,96]. eNOS activity is
also widely regulated both positively and negatively via phosphorylation, with Ser1177
and Thr495 being the most widely studied of such sites. eNOS activating phosphorylation
occurs in response to circulating mediators such as vascular endothelial growth factor,
insulin, bradykinin, and estrogen, as well as in response to sheer stress [97]. Similar to
constitutive NOS enzymes, iNOS also binds to calmodulin; however, it does so even at
basal levels of intracellular Ca2+ due to its high affinity for CaM [98]. nNOS and eNOS
are constitutively expressed in different cells and tissues; while, under physiological condi-
tions iNOS expression is limited [99–101], but can be induced in almost any cell type by
proinflammatory proteins such as IL-1, TNF-α, IFN-γ, IL-2, IL-12, IL-18, CD40 ligand and
Fas-ligand and pathogen-associated molecular patterns such as lipopolysaccharide [101].
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Figure 1. Structure of nitric oxide synthase enzyme isoforms. Both nNOS (NOS I) and eNOS (NOS
III) are capable of synthesizing NO in a short pulsative manner ranging from pM to nM (low) and nM
to µM (moderate) concentrations, respectively. However, iNOS (NOS II) synthesizes a significantly
higher amount of NO in the range of µM concentration, in a constant manner after the expression of
the enzyme. (BH4: (6R-)5,6,7,8-tetrahydro-L-biopterin, a co-factor essential for NOS activity.)

NO exerts most of its biological functions through interaction with various key reg-
ulatory proteins either via direct binding to targets (cGMP-independent effects) or via
cGMP-dependent signaling following its activation of soluble guanylate cyclase (sGC).
Activation of sGC and cGMP generation can result in activation of cyclic nucleotide-gated
ion channels as well as protein kinase G (PKG) activation and signaling, which can mod-
ulate diverse cellular processes such as regulation of enzyme activity, gene transcription,
and post-translational modification [80,102–106]. Conversely, NO may bind to heme and
regulate the activity of heme-containing enzymes such as cytochrome C oxidase or other
protein/peptides via nitrosylation of thiol groups to regulate important processes such as
apoptosis [97].

NO may be inactivated in a number of ways including by reacting with the heme in
deoxyhemoglobin to form a stable complex and in the presence of oxygen to form methe-
moglobin and nitrate. It also reacts with oxygen and water to yield nitrite and nitrate in a
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series of reactions with a dinitrogen tetraoxide intermediate. NO also rapidly reacts with
superoxide (O2

−) to form peroxynitrite (ONOO−), a highly active and cytotoxic radical,
which subsequently reduces NO bioavailability [107–109]. In high concentrations ONOO−

may exert proapoptotic and cytotoxic effects through various mechanisms, including pro-
tein oxidation and tyrosine nitration, lipid peroxidation, disruption of the electron transport
chain and TCA, and via single-strand breaks in DNA [109–116].

3. Nitric Oxide and Platelet Function

In the 1980s, Radomski and Moncada demonstrated that NO potently inhibits platelet
adhesion and aggregation [117–120]. Subsequently, NOS and an NO signaling pathway
were identified within platelets [75,121–123], and NO produced during aggregation was
shown to inhibit further platelet recruitment [124,125]. NO mediates most of its platelet
inhibitory effects via cGMP generated by sGC (Figure 2) [126–128]. cGMP acts on PKG,
which phosphorylates vasodilator-stimulated phosphoprotein (VASP), enabling VASP
binding to the platelet cytoskeleton [129,130]. Next, VASP inhibits integrin αIIbβ3 activation,
preventing adhesion and aggregation [131,132]. PKG signaling is also reported to suppress
intracellular Ca2+ and integrin αIIbβ3 activation via inositol-1,4,5-triphosphate receptor-
associated cGMP kinase substrate signaling [133,134] and to suppress thromboxane receptor
activation [135]. Platelet NOS activity has been attributed to eNOS [121,136–138], although
a few studies report iNOS in low amounts in platelets [136,137] (there are no reports of
platelet nNOS).
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In the past 20 years, however, controversies have arisen over platelet NO signaling. The
most relevant questioned platelet NO production and eNOS presence [139] and whether NO
also has a stimulatory role in platelet activation [140]. To address these controversies, we
previously investigated the hypothesis that some of these discrepancies may be explained
by differences in platelet levels with and without eNOS signaling. Recently, we identified
eNOSneg/low and eNOSpos/high platelet subpopulations in blood [141]. We demonstrated that
eNOSneg/low platelets do not produce NO or produce it in low amounts. This platelet subpop-
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ulation also has a down-regulated sGC-PKG-VASP signaling pathway, initiates adhesion to
collagen, and more readily activates integrin αIIbβ3 than eNOSpos/high platelets. eNOSpos/high

platelets contain higher protein levels of sGC, PKG, and VASP and are more abundant
(~80% of total platelets). eNOSpos/high platelets also form the bulk of an aggregate via enhanced
COX-1 signaling; however, they also ultimately limit aggregate size via NO generation.

Importantly, ONOO− also impacts platelet function [142], and its impacts may help
explain some of the discrepant findings surrounding platelet NO function. At low con-
centrations, peroxynitrite was shown to mediate NO-dependent platelet inhibition; how-
ever, at higher concentrations it caused an increase in P-selectin exposure and platelet
activation [143]. Consistently reducing peroxynitrite formation by suppressing NADPH
oxidase, a major source of platelet superoxide generation, was shown to increase NO
bioavailability and subsequent platelet inhibition [144].

Insufficient platelet NO production and a decrease in its bioavailability may also have
important pathological consequences, particularly in the setting of acute coronary syn-
drome (ACS). Platelets from ACS patients have impaired NO production [145], and platelet
NO production inversely correlates with increasing number of coronary artery disease
risk factors [146]. Similarly, platelet refractoriness to the NO donor sodium nitroprusside
predicts increased morbidity and mortality in patients with high-risk ACS [147]. Consistent
with these findings, megakaryocytes from patients with normal coronary arteries have
been reported to generate more NO in a Ca2+-dependent manner than megakaryocytes
from patients with atherosclerosis, although megakaryocytes from atherosclerotic patients
generate more NO in an iNOS-dependent manner [148–150]. That platelets have a more
limited transcriptome and capacity for new protein synthesis and that iNOS protein has an
extremely short half-life (<2 h) [151,152] suggests that reduced platelet NO bioavailability
within coronary artery disease may reflect a reduction in megakaryocyte eNOS expres-
sion. Furthermore, NO formed from different NOS isoforms may play differing roles in
megakaryocyte vs. platelet function. Hence, due to recent advances in our understanding of
platelet NO biology and its significance to pathology, a closer examination of NO-signaling
in megakaryocytes is also needed.

4. Nitric Oxide Synthases in Megakaryocytes

As described above, constitutive (Ca2+-dependent) and inducible NOS isoforms have
been identified in both human bone marrow megakaryocytes [148] and within the Meg-01
megakaryoblastic cell line [153]. Treatment of Meg-01 with proinflammatory cytokines
IL-1β and TNF-α also revealed a reciprocal relation between constitutive and inducible
NOS activity consistent with an increase in iNOS expression and a down-regulation of
constitutive NOS expression. The Ca2+-dependent NOS in megakaryocytes/blasts likely
corresponds to eNOS as its expression has been confirmed via RT-PCR and immunostaining
within Meg-01 [141]. Moreover, like in platelets, both eNOSneg/low and eNOSpos/high Meg-01
subpopulations have been identified [141,154].

5. Effect of NO on Differentiation and Proliferation of Megakaryocytes

Early research demonstrated that high concentrations (µM) of the NO donor DETA/NO
induce apoptosis of bone marrow-derived CD34+ progenitor cells and that iNOS-generated
NO may in part mediate hematopoietic suppression by proinflammatory cytokines IFN-γ
and TNF-α [71]. Treatment of human bone marrow-derived and TPO-cultured CD34+

cells, as well as mononuclear cells, with IFN-γ and TNF-α reduces the number of CD41+

cells after 12 days of culture, while high NO-donor concentrations inhibit the outgrowth
of megakaryocytes derived from these cells by inducing their apoptosis [86]. Prostacy-
clin treatment and cAMP signaling protect megakaryocytes outgrown from CD34+ cells
from NO-induced apoptosis [155], while TPO, 5-hydroxytryptamine, and IL-11 appear
to protect megakaryocytic cell lines from apoptosis induced by high NO concentrations
achieved by NO donors or iNOS induction [84]. Altogether, these results suggest that
in absence of protective factors and under inflammatory-like conditions up-regulation of
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iNOS expression and increased NO concentrations induce apoptosis of progenitor cells,
preventing their differentiation toward megakaryocytes. Whether the pro-apoptotic effects
of NO are mediated via cGMP-dependent or non-cGMP-dependent mechanisms remains
to be fully elucidated, as does the contribution of peroxynitrite and of the apoptotic path-
ways involved. Moreover, potential cross-talk between pathways that retard NO-induced
apoptosis of megakaryocytes and their progenitors also needs further investigation [156].

6. Effect of NO on Platelet Production by Megakaryocytes

Similar to the limited number of studies investigating the role of NO in megakary-
opoiesis, there is also a paucity of data with regards to NO’s role in thrombopoiesis. Early
work by Loscalzo and colleagues demonstrated that treatment of the Meg-01 cell line
with high NO concentrations as achieved by utilizing the NO-donor S-nitrosoglutathione
(GSNO) or by treating the Meg-01 cell line with proinflammatory cytokines (IFN-γ, TNF-α,
and IL-1β) induces the generation of CD41+ platelet-sized particles in culture with a capac-
ity to aggregate [85]. Moreover, platelet particle generation by Meg-01 is further enhanced if
the Meg-01 are pretreated with TPO prior to stimulation, although TPO treatment alone was
not able to promote platelet particle generation consistent with its role in megakaryocyte
maturation [85]. The mechanism by which high NO concentrations induce platelet-sized
particle formation was reported to be cGMP-independent, and interestingly, was associated
with the generation of distinct Meg-01-derived annexin-V and propidium iodide positive
apoptotic bodies. This finding led the authors to hypothesize that NO-induced apoptosis
is related to the process by which megakaryocytes produce platelets, although as also
noted by the authors it is not clear whether the observed apoptosis is a result of removal of
spent megakaryocytes or apoptosis and platelet production are simultaneous events [84,85].
Lastly, of note, the authors identified that iNOS null mice demonstrate platelet counts
nearly half of that of their wild-type or eNOS null counterparts, further exemplifying the
important role of NO in platelet production.

Consistent with the findings of Loscalzo and colleagues, intravenous infusion of L-
nitroarginine or N(G)-nitro-L-arginine methyl ester, both NOS inhibitors, to rats results in
thrombocytopenia or decreased platelet counts [157]. More recently, CD226 whole body or
platelet/megakaryocyte specific knockout mice have been shown to have elevated platelet
and megakaryocyte (bone marrow and spleen) counts compared to wild-type controls [158].
Notably, the platelets from CD226−/− mice demonstrated greater aggregation response
to thrombin compared to platelets from WT mice, attributed to their reduced eNOS levels
and decreased ability to generate NO. Currently, it is unknown whether the potential alter-
ations in megakaryocyte-platelet NO-signaling in these mice impact their megakaryo- or
thrombopoiesis. However, considering that platelet function may be regulated by low NO
concentrations attributable to eNOS activity while high NO concentrations associated with
iNOS appear to have profound effects on megakaryocytes and their potential to produce
platelets, it is tempting to speculate whether these two NOS isoforms have differential
function in megakaryocytes vs. platelets. Specifically, the role of iNOS and its increased
expression may be of particular importance to platelet production under stress such as
in the case of rupture thrombopoiesis as it can be rapidly by induced by IL-1α [159] or in
cases of inflammation/infection-induced secondary (reactive) thrombocytosis (Figure 3).
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impact on ROS-mediated signaling during megakaryocyte differentiation. Further, previ-
ous studies focusing on NO�s impact on platelet production have modeled conditions of 
stress rather than steady-state thrombopoiesis, implicating a role for iNOS in this process. 
Indeed, analogously increased iNOS expression and NO generation have recently been 
identified to play a role in stress erythropoiesis [161]. Considering that NO may have both 
pro- and anti-apoptotic roles [162], future studies delineating the role of NOS isoforms 
and NO in steady-state vs. stress thrombopoiesis may also clarify whether apoptosis plays 
a role and what role it plays in platelet production [163,164]. Lastly, further studies are 
also warranted to identify whether NOS-based subpopulations of megakaryocytes exist 
as they do for platelets [141]. The results of such studies may shed new light on the devel-
opment of novel genetic and/or pharmacological tools in order to manipulate NO-signal-
ing within megakaryocytes and their platelet progeny for therapeutic purposes. 
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Figure 3. Cartoon summarizing the impact of Nitric oxide derived from iNOS and eNOS on
megakaryopoiesis and thrombopoiesis under stressed and non-stressed conditions. (Created with
BioRender.com, accessed on 28 April 2023).

7. Summary and Conclusions

Although the role of NO in platelet biology is well studied, much less is known about
its effects on megakaryocytes. To date, most studies have focused on the ability of NO
at high concentrations to promote cell death of megakaryoctyes and their progenitors.
Considering NO’s pleiotropic effects and its ability to influence HSC mobilization [160],
future studies may need to focus on its role in regulating megakaryocyte progenitor inter-
action with their microenvironments within the osteoblastic and vascular niches as well
as its impact on ROS-mediated signaling during megakaryocyte differentiation. Further,
previous studies focusing on NO’s impact on platelet production have modeled conditions
of stress rather than steady-state thrombopoiesis, implicating a role for iNOS in this process.
Indeed, analogously increased iNOS expression and NO generation have recently been
identified to play a role in stress erythropoiesis [161]. Considering that NO may have both
pro- and anti-apoptotic roles [162], future studies delineating the role of NOS isoforms and
NO in steady-state vs. stress thrombopoiesis may also clarify whether apoptosis plays a
role and what role it plays in platelet production [163,164]. Lastly, further studies are also
warranted to identify whether NOS-based subpopulations of megakaryocytes exist as they
do for platelets [141]. The results of such studies may shed new light on the development
of novel genetic and/or pharmacological tools in order to manipulate NO-signaling within
megakaryocytes and their platelet progeny for therapeutic purposes.
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