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Abstract: Over the past three years, significant progress has been made in the development of novel
promising drug candidates against COVID-19. However, SARS-CoV-2 mutations resulting in the
emergence of new viral strains that can be resistant to the drugs used currently in the clinic necessitate
the development of novel potent and broad therapeutic agents targeting different vulnerable spots of
the viral proteins. In this study, two deep learning generative models were developed and used in
combination with molecular modeling tools for de novo design of small molecule compounds that
can inhibit the catalytic activity of SARS-CoV-2 main protease (Mpro), an enzyme critically important
for mediating viral replication and transcription. As a result, the seven best scoring compounds
that exhibited low values of binding free energy comparable with those calculated for two potent
inhibitors of Mpro, via the same computational protocol, were selected as the most probable inhibitors
of the enzyme catalytic site. In light of the data obtained, the identified compounds are assumed to
present promising scaffolds for the development of new potent and broad-spectrum drugs inhibiting
SARS-CoV-2 Mpro, an attractive therapeutic target for anti-COVID-19 agents.

Keywords: SARS-CoV-2; main protease; deep learning; generative autoencoder; virtual screening;
molecular docking; molecular dynamics; binding free energy calculations; anti-SARS-CoV-2 drugs

1. Introduction

Computer-aided drug design is currently an important tool that can significantly
reduce the time and costs required to develop new therapeutic agents [1,2]. In recent years,
drug development has increasingly used machine learning methods, in particular deep
learning, which are applied at each stage of this complex multi-stage process, not only
to accelerate research, but also to assess the risks and costs in clinical trials [3,4]. These
methods make it possible to establish mathematical relationships between empirical data on
the properties of small molecules and extrapolate them to predict the physicochemical and
biological characteristics of new compounds [4–6]. Using machine learning, one can explore
quantitative structure–activity (QSAR, Quantitative Structure–Activity Relationship) or
structure–property (QSPR, Quantitative Structure–Property Relationship) relationships and
develop methods that can predict, with high accuracy, the effect of chemical modifications
of a compound on its biological activity, pharmacokinetic, and toxicological characteris-
tics [4–6]. In addition, machine learning methods can be successfully applied to solve
problems of drug repurposing [7,8], protein structure prediction [9], virtual screening of
potential drugs, and the prediction of protein−ligand binding affinity [10–12]. In recent
works, deep learning methods have been used for the screening of chemical databases
to identify antibacterial and antiviral inhibitors, including therapeutic agents potentially
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active against HIV-1 and SARS-CoV-2 [12–15]. The use of these methods in combination
with virtual screening of molecular libraries containing FDA-approved drugs has resulted
in the discovery of a number of potential drugs against SARS-CoV-2 [15]. In addition to
identifying potential drugs in chemical databases and predicting their physicochemical
properties, machine learning is also used to design new compounds with specified phar-
macological characteristics [16–21]. Despite the fact that the traditional virtual screening
of molecular libraries, based on the similarity of the physicochemical characteristics of
compounds, provides rich opportunities for identifying novel potential drugs [22], it has
certain disadvantages compared to generative models. One of the main incentives for the
use of generative models is a broader exploration of the molecular feature space [20]. A
similarity-based search provides an exploration of a chemical space limited by the variety
of compounds available, while generative models allow for a much broader chemical
diversity to be captured in the molecular space of features [20]. The second advantage of
generative models is the possibility of imposing additional conditions in the generation pro-
cess, which enables one to perform the directed design of new molecules from the chemical
space instead of their blind generation [14]. The given value of the protein–ligand binding
free energy can be used as a criterion, which makes it possible to generate high-affinity
molecules from a subset of interest in the studied chemical space [14].

In recent years, deep generative models have found wide application in de novo
drug development research [16–21]. Thanks to the huge advancements in deep learning
methods, generative models with different architectures and different learning methods
have now been developed using different types and data structures, including promising
models such as the graph neural network [16], recurrent neural network [17], generative
adversarial network [18], conditional adversarial autoencoder [19], and generative tensorial
reinforcement learning [21]. The application of deep generative models has already shown
their ability to generate molecules that can be synthesized, are active in vitro, are stable,
and exhibit activity in vivo in models associated with various diseases [15]. In particular,
the Janus kinase 3 inhibitor, which presents a new class of immunomodulatory agents, has
been developed using the conditionally adversarial autoencoder [19]. In addition, in vivo
active inhibitors of discoidin domain receptors 1 and 2 (DDR1 and DDR2) have been devel-
oped using generative tensorial reinforcement learning and the pharmacokinetic profile
of DDR1 has been confirmed by in vivo mouse experiments [21]. However, despite deep
generative models becoming more common in chem- and bioinformatics, their potential in
this area has not yet been fully exploited. In this regard, the development and application
of deep generative methods for computer-aided drug design are of great scientific and
practical importance.

SARS-CoV-2 Mpro plays an important role in mediating viral replication and infectiv-
ity and, therefore, is a highly promising therapeutic target [23]. A number of studies have
used SARS-CoV-2 Mpro for screening the FDA-approved drugs as potential inhibitors of
the virus in the hope of finding drugs effective against COVID-19 [24]. Insights into the
literature show that numerous studies are currently underway on natural Mpro inhibitors
originating mainly from plants, marine organisms, and microorganisms [24]. Furthermore,
covalently-binding peptidomimetics and small molecules are being studied, and some of
these various compounds have exhibited antiviral activity in infected human cells [25]. For
example, remdesivir, neuraminidase inhibitors, RNA synthesis inhibitors, abidol, and anti-
inflammatory drugs have been suggested as potential antiviral agents [26]. A number of
potential drug candidates have been found by virtual screening of a library of phytochemi-
cals and Chinese medicinal agents with potential antiviral properties against SARS-CoV-2
Mpro [26]. Studies of Paxlovid (PF-07321332), presenting a nirmatrelvir/ritonavir combina-
tion, showed [27] that it blocks SARS-CoV-2 replication by binding to Mpro, is effective
when administered orally, and has good selectivity and safety profiles. According to an
interim analysis of phase II/III clinical trials, Paxlovid significantly reduced the number of
hospitalizations and deaths. In this regard, the clinical trials of Paxlovid were terminated
ahead of schedule, and, in November 2021, the U.S. Food and Drug Administration issued
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an emergency use authorization for the treatment of mild to moderate COVID-19 [28].
Detailed information on the current developments regarding promising inhibitors of SAR-
CoV-2 Mpro is presented in the recent review articles [15,24–26], testifying that studies on
the discovery of new drug candidates against this viral enzyme are still extremely relevant.

The objective of this study consisted of the development of a deep generative neural
network, and its application in combination with molecular modeling tools to identify
small-molecule compounds able to inhibit the catalytic activity of SARS-CoV-2 main pro-
tease (Mpro).

To reach the objective proposed, the following studies were carried out: (i) formation
of a training library of small-molecule compounds containing substructures or functional
groups that can make the ligand active towards SARS-CoV-2 Mpro; (ii) development and
implementation of the architecture of deep generative models based on describing the
structures of chemical compounds in the Simplified Molecular-Input Line-Entry System
(SMILES) [29] to design potential SARS-CoV-2 Mpro ligands; (iii) training the neural
networks followed by validation of the learning outcomes; (iv) generation of a wide
range of potential SARS-CoV-2 Mpro ligands using the developed neural networks; and
(v) identification of the most promising drug candidates against SARS-CoV-2 Mpro by
molecular docking, molecular dynamics simulations, and binding free energy calculations.

2. Results and Discussion

An analysis of the data from molecular modeling found the seven best scoring com-
pounds that showed strong attachment to the SARS-CoV-2 Mpro catalytic site in line
with the low values of binding free energy predicted both for the static and dynamic
ligand/Mpro models. The chemical structures of these top-ranking compounds are shown
in Figure 1, and Tables 1 and 2 shed light on their physicochemical parameters commonly
used as the basic filters to screen ligands for their ability to be effective when taken orally.
Table 1 indicates that ligand I fully satisfies the requirements imposed on the potential drug
by the Lipinski’s “rule of five”, meaning that it possesses highly important characteristics
such as absorption, distribution, metabolism, and excretion [30,31]. At the same time,
ligands II−VII reveal only one violation of this rule relating to a slight excess of their
molecular weight, allowing one to suppose that these compounds also have drug-like
properties [30,31]. In addition, the data on a qualitative estimation of the molar solubility
of the analyzed compounds (Table 2), which is one of the major properties influencing
absorption, suggest that these molecules are soluble in water, evidenced by the values of
logS calculated by the ESOL method [32] available on a free web tool SwissADME [33].
Finally, the calculations also indicate that compounds I–VII (Figure 1) can be synthesized
and submitted to biological assays or other experiments, which is a major factor in selecting
the most promising virtual molecules. This assumption is supported by the assessment
of synthetic accessibility of the molecules of interest using SwissADME (Table 2) which
classifies the SA score ranges from 1 (very easy) to 10 (very difficult) [33].

Table 1. Physicochemical parameters of the identified compounds associated with the Lipinski’s
“rule of five”.

Ligand Chemical
Formula

Molecular Weight
(Da) LogP Number of

H-Bond Donors
Number of

H-Bond Acceptors

I C25H14F3N5O 457.4 4.43 1 8
II C30H30F2N8O2 572.6 2.93 4 9
III C28H23ClFN9O2 572.0 3.48 5 8
IV C30H25ClN8O 549.0 4.73 2 6
V C34H32N10O 596.7 3.62 2 7
VI C28H25N7O5 539.5 3.43 3 9
VII C30H19ClFN9 560.0 4.93 3 7

Physicochemical parameters were calculated using a freely accessible web-server SwissADME [33].
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Figure 1. Chemical structures of the identified compounds. The systematic names of these molecules
are given.

Table 2. Data on the molar solubility in water and synthetic accessibility predicted for the designed
compounds by the SwissADME web server.

Ligand Decimal Logarithm of the Molar Solubility in Water
LogS

Synthetic Accessibility
SA

I −5.68 3.55
II −5.40 5.70
III −6.37 4.07
IV −6.62 5.23
V −6.79 4,52
VI −6.28 4.83
VII −6.75 3.89
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Table 3 and Figure 2 show the profile of interaction modes realized in the docking
complexes of the identified compounds with the SARS-CoV-2 Mpro catalytic site. An
analysis of the intermolecular interactions of these compounds with Mpro indicates (Table 3,
Figure 2) that these ligands form a wide network of van der Waals contacts involving
functionally important residues of the Mpro binding pocket, such as His-41, Met-49 (except
for compound VI), Met-165, Glu-166, and Gln-189. Along with van der Waals interactions,
the analyzed compounds constitute hydrogen bonds with Gly-143 (compounds I, III, IV),
His-41 (compound II), Ser-46 (compound II), Thr-24 (compound VI), Thr-26 (compounds
II and VI), Glu-166 (compounds II, III, IV, V and VII), Cys-145 (compound IV), His-163
(compound V), and Gln-192 (compound VII) (Table 3, Figure 2). Furthermore, compounds
III, V, and VI participate in specific cation-π interactions with His-41, which is a part of
the catalytic dyad of Mpro formed by this residue and Cys-145 [34]. Finally, π-conjugated
systems of compounds VI and VII form π-stacking with the side chain of His-41, and
compound III makes a salt bridge with Glu-166 (Table 3). Among these binding modes,
intermolecular van der Waals interactions and hydrogen bonds are the major contributors
to the ligand/Mpro interface (Table 3, Figure 2).

Table 3. Intermolecular interactions appearing in the docking complexes of the identified compounds
with SARS-CoV-2 Mpro.

Ligand Hydrogen Bonds 1 Van Der Waals Contacts 2
Cation-π Interactions, Salt

Bridges, and
π-π Stacking 3

I N...*HN[G143] E166(5), M49(3), L141(2), H41(2), M165(1),
Q189(1), L27(1) −

II

NH...**N[H41]
NH...*N[S46]
O...*HN[T26]

N...* HN[E166]

E166(7), M165(3), T25(2), T26(2), L141(2), T45(1),
H41(1), M49(1), S46(1), G143(1) −

III N...*HN[G143]
N...*HN[E166]

E166(4), N142(3), T25(3), T45(2), M49(2), T26(1),
S46(1), C44(1), H41(1), M165(1), Q189(1)

H41(2)
(cation-π interaction);

E166 (salt bridge)

IV
N...*HN[E166]
O...*HN[C145]
N...*HN[G143]

E166(8), L27(6), Q189(6), T25(3), L141(3), P168(3),
H41(1), M49(1), T45(1), G143(1), C145(1),

M165(1), N142(1)
−

V N...*HN[E166]
N...**HN[H163]

Q189(7), P168(6), T25(5), E166(4), F140(2), S46(2),
L27(2), G143(2), M49(1), M165(1), H41(1), T26(1)

H41
(cation-π interaction)

VI NH...*O[T24]
N...*HN[T26]

E166(8), F140(3), L141(3), G143(3), M165(2),
H41(1), L27(1), C145(1)

H41
(cation-π interaction);

H41
(π-π stacking)

VII N...*HN[E166]
N...**HN[Q192]

Q189(8), E166(5), T25(4), M165(3), H41(2),
P168(2), M49(1), T26(1)

H41
(π-π stacking)

1 Atoms of the ligands are shown first, followed by the corresponding atoms of SARS-CoV-2 Mpro (Mpro residues
are in brackets in one-letter code). Symbol * denotes the atoms of the residue main chain, and symbol ** marks the
atoms of the residue side chain. 2 Amino acids of SARS-CoV-2 Mpro forming van der Waals contacts with the
ligands. The number of contacts is given in brackets. 3 For cation-π interactions, π-π stacking, and salt bridges,
residues of SARS-CoV-2 Mpro involved in these binding modes are denoted.
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Figure 2. Structural complexes of compounds I–VII with SARS-CoV-2 Mpro generated by molecular
docking. The enzyme residues forming intermolecular contacts with the ligands are indicated.
Hydrogen bonds are shown by dashed lines.

The efficiency of intermolecular interactions in the docking ligand/Mpro complexes is
confirmed by the low values of binding free energy and dissociation constant, testifying
to the high-affinity binding of compounds I–VII to the Mpro catalytic site (Table 4). The
data of Table 4 suggest that these values calculated using three different scoring functions
are at least comparable with those obtained via the identical computational protocol for
the control inhibitors I and II. The MD simulations maintain the major inferences resulting
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from the analysis of the static ligand/Mpro models. An analysis of the MD trajectories of
these models points to their relative stability within the 150 ns time domain, as evidenced by
the averages of binding free energies and the corresponding standard deviations (Table 5).
Taking into account the MM/GBSA standard error of about 3 kcal/mol [35], the data
from molecular dynamics (Table 5) result in the same conclusion made from the results of
molecular docking (Table 4), testifying to the similarity in the binding affinity profiles of the
predicted and control compounds. This conclusion is also indicated by the data on the time
dependences of the root-mean-square deviations (RMSD) of the atomic positions between
all of the MD complexes and their starting models (Figure 3). For the predicted compounds,
the averages of RMSD, equal to 2.14 ± 0.31 Å (compound I), 2.39 ± 0.24 Å (compound II),
2.05 ± 0.32 Å (compound III), 2.26 ± 0.28 Å (compound IV), 1.98 ± 0.23 Å (compound
V), 2.39 ± 0.33 Å (compound VI), 1.80 ± 0.24 Å (compound VII), are close to the mean
values of 1.94 ± 0.30 Å and 1.99 ± 0.27 Å calculated for the control inhibitors I and II,
respectively (Figure 3). At the same time, the mean value of the RMSD for SARS-CoV-2
Mpro in the unbound state is 1.89 ± 0.30 Å, indicating that this average is comparable
with those calculated for the predicted compounds bound to the enzyme (Figure 3). This is
an additional confirmation that the ligand/Mpro complexes do not undergo significant
structural reorganizations on their MD trajectories. Finally, the relative stability of the
analyzed complexes is encouraged by the data on the time dependences of the values of
binding free energy, which show no tendency to increase over time (Figure 4).

Table 4. Values of binding free energy (∆G) and dissociation constant (Kd) for the static ligand/Mpro
complexes according to the scoring functions AutoDock Vina, RFScore4, and NNScore2.

Ligand ∆GVINA
1

kcal/mol KdVINA
1 µM ∆GRFScore4

2

kcal/mol
KdRFScore4

2

µM
∆GNNScore2.0

2

kcal/mol
KdNNScore2.0

2

µM

I −9.1 0.384 −10.9 0.022 −11.9 0.0041

II −10.3 0.055 −11.0 0.016 −11.6 0.0069

III −8.7 0.735 −11.1 0.015 −12.7 0.0012

IV −10.0 0.089 −11.1 0.014 −13.0 0.0007

V −9.2 0.326 −10.9 0.022 −13.4 0.0004

VI −9.6 0.171 −11.2 0.012 −11.9 0.0043

VII −9.9 0.105 −11.2 0.012 −12.9 0.0007

Inhibitor I −8.3 1.407 −11.0 0.018 −8.1 1.9

Inhibitor II −8.5 1.017 −11.1 0.015 −7.9 2.9
1 The values of ∆G predicted by AutoDock Vina were converted to those of Kd using the formula ∆G = R × T ×
ln(Kd) (where ∆G is the binding free energy, R is the universal gas constant, T is the absolute temperature equal to
310 K) [36]. 2 This formula was also used to convert the values of Kd estimated by RFScore 4 and NNScore 2.0 to
those of ∆G.

Insights into the data on the contributions of the individual Mpro amino acids to
the binding enthalpy reveal the residues dominating the ligand/Mpro interface. Table 6
indicates that these residues are His-41 (compounds I–V, VII), Met-49 (compounds I–VII),
Asn-142 (compounds III–VI), Gly-143 (compounds III–VI), Cys-145 (compounds III–VII),
Met-165 (compounds I–V, VII), Glu-166 (compounds I, III–VII), Asp-187 (compounds I, II,
VII), and Gln-189 (compounds I–V, VII) (Table 6). For the control inhibitors I and II, the
common binding hot spots to the SARS-CoV-2 Mpro are Met-49, Asn-142, Gly-143, Cys-145,
Met-165, Glu-166, Asp-187, and Gln-189 (Table 6). In addition, inhibitor I also participates
in strong binding to the Mpro His-41 residue. Importantly, most of these residues are used
by the predicted compounds for effective interaction with the SARS-CoV-2 Mpro. The data
obtained suggest that these major contributors to the ligand/Mpro interaction play the role
of anchor residues, providing strong attachment of the identified and control compounds
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to the enzyme catalytic site. Among these binding hot spots, the highly important His-41
and Cys-145 should first be noted, forming the catalytic dyad of SARS-CoV-2 Mpro [34].

Table 5. Averages of binding free energy (<∆G>) for the dynamic complexes of the identified ligands
and control compounds with SARS-CoV-2 Mpro and their standard deviations (∆GSTD) calculated
for the final 150 ns of the MD trajectories.

Ligand <∆H>
kcal/mol

∆HSTD
kcal/mol

<T∆S>
kcal/mol

(T∆S)STD
kcal/mol

<∆G>
kcal/mol

∆GSTD
kcal/mol

I −45.3 5.2 −22.3 4.5 −23.0 6.9

II −46.0 6.2 −24.4 4.7 −21.5 7.3

III −46.6 6.0 −27.6 6.0 −19.0 8.1

IV −44.6 3.9 −25.9 5.3 −18.7 6.7

V −45.5 4.3 −28.2 4.3 −17.3 6.0

VI −40.9 6.2 −24.8 4.4 −16.1 7.0

VII −37.4 4.8 −23.4 3.9 −13.9 6.2

Inhibitor I −42.8 4.1 −24.5 4.9 −18.3 6.1

Inhibitor II −39.0 4.1 −24.5 4.5 −14.4 6.4
<∆H> and <T∆S> are the mean values of enthalpic and entropic components of binding free energy, respectively;
(∆H)STD and (T∆S)STD are standard deviations corresponding to these values.
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Figure 3. The time dependence of the RMSD (Å) calculated between all of the MD structures and
the starting models of the identified and control compounds bound to SARS-CoV-2 Mpro. The
corresponding data are also shown for the enzyme in the unbound state. In the upper right corner,
the mean values of RMSD and corresponding standard deviations for the last 150 ns of the MD
trajectories are indicated.
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Table 6. Averages of the binding enthalpy for the amino acid residues of Mpro bound to the identified
and control compounds.

Residue Contribution to the Binding Energy (kcal/mol) 1,2,3

Residue of Mpro Compounds

Inhibitor I Inhibitor II I II III IV V VI VII

Thr-25 - −0.6 ± 0.4 - - −1.9 ± 0.9 −0.8 ± 0.4 - −0.7 ± 0.6 −1.7 ± 0.4
Leu-27 −0.5 ± 0.3 −1.2 ± 0.4 - - −1.1 ± 0.3 −0.5 ± 0.2 −0.6 ± 0.2 −2.1 ± 0.7 −1.0 ± 0.2
His-41 −2.2 ± 0.6 - −2.1 ± 0.4 −0.9 ± 0.6 −0.7 ± 0.3 −0.9 ± 0.5 −1.4 ± 0.4 - −1.2 ± 0.3
Ser-46 - - - - - −1.5 ± 0.9 −1.2 ± 0.4 - −0.6 ± 0.4
Met-49 −1.1 ± 0.6 −0.9 ± 0.6 −2.7 ± 1.5 −1.8 ± 0.9 −1.8 ± 0.5 −0.8 ± 0.3 −1.2 ± 0.3 −0.8 ± 0.6 −1.2 ± 0.3
Leu-141 - −0.5 ± 0.3 - - - - −1.1 ± 0.3 −0.6 ± 0.3 -
Asn-142 −2.5 ± 0.6 −2.5 ± 0.6 - - −1.4 ± 0.7 −0.7 ± 0.8 −0.7 ± 0.5 −3.3 ± 1.2 -
Gly-143 −1.8 ± 0.3 −2.3 ± 0.5 - - −1.9 ± 0.4 - −0.5 ± 0.2 −2.2 ± 0.6 -
Ser-144 −0.7 ± 0.4 −1.0 ± 0.4 - - - - - −1.7 ± 0.6 -
Cys-145 −1.4 ± 0.3 −1.6 ± 0.5 - - −1.1 ± 0.3 −0.9 ± 0.3 −1.3 ± 0.3 −2.2 ± 0.7 −1.4 ± 0.3
His-163 −1.7 ± 0.3 −1.7 ± 0.4 - - - - −1.2 ± 0.5 −0.6 ± 0.2 −1.5 ± 0.4
His-164 - - −0.5 ± 0.3 - - - −2.9 ± 0.8 - −0.9 ± 0.2
Met-165 −2.6 ± 0.4 −2.6 ± 0.7 −2.9 ± 0.4 −2.5 ± 0.7 −3.0 ± 0.4 −2.9 ± 0.4 −3.5 ± 0.5 - −3.7 ± 0.5
Glu-166 −1.4 ± 0.6 −1.2 ± 0.7 −1.0 ± 0.5 - −2.6 ± 0.6 −1.6 ± 0.7 −2.0 ± 0.8 −0.6 ± 0.8 −1.1 ± 0.6
Leu-167 - - −1.4 ± 0.5 −2.1 ± 0.6 −1.0 ± 0.4 −0.8 ± 0.2 −0.7 ± 0.4 - -
Pro-168 - - −0.6 ± 0.3 −2.0 ± 0.5 −0.9 ± 0.4 −1.3 ± 0.3 −1.1 ± 0.4 - -
Phe-185 - - - −1.4 ± 0.5 - - - - -
Asp-187 −1.9 ± 0.7 −0.7 ± 0.9 −2.4 ± 0.4 −1.2 ± 0.7 - - - - −1.4 ± 0.3
Arg-188 - - −1.2 ± 0.6 −0.5 ± 0.5 - - - - −1.0 ± 0.4
Gln-189 −1.0 ± 0.8 −1.3 ± 0.6 −2.5 ± 0.8 −2.9 ± 1.1 −2.9 ± 1.6 −3.3 ± 0.7 −0.7 ± 0.8 - −1.1 ± 0.6
Thr-190 - - −0.6 ± 0.4 −1.2 ± 0.8 - −0.6 ± 0.2 - - -
Gln-192 - - - −1.3 ± 0.6 - −0.5 ± 0.2 - - -

1 Data for the Mpro residues with the binding energy≤−0.5 kcal/mol are presented. 2 The averages of the residue
contributions to the binding energy and corresponding standard deviations are given. 3 The Mpro residues
dominating the ligand/Mpro interaction are highlighted in bold.

The calculation of the root-mean-square fluctuations (RMSF) of the individual Mpro
residues, testifying to the flexibility of each amino acid on the MD trajectory, indicates
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that most of the enzyme residues show small structural fluctuations (Figure 5). Moreover,
this observation applies both to the residues of Mpro in the complexes with the predicted
compounds and control inhibitors, and to those of the enzyme in the unbound state
(Figure 5). The averages of RMSF values for the ligand/Mpro models and unliganded
enzyme are about the same, ranging between 0.88 Å and 1.15 Å. Importantly, the Mpro
residues dominating the ligand/Mpro interface are also positionally restrained (Table 7).
For these anchor residues, the RMSF values do not exceed 2.2 Å, and, in most cases, are less
than 1.5 Å (Table 7). At the same time, the RMSF values calculated for these hot spots of the
enzyme bound to the identified and control compounds are close to each other (Table 7),
supporting their key role in the ligand/Mpro interaction.
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Figure 5. Values of RMSF (Å) for each residue along the Mpro amino acid sequence. The following
designations are used: purple, black, pink, grey, green, yellow, and light grey lines correspond to
Mpro in the complexes with compounds I, II, III, IV, V, VI, VII, respectively; blue and orange lines
match Mpro bound to the control inhibitors I and II, respectively; red line satisfies Mpro in the
unbound state.

Table 7. Values of RMSF for the Mpro residues contributing to the binding enthalpy.

Compounds

Residue of Mpro I II III IV V VI VII Inhibitor I Inhibitor II

Values of RMSF (Å) for the Individual Residues of Mpro

His41 0.5 0.5 0.6 0.6 0.6 0.6 0.5 0.7 0.6
Met49 2.0 1.0 1.3 1.1 1.1 2.0 0.9 2.2 2.0

Asn142 1.2 1.8 1.0 1.2 0.9 0.9 1.1 0.9 0.8
Gly143 1.0 0.9 0.8 0.7 0.8 0.9 0.9 0.7 0.7
Cys145 0.6 0.6 0.5 0.4 0.5 0.6 0.5 0.5 0.5
Met165 0.7 0.6 0.7 0.6 0.5 0.6 0.5 0.6 0.6
Glu166 0.8 0.7 0.8 0.6 0.6 0.8 0.6 0.7 0.7
Gln189 1.3 1.1 1.4 0.9 1.0 1.7 1.0 1.5 1.8

Thus, the data on the binding affinity profiles of the identified compounds obtained
using molecular docking and molecular dynamics tools are in agreement with each other,
indicating the strong attachment of these ligands to the Mpro catalytic site (Tables 4 and 5).
According to these data, the high-affinity binding of the predicted molecules to the catalytic
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pocket of Mpro is generally provided by hydrogen bonds and van der Waals dispersion
forces (Table 2, Figure 3), which are implemented by the relevant pharmacophore groups
present in their structures, namely by donors and acceptors of H-bonds and non-polar
chemical motifs (Figure 1, Table 1). The computational findings indicate that it is these phar-
macophore groups that make a crucial contribution in providing the analyzed molecules
with the ability to inhibit the catalytic activity of Mpro. This suggests that the used compu-
tational approach combining AI-driven de novo design with molecular modeling allowed
one to avoid false-positive results and properly evaluate the strength of intermolecular
interactions. This supposition is indirectly confirmed by the findings of a recent study [37]
in which the use of the machine-learning scoring function NNScore 2.0 in combination with
one to four classical scoring functions was shown to provide the best accuracy of binding
affinity prediction. Taken together, the data obtained give strong evidence to assume that
the predicted compounds may exhibit low values of binding free energy to Mpro, close to
those calculated for the control inhibitors I and II. Based on these data, it can be expected
that small-molecule compounds I−VII (Figure 1) have good therapeutic potential to inhibit
the enzyme catalytic activity, and, therefore, may serve as good scaffolds for the drug devel-
opments targeting SARS-CoV-2 main protease. However, it is important to note that these
molecules can have a number of undesirable physicochemical characteristics, which may
limit their therapeutic application. In particular, these characteristics include important
pharmacological properties for drugs such as cytotoxicity, solubility in aqueous systems,
and bioavailability, which cannot always be predicted correctly by computational methods.
Obviously, only biomedical research of the identified compounds can validate the data
from molecular modeling, and therefore the further advancement of this work assumes the
implementation of the following stages: (i) synthesis and in vitro testing of the predicted
molecules for antiviral activity, cytotoxicity, and mechanism of action; (ii) identification of
the lead compounds and their optimization using the current QSAR strategies [38]; (iii)
synthesis of the optimized compounds followed by detailed biomedical assays.

3. Materials and Methods
3.1. Development of a Deep Generative Neural Network
3.1.1. Preparing the Training Dataset

The generative autoencoder was constructed to be specific for SARS-CoV-2 Mpro, and,
therefore, the training dataset for the neural network should have included compounds
potentially active against this therapeutic target. For this reason, a virtual molecular library
of potential anti-SARS-CoV-2 agents able to effectively bind and block the Mpro catalytic
site was primarily formed for learning of the neural network. The procedure for preparing
this library is described below.

(A) Building pharmacophore models and virtual screening of chemical databases

To identify small-molecule compounds potentially active against SARS-CoV-2 Mpro,
the pharmacophore-based virtual screening was performed by a web-oriented platform
Pharmit (http://pharmit.csb.pitt.edu (accessed on 25 April 2023)) [39], allowing one to
search for small molecules based on their structural and chemical similarity to another
small molecule. To do this, pharmacophore models that described a set of structural
and functional features providing high-affinity binding to Mpro for a number of potent
inhibitors of SARS-CoV, the predecessor of SARS-CoV-2 [23], were constructed. Chem-
ical structures of these SARS-CoV inhibitors were taken from a study [23] and divided
into groups according to their belonging to a certain class of chemical compounds, and
then the pharmacophore characteristics of representative members of each group were
averaged using the PharmaGist web server [40]. As a result, 16 pharmacophore models
that corresponded to 16 groups of the SARS-CoV Mpro inhibitors including 6 classes of
peptidomimetics and 10 classes of small-molecule compounds [23] were built. The obtained
dataset was then supplemented with the pharmacophore model of the pan-coronavirus
inhibitor X77, a potent non-covalent antiviral agent targeting Mpro both of SARS-CoV,
MERS-CoV, and SARS-CoV-2 [41,42]. The X77 pharmacophore model was generated using

http://pharmit.csb.pitt.edu
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the web-platform Pharmit (http://pharmit.csb.pitt.edu) [39] based on the structure of the
X77/Mpro complex in crystal (PDB ID: 6w63; https://www.rcsb.org (accessed on 25 April
2023)) [42]. Pharmacophore-based virtual screening was performed in the nine Pharmit
molecular libraries containing over 213.5 million chemical structures, resulting in a set of
711,102 compounds that satisfied one of the seventeen constructed pharmacophore models.

(B) Molecular docking

Compounds identified by the pharmacophore-based screening were subject to the
preliminary molecular docking with the SARS-CoV-2 Mpro structure (PDB ID: 6Y84; https:
//www.rcsb.org/pdb/ (accessed on 25 April 2023)) [42]. These compounds were then
filtered via the docking scoring function with the energy threshold value of −7 kcal/mol,
which corresponds to the IC50 value of 10 µM generally used in the in vitro screening of
potential drugs [43]. At the next stage, the refining molecular docking of the SARS-CoV-2
Mpro structure with 353,467 compounds that met the given threshold value of binding free
energy was carried out. As a result, 347,732 compounds with values of binding energy
lower than −6 kcal/mol were selected for further analysis. The higher energy threshold
for the refining docking compared to the preliminary docking was chosen based on two
major factors. First, the AutoDock Vina program which was used for the refining docking
has a higher accuracy in predicting the ligand-binding affinity than QuickVina 2 (Oxford,
UK) [44], applied for the preliminary docking. Second, for the refining docking, a much
larger number of ligand poses in the Mpro catalytic site were considered (see Section 3.1.6.
below). The significant reduction in the size of the training dataset, achieved using two-
stage docking, made it possible to essentially decrease the number of parameters of the
developed neural network and thereby speed up the process of its training.

3.1.2. SMILES Space Revision and Vectorization

The generated library of chemical compounds in the SMILES linear notation was
purified from molecules that had a molecular weight more than 1000 Da, duplicates, and
incorrect SMILES records. The representations of chemical structures in the SMILES format
were obtained by the Python 3 script using the RDKit module [45]. Molecules containing
at least one SMILES element with a frequency less than 0.001 were filtered out based on
the frequency distribution of SMILES elements in the generated dataset. The distribution
of SMILES lengths was then analyzed, and compounds with the SMILES representation
longer than 120 characters were removed (Figure 6A). After applying all the filters, the
dataset included 342,102 different molecules and corresponding SMILES. The SMILES were
vectorized into a matrix in accordance with the maximum length and symbols’ vocabulary
size (Figure 6B), with the added start and end symbols represented by “!” and “E”.

The resulting 342,102 molecules integrated with the corresponding values of docking
scores constituted the dataset, which was divided into the training, validation, and test
subsets involving 70%, 15%, and 15% of the initial dataset, respectively. While generating
the subsets, a stratified division was applied to retain the same energy distributions within
all three sets. The validation set was used to assess the model’s power to reconstruct the
input SMILES during training, whereas the test SMILES were employed to sample novel
molecules by the addition of distortion to their latent representation.

http://pharmit.csb.pitt.edu
https://www.rcsb.org
https://www.rcsb.org/pdb/
https://www.rcsb.org/pdb/
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3.1.3. Restoration of Three-Dimensional Structures of Generated Molecules

To estimate the capability of the neural network to generate new compounds active
against SARS-CoV-2 Mpro, a molecular docking of these molecules with the enzyme needed
to be performed. Obviously, this required the use of three-dimensional (3D) structures of
the generated molecules. To obtain these 3D structures from the SMILES format, a script
was designed in Python 3 using the RDKit module [45]. The process of structure generation
comprised the following stages: SMILES input, SMILES validity check, generation of 2D
atomic coordinates, generation of 3D atomic coordinates, structure optimization in the
MMFF94 force field [46,47], attachment of hydrogen atoms, and re-optimization in the
MMFF94 force field. The generation of 3D atomic coordinates of molecules was carried out
by the ETKDGv3 algorithm [48].

3.1.4. Preparation of the Mpro Structure

The X-ray structure of the SARS-CoV-2 Mpro in the unbound state was accepted from
the Protein Data Bank (PDB ID: 6Y84; https://www.rcsb.org/pdb/) [42]. Hydrogen atoms
were then added to this structure, followed by annotating atoms with Gasteiger partial
charges [49], and structure optimization in the UFF force field [50]. To achieve this, the
OpenBabel program [51] was used. The obtained structure of SARS-CoV-2 Mpro was
applied for the preliminary and refining docking, both during the dataset preparation and
the docking of the generated compounds.

3.1.5. Preparation of Ligand Structures

The preparation of the ligand structures for the preliminary docking was the same as
reported for the SARS-CoV-2 Mpro structure. This procedure was carried out by OpenBabel,
but included an additional step of rotatable bond identification, which is auto-made by this
program [51]. At the same time, the preparation of the ligand structures for the refining
docking was performed using the following two steps: (i) optimizing in the MMFF94 force
field [46,47] for removing steric clashes and the addition of hydrogen atoms missing in the
original structures by the RDKit module [45] in Python 3; (ii) addition of Gasteiger partial
charges and rotatable bonds identification using MGLTools [52]. It is important to note

https://www.rcsb.org/pdb/
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that before molecular docking, the 3D structures of new ligands were obtained from the
generated linear SMILES notations, as described above.

3.1.6. Computational Protocol of Molecular Docking

The preliminary and refining molecular docking were carried out by QuickVina 2 [44]
and AutoDock Vina (La Jolla, CA, USA) [53], respectively, in the approximation of rigid
receptor and flexible ligands. In both cases, the grid box contained the catalytic pocket of
SARS-CoV-2 Mpro and had the following parameters: ∆X = 19 Å, ∆Y = 21 Å, ∆Z = 23 Å
centered at X = −20 Å, Y = 19 Å, Z = −26 Å. The value of the exhaustiveness parameter
setting the number of individual sample “runs” was equal to 10 and 50 for preliminary and
refining docking, respectively.

3.1.7. Architectures of Deep Generative Models

Two deep generative models were designed, an unsupervised SMILES-based Long
Short-Term Memory (LSTM) autoencoder [54] (the embeddings model) and a semi-supervised
SMILES-based LSTM autoencoder (the energy model) [55]. The value of binding free energy
was employed in the energy model as an additional parameter in the latent layer for learning
compounds from the training set based on the results of molecular docking, and as the
desired value of their binding affinity to Mpro in the mode of generating new compounds.
The high-level architectures representative of these two models were integrated into one
scheme, as shown in Figure 7.
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The embeddings model includes the encoder part, 2D Gaussian noise entry point on
the latent layer, and the decoder part. This model receives the vectorized SMILES matrix
as an input that passes through the LSTM layer. The feature of this model consists in the
fact that the LSTM output itself is not used. Instead, the hidden and cell states’ vectors are
derived and concatenated together, and then they move through a dense layer. The output
of this dense layer presents a latent vector or SMILES embeddings which are submitted
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to two dense layers in parallel, making initial hidden and cell state inputs for the LSTM
layer in the decoder part. The decoder input layer in the training regime receives the same
vectorized SMILES matrix X as the encoder input, and, as a traditional LSTM generative
model, it predicts the next symbol. The decoder input launches the process of generation
with a start symbol ‘!’ only; embeddings are used to predict the initial states of decoder
LSTM, and they mainly determine which kind of SMILES will be obtained.

Unlike the embeddings model, the energy model has the additional neuron on the
latent layer responsible for the value of binding free energy. Whereas the embeddings
model can generate compounds from random SMILES embeddings and add noise to
SMILES embeddings of ligands with predicted binding free energy, the energy model can
generate novel ligands with a preset binding free energy, in addition to efforts to manipulate
the SMILES embeddings of the ligands to try to improve their structures after decoding
and thus decrease binding free energy.

3.1.8. Training the Models

Both models were constituted layer by layer by TensorFlow 2.1 [56] and exposed to
150 epochs of training; additionally, “Reduce learning rate on a plateau” and “Early stop-
ping” callbacks were applied to assist the model’s convergence to a better local minimum
and also to avoid overfitting. The optimizer used a method for stochastic optimization
Adam [57], with the 0.005 learning rate initial value. At the same time, the categorical
cross-entropy loss function [58] was used. The loss functions for both models are shown in
Figure 8.
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3.1.9. Deep Learning-Based Compounds’ Generation

Two modes of generation have been investigated in our recent report [59]. The first
mode was the generation from random numbers taken from normal distributions, where
distribution parameters were obtained using test data distribution on the latent layer for
each vector component (‘pass’ mode in the operator ‘add/pass’, Figure 7). In this case, the
generation process for the energy model involved setting an a priori value of binding free
energy to approximate the generated compounds. The main feature of the second mode
of generation consisted of sampling the best ligands from the test set, and trying to add
noise to their SMILES embeddings (‘add’ mode in the operator ‘add/pass’, Figure 7). This
approach was assumed to change the reconstructed ligand, and, for the energy model, also
improve the binding free energy, making the neural network generate more prospective
compounds. The combinations of two autoencoder models and two generation modes are
given in Table 8.

Table 8. Description of the investigated combinations of generative LSTM autoencoder models and
generation modes.

Model Generation Starting Point Description Generation Process Description

Unsupervised
(embeddings model)

Random number vectors drawn from
fitted normal distributions

Random numbers are used as embeddings and
fed to the decoder

Unsupervised
(embeddings model)

Compounds with binding free energy
less than −9 kcal/mol, sampled from the

test set

Embeddings for these compounds are calculated,
distortion is then added, and updated

embeddings are fed to the decoder

Semi-supervised
(energy model)

Random number vectors drawn from
fitted normal distributions and a preset

binding free energy value

Random vectors are used as embeddings and are
passed as latent layer inputs along with a preset

binding free energy value

Semi-supervised
(energy model)

Compounds with binding free energy
less than −8 kcal/mol were sampled

from the test set and improved binding
free energy values

Embeddings for these compounds are calculated,
then distortion is added, and updated

embeddings along with improved binding free
energy values are passed to the decoder

The data on the validation of the autoencoder model’s work in two generative modes
have been previously published in a study [59]. According to this study, the developed
neural network has a great potential to enrich screening pipelines with new small-molecule
compounds able to inhibit the catalytic site of Mpro. Importantly, the embeddings and
energy models using only SMILES representation of the reference compounds randomly
selected from the test set in various generation modes showed the best efficiency of the
neural network operation [59]. It is for this reason that these combinations of models and
generation modes were used in the present work for de novo design of potential drug
candidates against COVID-19.

3.2. De Novo Design of Potential Inhibitors Targeting SARS-CoV-2 Mpro
3.2.1. Generation of a Wide Set of Potential SARS-CoV-2 Mpro Ligands

Using the developed neural network, a wide set of potential ligands of SARS-CoV-
2 Mpro was generated for the subsequent identification of promising inhibitors of this
critically important viral enzyme by molecular modeling methods. As noted above, both
embeddings and energy models of the autoencoder were used to generate the ligands, and,
in both cases, only embeddings of the SMILES representations of the reference compounds
were used as input data. As a result of the autoencoder operation, the SMILES linear
representations for 128,955 molecules were obtained. A reconstruction of the 3D molecular
structures from their SMILES linear representations was performed using an algorithm that
included the following steps: (1) reading the structure and generating 2D atomic coordinates
for molecules from the SMILES descriptions; (2) generation of 3D atomic coordinates of
molecules; (3) addition of hydrogen atoms; (4) optimization of the generated 3D molecular
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structures; (5) verification of the maintenance of the molecule’s initial stereochemistry in
the final structures. The total number of molecules with the correct 3D structures that
were selected for building their complexes with SARS-CoV-2 Mpro by molecular docking
was 95,775.

3.2.2. Molecular Docking of the Generated Compounds with SARS-CoV-2 Mpro

The generated compounds were prepared for molecular docking using the MGLTools
software (La Jolla, CA, USA) [52]. Molecular docking of these compounds with the crystal
SARS-CoV-2 Mpro structure (PDB ID: 6Y84) [42] was carried out by the AutoDock Vina
program [53] in the approximation of a rigid receptor and flexible ligands. The grid box
parameters were the same as those described above in the subsection “Computational
protocol of molecular docking”. The value of the exhaustiveness parameter was set to 100.
The values of binding free energy were then estimated in terms of three scoring functions,
namely AutoDock Vina (https://vina.scripps.edu (accessed on 25 April 2023)) [53], RF-
Score-4 (https://pjballester.wordpress.com/software/ (accessed on 25 April 2023)) [37],
and NNScore 2.0 (https://git.durrantlab.pitt.edu/jdurrant/nnscore2 (accessed on 25 April
2023)) [60]. According to the values of each scoring function, the ranks of compounds were
calculated and the value of the exponential consensus ranking (ECR) function was then
obtained from these data for each ligand by the following formula [61]:

ECR = ∑
s f

1
σs f
∗ exp{−

ranks f

σs f
}

where ranks f is the rank of the compound according to the scoring function sf, σs f is the
parameter that controls the influence of the scoring function sf on the results of consensus
selection (ECR was calculated using σs f = 10 for all considered sf, since the contributions of
the individual scoring functions were taken equal).

The analyzed compounds were ranked based on the consensus ECR ranking, and
ligands with the same rank were assigned to separate groups. As a result, the ligands
that belonged to 11 groups with the highest ECR values were selected out of 95,775 initial
compounds, allowing 39 compounds to be identified. The complexes of these 39 compounds
with SARS-CoV-2 Mpro were analyzed using molecular dynamics (MD) simulations and
binding free energy calculations.

3.2.3. Molecular Dynamics Simulations

The preparation of the ligand/Mpro complexes for molecular dynamics simulations
was performed by the AmberTools18 software (San Francisco, CA, USA) [62]. Molecular
dynamics was carried out using Amber18 in the Amber ff14SB (Mpro) and GAFF (ligands)
force fields [62]. The Antechamber module was used to calculate the AM1-BCC atomic
partial charges [62]. The general Amber force field [63] was employed for the preparation
of the force field parameters. Hydrogen atoms were attached to Mpro via the tleap program
of AmberTools18 [62]. The ligand/Mpro complexes were each put in a cubical box with
periodic boundary conditions. The box for the MD simulations also contained the TIP3P
water model [64] as an explicit solvent with Na+ and Cl− ions ensuring an overall salt
concentration of 0.15 M. An energy minimization of the complex assembly was then made
by 500 steps of the steepest descent algorithm and 500 steps of the conjugate gradient
method. After energy minimization, the backbone atoms of the system were constrained by
an additional harmonic potential, with a force constant of 2.0 kcal/mol, and the complex
assembly was exposed to the equilibration phase. The system equilibration was imple-
mented in three sequential stages including (i) the system heating from 0 K to 300 K for 1 ns
in NVT ensemble by a Langevin thermostat with a collision frequency of 2.0 ps−1 [62]; (ii)
pressure equilibration during 1 ns at 1.0 bar in NPT ensemble using a Berendsen barostat
with a 2.0 ps characteristic time [62]; (iii) removal of the constraints imposed on the complex
assembly and its re-equilibration at 300 K over 0.5 ns under constant volume. The MD

https://vina.scripps.edu
https://pjballester.wordpress.com/software/
https://git.durrantlab.pitt.edu/jdurrant/nnscore2


Int. J. Mol. Sci. 2023, 24, 8083 18 of 21

simulations were then made during 200 ns in NPT ensemble at temperature T = 300 K and
P = 1 bar. Bonds with hydrogen atoms were constrained by the SHAKE algorithm [65] to
reach the integration time-step of 2 ps. Long-range electrostatic interactions were calculated
using the Particle Mesh Ewald (PME) algorithm [66]. Coulomb interactions and van der
Waals interactions were truncated at 8 Å.

3.2.4. Analysis of Interaction Modes and Binding Affinity Profile

The interaction modes of the predicted compounds to Mpro appearing in the docked/
ligand complexes were identified using the BINANA software [67]. The ligand poses in the
Mpro catalytic site were visualized by the molecular visualization system PyMOL [68].

The values of binding free energy were predicted using Amber18 (San Francisco, CA,
USA) [62] by the MM/GBSA method [35,69,70]. The calculations were carried out for
150 snapshots derived from the final 150 ns of the MD trajectories, by keeping the snapshots
every 1.0 ns. The polar solvation energies were calculated in continuum solvent using
the Poisson–Boltzmann continuum solvation model with an ionic strength of 0.15. The
non-polar terms were evaluated via solvent accessible surface area [62]. The values of the
entropic term were obtained using the Nmode module of AmberTools18 [62]. An analysis
of the MD trajectories was performed for the last 150 ns of the MD simulations using the
CPPTRAJ module of AmberTools18 [62].

Two potent SARS-CoV-2 Mpro inhibitors with the IC50 values of 18 ± 2 nM and
20 ± 5 nM (compounds 21 and 23 in a study [71], respectively) were used in the calculations
as a positive control. These molecules are among the strongest non-covalent inhibitors of
Mpro currently known [71] and are therefore very suitable for use as reference compounds
in the selection of promising drug candidates targeting the catalytic site of this SARS-CoV-2
enzyme. These control compounds are denoted below as inhibitors I (IC50 = 18 ± 2 nM)
and II (IC50 =20 ± 5 nM).

4. Conclusions

In the present study, two deep generative models were developed and applied for the
computer-aided development of novel potential inhibitors targeting SARS-CoV-2 main pro-
tease, an enzyme critically important for mediating viral replication and transcription [23].
The training and testing of these models for two generation modes were carried out and
the results of their operation were evaluated. The developed neural network was shown to
have good potential to generate new compounds with the preset antiviral potency. The
generative models were used for de novo design of a wide set of potential ligands of
SARS-CoV-2 Mpro, which resulted in 95,775 unique chemical structures. These structures
were then screened by molecular docking and molecular dynamics tools to identify the
most probable inhibitors of the enzyme catalytic activity. The calculations revealed the
seven top-ranking compounds that showed high-affinity binding to Mpro, in agreement
with the low values of binding free energy, RMSD, and RMSF. Importantly, the averages of
binding free energy predicted for these compounds turned out to be comparable with those
calculated for two potent inhibitors of Mpro [71] using the same computational protocol.
In light of the data obtained, the identified compounds are assumed to present promising
basic structures for the development of new potent and broad-spectrum drugs inhibiting
an attractive therapeutic target for anti-COVID-19 agents.
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