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Abstract: Diabetes mellitus (DM) is a metabolic disorder with an alarming incidence rate and a
considerable burden on the patient’s life and health care providers. An increase in blood glucose level
and insulin resistance characterizes it. Internal and external factors such as urbanization, obesity,
and genetic mutations could increase the risk of DM. Microbes in the gut influence overall health
through immunity and nutrition. Recently, more studies have been conducted to evaluate and
estimate the role of the gut microbiome in diabetes development, progression, and management. This
review summarizes the current knowledge addressing three main bacterial species: Bifidobacterium
adolescentis, Bifidobacterium bifidum, and Lactobacillus rhamnosus and their influence on diabetes and its
underlying molecular mechanisms. Most studies illustrate that using those bacterial species positively
reduces blood glucose levels and activates inflammatory markers. Additionally, we reported the
relationship between those bacterial species and metformin, one of the commonly used antidiabetic
drugs. Overall, more research is needed to understand the influence of the gut microbiome on the
development of diabetes. Furthermore, more efforts are required to standardize the model used,
concentration ranges, and interpretation tools to advance the field further.

Keywords: Bifidobacterium adolescentis; Bifidobacterium bifidum; diabetes; gut; Lactobacillus rhamnosus;
microbiome

1. Introduction
1.1. Diabetes Mellitus (DM)

Diabetes mellitus is one of the main leading causes of morbidity and mortality world-
wide [1]. It is a chronic metabolic disease characterized by hyperglycemia, an elevation in
the blood glucose level caused by a defect in insulin secretion and/or action [2–4]. Diabetes
is classified into three main types based on its genetics, etiology, and diagnostic criteria:
type 1, type 2, and gestational diabetes [5]. Their complications in several organs, such as
the heart, eyes, and kidneys, profoundly affect the patient’s quality of life [6]. Depending
on the kind and duration of diabetes, the symptoms may include polyuria, polyphagia,
polydipsia, and weight loss [7]. Currently, oral and injectable antidiabetic drugs, insulin
therapy, and lifestyle management are the primary therapeutic modalities used to treat
diabetes. However, the alarmingly high rate of diabetes worldwide shows the necessity
to develop new and more effective therapeutic approaches to target the disease and its
complications [8].

1.2. Gut Microbiome and Diabetes

The human gut microbiome comprises 100 trillion bacterial species in the intestinal
tract [9]. It is regulated by internal and external factors such as genetics, diet, and medica-
tions [10]. The gut microbiome influences the overall health status of an individual through
nutrition, physiology, and immunity [11]. Disruption in the diversity of the gut microbiome
is linked to multiple pathological conditions, including diabetes [12,13]. Gut dysbiosis and
increased gut permeability result in the translocation of lipopolysaccharide, which can
activate the innate immune system [14]. In diabetic patients, the level of lipopolysaccharide
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in the plasma was higher compared with healthy participants, resulting in low-grade
inflammation that may have caused insulin resistance [15,16]. The observed inflammatory
responses in diabetic patients may be caused by gut microbiome dysbiosis and their major
metabolites, such as bile and short-chain fatty acids, which regulate glucose metabolism
and insulin sensitivity [17]. This shows that the gut microbiome may be an essential driver
of the pathogenesis of diabetes and can be used as a potential therapeutic target.

1.3. Gut Microbial Profile in Diabetes

Two prominent phyla, Firmicutes and Bacteroides, are present in the gut, representing
60–80% of the species [18]. Changes in their abundance have been linked to multiple
pathological changes [19,20]. In a study of 36 male participants, 18 of which were diabetic,
the level of Firmicutes was significantly higher in the control group compared to the diabetic
group (p-value = 0.03) [21,22]. This suggests a possible positive correlation between diabetes
and gut microbiome composition. Furthermore, the reduced level of butyrate-producing
bacteria such as clostridiales sp. influences insulin sensitivity, low-grade inflammatory
response, and glucose and fat metabolism in diabetic patients [23–25]. Not only at a phylum
level but some bacterial species, such as Lactobacillus, have been linked to diabetes as they
positively correlate with fasting blood glucose and glycosylated hemoglobin [26]. Taken
together, more efforts are required as different cohort studies showed inconsistent findings.

The gut–brain axis in diabetes management has gained more attention recently as it
might provide promising potential. The gut microbiome critically influences the glucose
homeostasis pathway by interacting with energy-regulating centers in the brain about
incoming nutrient materials [27]. This supports the importance of the metabolites produced
by the gut microbiome.

Throughout the literature, the role of the gut microbiome in diabetes management is
discussed. Here we evaluate and analyze published studies that report the influence of
three bacterial species, Bifidobacterium adolescentis, Bifidobacterium bifidum, and Lactobacillus
rhamnosus, on diabetes mellitus. Furthermore, we assess the impact of their effect on specific
pathways. Finally, we identify gaps in the current research.

2. Search Strategy and Selection Criteria

Medline, Scopus, and PubMed were searched for manuscripts published from 2000
to 2023 using the search terms “diabetes”, “microbiota”, “microbiota AND diabetes”,
“microbiome profile AND diabetes”, “gut microbiota enzymes”, “Bifidobacterium adolescentis
AND diabetes”, “Bifidobacterium bifidum AND diabetes”, “Lactobacillus rhamnosus AND
diabetes”. We selected eighty-five articles and analyzed them in detail for this review.
Eligible studies included in vivo, in vitro, and clinical trial publications addressing the
beneficial effects of selected bacteria on diabetes and its complications.

3. Diabetes Management Using Microbial Species

The development of diabetes is associated with profound gut dysbiosis [28]. Restor-
ing the balance of gut microbiome composition by administering probiotics (live non-
pathogenic microorganisms) in an adequate concentration has been reported to improve
diabetes [29]. Several human and non-human studies reported the influence of using probi-
otics for diabetes. For example, in diabetic patients given yogurt containing L. acidophilus
La5 and B. lactis Bb12 as probiotics, fasting blood glucose, insulin, insulin resistance, and
glycosylated hemoglobin levels were reduced [30]. A meta-analysis of 520 type 2 dia-
betic patients reported that probiotic administration improved glycemic control and lipid
metabolism [31]. Probiotic administration also influences oxidative status and inflamma-
tory parameters in diabetic patients [32]. Seventy participants with diabetes were given
probiotics for a month which significantly reduced the levels of IL-6, IL-1, IL-8, and TNF-a
compared to the control group [33]. The data showed how probiotic administration in-
fluenced the inflammatory response in participants with diabetes. The administration of
Lactobacillus for two months reduces uric nitrogen in the blood [34]. Additionally, probiotic
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administration influenced and regulated the level of glycated hemoglobin, total cholesterol,
triglycerides, and low-density lipoprotein cholesterol in pre-clinical diabetes [35]. On the
other hand, similar results were observed when the probiotic was given to animal models.
The administration of Bifidobacterium for one month and Lactobacillus for three months
in a mouse model with type 2 diabetes was reported to normalize glucose metabolism
and insulin sensitivity [36,37]. One of the concerns with probiotic treatment is safety and
tolerability. All the mentioned studies reported no adverse effects and probiotic usage was
safe. Despite that, more efforts are required to standardize the protocol and estimate the
proper dosage.

4. The Influence of Specific Microbial Species on Diabetes

Throughout our research, multiple reports discuss the influence of three bacterial
species, Bifidobacterium adolescentis, Bifidobacterium bifidum, and Lactobacillus rhamnosus, on
diabetes mellitus. Here, we discuss each of them in detail and provide insight into the
mechanisms by which they improve diabetes. Figure 1 highlights an overview of the three
species and their main characteristics.
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4.1. Bifidobacterium adolescentis

Bifidobacteria are Gram-positive, non-spore-forming, and non-motile bacteria known
to be the first colonizer of the infant gut [38]. Their presence in the gut has been linked
to several beneficial effects on the host as they prevent intestinal inflammation, colonic
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adenomas, and cancer [39]. Bifidobacterium adolescentis is a vital gut flora in adults [40,41]. In
patients with type 2 diabetes, the abundance of B. adolescentis in the intestine is significantly
reduced [42]. Using B. adolescentis (1 × 108 cfu/mL) daily on twenty volunteers aged 50 to
60 for thirty days as a supplementation alleviates gut microbiome disorder and reduces
blood glucose [43].

Additionally, administering eight strains of B. adolescentis (2 × 108 cfu/mL) for
12 weeks in diabetic mice restored gut microbiome homeostasis, alleviated inflamma-
tion, and increased the abundance of short-chain fatty acid-producing microorganisms [44].
Moreover, supplementing B. adolescentis (5 × 108 cfu/mL) in mice fed a high-fat diet
daily for twelve weeks improved insulin sensitivity and reduced visceral fat accumu-
lation [45]. Unfortunately, the literature lacks more data that support or challenge the
observed beneficial effects of B. adolescentis administration in diabetes. Furthermore, proto-
col standardization is required to ensure the safety and efficacy of using such an approach.
Figure 2 highlights the main pathways affected by B. adolescentis administration in diabetes.
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4.2. Bifidobacterium bifidum

Bifidobacterium bifidum is one species of naturally occurring microbiota detected in
breastfed infants [46]. It is considered a dominant resident of the gut population [47].
B. bifidum consists of 3000 genes that encode carbohydrate enzymes such as glycosyl
transferases (GTs), glycosyl hydrolases (GHs), and carbohydrate esterases (CEs) [48]. This
showed the ability of B. bifidum to metabolize host-derived glycans such as human milk
oligosaccharides and mucin [49]. Using B. bifidum in diabetes management has started to
gain more scientific attention recently. A single administration dosage of 1 × 107 cfu/mL
daily for 28 days reduced fasting blood glucose, glycosylated hemoglobin, triglycerides
(TG), and total cholesterol in Wistar rats [50]. Additionally, diabetic patients treated
with a collection of probiotics, including B. bifidum (2 × 109 cfu/mL) daily for 12 weeks,
significantly decreased insulin resistance, fasting blood glucose, and increased insulin
sensitivity and HDL cholesterol level. It also improved the total antioxidant capacity
and reduced the C-reactive protein level [51]. The combination treatment of different
Bifidobacterium spp., including B. bifidum and excluding B. adolescentis, ameliorated insulin
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resistance and reduced blood glucose levels in mice [52]. More studies are needed to
evaluate how B. bifidum manages diabetes. Additionally, studies that address the influence
of B. bifidum and B. adolescentis may be essential for better treatment outcomes. Figure 3
highlights the main pathways affected by B. bifidum administration in diabetes.
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4.3. Lactobacillus rhamnosus

Lactobacillus rhamnosus was first isolated in 1983 and is known for its ability to re-
sist stomach acidity and strong avidity for intestinal cells. It has been widely used in
targeting multiple pathological conditions, such as cancer, as an effective probiotic [53].
Administering L. rhamnosus daily (1 × 108 cfu/mL) in rodents for four weeks improved
glucose tolerance by reducing endoplasmic reticulum stress [54]. Additionally, in mice fed
a high-fat diet, treating 109 cfu/mL of L. rhamnosus daily significantly reduced the insulin
level and fasting blood glucose. It also reduced proinflammatory cytokines such as IL-6
and TNF-a [55].

Furthermore, oral administration of L. rhamnosus improved glucose tolerance in dia-
betic rats by downregulating the expression of glucose 6 phosphatase [56]. The administra-
tion of L. rhamnosus to diabetic mice reduced insulin, glycosylated hemoglobin, and fasting
blood glucose levels and increased glucagon-like peptide 1 levels in serum [57]. Similar
results were obtained when 3 month old male Zebrafish were used [58]. These observations
show the urgent need for protocol standardization and model specification to estimate the
beneficial effect of L. rhamnosus in diabetes. Figure 4 highlights the main pathways affected
by L. rhamnosus administration in diabetes. Table 1 summarizes the data available in the
literature that address the influence of the species Bifidobacterium adolescentis, Bifidobacterium
bifidum, and Lactobacillus rhamnosus on diabetes mellitus. The table includes essential data
about the targeted pathway tested, the mode of administration, the effects on diabetes, the
follow-up period, and the method and model used in each study.
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Table 1. Representative bacterial species and their underlaying antidiabetic effects.

Bacterial
Species

Targeted Metabolites/
Proteins/Genes/Pathway

Mode of
Administration

Number of Strain
Tested/Concentration

Dietary
Intervention

Follow-Up
Period Mechanism of Action Methods of Testing

Model Used
References

In Vivo In Vitro

Bi
fid

ob
ac

te
ri

um
ad

ol
es

ce
nt

is

Glucose
Lipid metabolism

Inflammatory markers

Oral gavage
Intraperitoneally 8 High-fat diet 12 weeks

-Alleviate insulin resistance
-Restore gut

microbiota homeostasis
-Increase the abundance of

SCFA-producing flora
-Alleviate inflammation by

reducing the concentration of
TNF-a, IL-6, and IFN-Y

Biochemical analysis
Histopathological

analysis
SCFA analysis

Polymerase chain
reaction

-C57BL/6J mice -Pancreatic cells
-Hepatic cells [44]

Visceral fat
accumulation

Insulin sensitivity
Orally

5 × 108

colony-forming
units/mL of live

B. adolescentis

High-fat diet 12 weeks

-Supplementation of this bacteria
improved diabetes and insulin

sensitivity by increasing the
production of glucagon-like

peptide 1 (GLP-1)
-A reduced visceral fat

accumulation (liver steatosis
and mesenteric fat)

Insulin sensitivity
Quantitative reverse

transcription PCR
Histological analysis

-Male Wistar rats -Hepatic cells [45]

Bi
fid

ob
ac

te
ri

um
bi

fid
um

Glucose
Lipid metabolism

Inflammatory markers
Orally

1 × 107

colony-forming
units/mL

NA 28 days

-Administration of B. bifidum
significantly reduced serum

fasting blood glucose
-It reduced the level of total

cholesterol, triglycerides,
low-density lipoproteins, and very

low-density lipoproteins and
enhanced the level of

high-density lipoproteins
-Reduced the activity of

lipid peroxidation
-Enhanced the activity of

glutathione, superoxide dismutase,
catalase, glutathione peroxidase,

glutathione reductase, and
glutathione-S-transferase

Glucose
tolerance test

Oxidative stress
enzymatic assay

-Male Wistar rats -Pancreatic cells
-Hepatic cells [50]

Glucose
Lipid metabolism

Inflammatory markers
Oral gavage

1 × 109

colony-forming
units/mL

High-fat diet 5 weeks

-Administration of B. bifidum
significantly reduced plasma

glucose level
-Treatment with B. bifidum

increased the adiponectin mRNA
level and decreased MCP-1 and

IL-6 mRNA levels

Quantitative
real-time PCR

RNA extraction
Glucose

tolerance test
ELISA

Insulin tolerance test

-Swiss-Webster mice
-C57BL/6J mice -Adipose tissue [52]
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Table 1. Cont.

Bacterial
Species

Targeted Metabolites/
Proteins/Genes/Pathway

Mode of
Administration

Number of Strain
Tested/Concentration

Dietary
Intervention

Follow-Up
Period Mechanism of Action Methods of Testing

Model Used
References

In Vivo In Vitro

La
ct

ob
ac

ill
us

rh
am

no
su

s

Glucose
Lipid metabolism Orally

1 × 109

colony-forming
units/mL

Standard diet 30 days

-Administration of L. rhamnosus
significantly reduced serum

fasting blood glucose
-Improved glucose tolerance via

downregulation of
glucose-6-phosphatase

(G6p) expression
-Significantly reduced the level of

total cholesterol
-Lowered the risk of atherosclerosis

by lowering the atherogenic
index (AI)

Biochemical
parameter analysis

Glucose
tolerance test
Quantitative

real-time PCR
Gene expression

analysis

-Sprague-Dawley
rats -Hepatic cells [56]

Glucose
Inflammatory markers NA 106 colony-forming

units/mL

Fish
commercial

food
10 days

-Reduced blood glucose level
-Supplementation with

L. rhamnosus resulted in a
significant decrease in the

expression levels of
proinflammatory cytokines

-Improved the villus length and
width of the intestine

Histological staining
Quantitative

real-time PCR
Immunohistochemistry

-Zebrafish -Intestinal cells [58]

Glucose Intraperitoneally
1 × 109

colony-forming
units/mL

High-fat diet 12 weeks

-Administration of L. rhamnosus
significantly reduced serum

fasting blood glucose
-Significantly improved

glucose intolerance
-Significantly reduced the level of

HbA1c and GLP-1

Glucose
tolerance test
Quantitative

real-time PCR
Lipid peroxidation
inhibiting capacity

ELISA
Biochemical
parameters

-Male C57BL/6J
mice [57]

Glucose
Inflammatory markers

Intraperitoneally
Orally

1 × 108

colony-forming
units/mL

Chow diet 4 weeks

-Treatment with L. rhamnosus
significantly improved

glucose tolerance
-It alleviated endoplasmic

reticulum stress by modulating
lipid metabolism in skeletal muscle
-It alleviated macrophage markers

expression F4/80 and CD11b

Glucose
tolerance test

Real-time PCR
Western blot

Immunofluorescence

-C57BL/KsJ
db/db (db/db) mice

-Adipose tissue
-Skeletal muscle [54]
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Table 1. Cont.

Bacterial
Species

Targeted Metabolites/
Proteins/Genes/Pathway

Mode of
Administration

Number of Strain
Tested/Concentration

Dietary
Intervention

Follow-Up
Period Mechanism of Action Methods of Testing

Model Used
References

In Vivo In Vitro

La
ct

ob
ac

ill
us

rh
am

no
su

s

Glucose Intraperitoneally
5 × 109

colony-forming
units/mL

High-fat diet 12 weeks

-Treatment with L. rhamnosus
significantly reduced fasting blood

glucose and insulin levels
-It significantly decreased

glucose-6-phosphatase and
phosphoenolpyruvate

carboxykinase expression
in the livers

-It reduced the serum
concentrations of proinflammatory
cytokines such as tumor necrosis

factor alpha (TNFa), interleukin-1b
(IL1b), and IL6

-Improved intestinal barrier
function in diabetic mice

Glucose
tolerance test

Histopathological
examination

Biochemical analysis
RNA isolation and
RT-PCR analysis

Colonic tight
junction protein

expression analysis

-Male C57BL/6J
mice

-Hepatic tissues
-Colon tissues [55]

Glucose
Inflammatory markers

Oral gavage
Intraperitoneally NA

Probiotic
fermented
milk (PFM)

6 weeks

-PFM significantly improved
glucose metabolism (fasting blood

glucose, glycated hemoglobin,
serum insulin)

-It also improved the serum
inflammation status (tumor

necrosis factor-α,
and serum interleukin-6)

-PFM has significantly reduced the
mRNA expression of pepck and
g6pase genes that code the key

enzymes of
gluconeogenesis pathway

Glucose
tolerance test

Histopathological
examination

Biochemical analysis

-Male Wistar rats [59]

Glucose
Inflammatory markers

Oral gavage
Intraperitoneally NA High-fat diet 6 weeks

-Treatment with L. rhamnosus
improved oral glucose

tolerance test
-It improved the biochemical

parameters such as fasting blood
glucose, plasma insulin,

glycosylated hemoglobin, free fatty
acids, triglycerides, total
cholesterol, low-density

lipoprotein cholesterol, and
high-density lipoprotein

cholesterol
-It also improved the expression of
glucagon-like peptide-1-producing

genes in the cecum
-It reduced the expression of tumor
necrosis factor-α and interleukin-6

Glucose
tolerance test

Biochemical analysis
-Rats [60]
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5. Discussion

Diabetes is a global metabolic condition with a high incidence rate worldwide. Devel-
oping new and improved therapeutic approaches to target the disease and its complications
is necessary. The gut microbiota has been linked recently to diabetes. Here, we searched the
literature and reported the role played by the three commonly addressed microbial species
on diabetes: Bifidobacterium adolescentis, Bifidobacterium bifidum, and Lactobacillus rhamnosus.
Both animal and human studies reported the influence of Bifidobacterium adolescentis admin-
istration on blood glucose level, an abundance of short-chain fatty acids, and inflammatory
response in a dose dependent manner that ranges from 1 × 108 to 5 × 108 CFU/mL. More-
over, administering Bifidobacterium bifidum (1 × 107–2 × 109 CFU/mL) reduced fasting
blood glucose, insulin resistance, and improved sensitivity in human participants with
diabetes and animal models. Unfortunately, this is not the case with Lactobacillus rhamnosus
as most of the available studies reported the role of this species on diabetes in animal
models only. Despite that, the data support the positive influence of this species on insulin
resistance and lipid profile.

Throughout the literature, we observed the lack of standardization regarding the
protocol followed, the model used, the diet used to induce diabetes in animal models, and
the mode of administration, as most studies followed oral or intraperitoneal administra-
tion. Establishing standardized protocols that specify specific guidelines will help further
advance the field. Additionally, the literature shows that many studies investigate a single
microbial species. The gut microbiome is a community of microorganisms interacting
with each other and the host. Isolating and investigating a single organism only might
not be of great interest. As a starting point, a study may investigate the influence of the
three bacterial species mentioned in this paper on diabetes in human and animal models
and report the challenges and limitations. By doing so, we can then, step by step, look at
the gut microbiome as a community in the context of health and diseases. The following
sections highlight some essential topics that need further discussion and research for better
treatment outcomes.

BioRender.com
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5.1. The Influence of Combination Therapy on Diabetes

Diabetes is managed mainly by antidiabetic drugs such as metformin [61]. Its admin-
istration augments glucose uptake in tissues and reduces glucose output [62]. Due to its
high efficacy and safety level, metformin is used as the first line of treatment in patients
with type 2 diabetes [63]. Various research supports the influence of metformin on the gut
microbiome [64]. In a randomized study of patients with type 2 diabetes, the administration
of metformin altered the composition and function of the gut microbiome. The results also
showed how metformin prompted the growth of B. adolescentis, which was associated with
reduced blood glucose levels [65].

Additionally, metformin treatment altered the composition of the gut microbiome
by enhancing the growth of Lactobacillus, Bifidobacterium, and Escherichia and reducing
the abundance of Intestinibacter bartlettii [66]. Those reports prompted more research
in the field of combination therapy and diabetes. The co-administration of metformin
and B. bifidum in rats suppressed the metformin effect on feces while maintaining the
antihyperglycemic effect of metformin [67]. Furthermore, the combination treatment of
metformin and B. bifidum in 40 patients with diabetes for ten weeks significantly improved
the gastrointestinal symptoms associated with metformin without altering the glucose
control effect of the medication [68]. More studies are required to assess and evaluate those
results on other bacterial species, such as B. adolescentis and L. rhamnosus. More research
is needed to evaluate this approach with other antidiabetic drugs, such as sulfonylureas
and meglitinides. Figure 5 highlights the influence of metformin on the three discussed
bacterial species.
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5.2. The Influence of Flavonoids on Species Abundance

Flavonoids are natural compounds present abundantly in fruits and vegetables and
exert several biological benefits, such as anticancer and anti-inflammatory properties. Our
previous work extensively covers the influence of flavonoids and phytochemicals con-
sumption on metabolic conditions such as diabetes and cancer. We also reported the
relationship between the gut microbiome and flavonoid metabolism in the context of health
and disease [69–73]. In this section, we report the influence of flavonoid consumption
on the abundance of Bifidobacterium adolescentis, Bifidobacterium bifidum, and Lactobacillus
rhamnosus. An in vitro stimulated fermentation method was used to evaluate the influence
of nine flavonoids—hesperidin, hesperetin-7-O-glucoside, hesperetin, naringin, prunin,
naringenin, rutin, isoquercitrin, and quercetin—in 10 healthy Chinese volunteers. The re-
sults showed that the administration of hesperetin-7-O-glucoside, prunin, and isoquercitrin
significantly enhanced the abundance of Bifidobacterium spp. [74]. Additionally, adding
quercetin significantly increased the abundance of Bifidobacterium adolescentis in particu-
lar [75]. Interestingly, and in another report, the administration of quercetin enhanced
the quantity of Lactobacillus rhamnosus while inhibiting the growth of pathogenic bacte-
ria [76,77]. This may support the synergistic effect of the same flavonoids on the abundance
of different bacterial species in the gut. Research that supports those findings in the context
of diabetes is lacking in the literature. We think conducting more research in that area
can provide insight into a potential new treatment/management for diabetes. Moreover,
studies that evaluate the efficacy and safety of using flavonoids in combination with other
antidiabetic drugs are necessary. Furthermore, the bioavailability challenge accompany-
ing flavonoid administration may be improved if we better understand the role of the
gut microbiome.

5.3. Fecal Microbiota Transplantation and Diabetes

Fecal microbiota transplantation (FMT) transfers the stool sample of a healthy partici-
pant into the colon of a patient suffering from a medical condition to restore the typical
abundance and function of the gut microbiota [78,79]. The procedure is considered well-
tolerated and safe, with minor side effects such as abdominal cramps and diarrhea [80].
FMT has been used to treat metabolic syndrome, inflammatory bowel disease, and di-
abetes [81,82]. A 24-year-old patient with type 1 diabetes treated with FMT showed a
graduate improvement in blood glucose level, glycosylated hemoglobin, and nutritional
status. Additionally, the abundance of gut bacterial species changed after the treatment [83].
Furthermore, an open-labeled controlled trial of 13 patients with type 2 diabetes revealed
that the treatment with FMT improved blood glucose levels, glycosylated hemoglobin,
and the abundance of Bifidobacterium [84]. Furthermore, mice with type 2 diabetes were
treated with FMT and reported an improvement in the level of insulin resistance while
the level of inflammatory response was reduced. Additionally, Western blots and flow
cytometry results reported inhibition of the apoptotic pathway after the FMT treatment [85].
Although none of the studies reported adverse side effects of the FMT treatment, more
studies are required to assess and standardize the mode of administration, the concen-
tration, and the safety of the procedure. Unfortunately, the literature still lacks more
information that links the effect of FMT on restoring the abundance of the three bacterial
species—Bifidobacterium adolescentis, Bifidobacterium bifidum, and Lactobacillus rhamnosus—in
diabetic patients/models. Despite that, reporting the available data that support the posi-
tive influence of FMT on diabetes and gut microbiome profile, in general, may provide a
roadmap for structured research in linking FMT to the three bacterial species and diabetes.

6. Conclusions

Diabetes mellitus is a chronic condition with a massive burden on patients worldwide.
Developing new targets and management plans which can be used with the currently used
treatment is essential. The gut microbiome has been recently used in diabetic research.
Throughout our study, we observed a lack in the literature of data that addresses specific
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bacterial species and their correlation with diabetes. Bifidobacterium adolescentis, Bifidobac-
terium bifidum, and Lactobacillus rhamnosus are the most commonly addressed bacterial
species with diabetes in the literature. Those bacterial species were reported to reduce the
biochemical parameters of diabetes and improve its complications.

Unfortunately, the field still lacks standardization in the protocol followed, the models
used, and the interpretations. Furthermore, more efforts are required to address the
available online Atlases that discuss gut microbiome causality without solid evidence.
Generally, the gut microbiome field will be essential in futuristic treatments, primarily
when combined with other therapeutic options. However, more research is needed to
evaluate the safety and efficacy of this proposed approach.
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