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Abstract: A number of processes and pathways have been reported in the development of Group
I pulmonary hypertension (Group I PAH); however, novel biomarkers need to be identified for a
better diagnosis and management. We employed a robust rank aggregation (RRA) algorithm to
shortlist the key differentially expressed genes (DEGs) between Group I PAH patients and controls.
An optimal diagnostic model was obtained by comparing seven machine learning algorithms and
was verified in an independent dataset. The functional roles of key DEGs and biomarkers were
analyzed using various in silico methods. Finally, the biomarkers and a set of key candidates were
experimentally validated using patient samples and a cell line model. A total of 48 key DEGs with
preferable diagnostic value were identified. A gradient boosting decision tree algorithm was utilized
to build a diagnostic model with three biomarkers, PBRM1, CA1, and TXLNG. An immune-cell
infiltration analysis revealed significant differences in the relative abundances of seven immune cells
between controls and PAH patients and a correlation with the biomarkers. Experimental validation
confirmed the upregulation of the three biomarkers in Group I PAH patients. In conclusion, machine
learning and a bioinformatics analysis along with experimental techniques identified PBRM1, CA1,
and TXLNG as potential biomarkers for Group I PAH.

Keywords: Group I pulmonary hypertension; machine learning; pathway enrichment analyses;
protein–protein interaction; ferroptosis; immune infiltration; biomarker

1. Introduction

Pulmonary arterial hypertension (PAH) refers to a progressive pulmonary vascular
disease, characterized by pulmonary vascular remodeling and an increased pulmonary
vascular resistance, and is associated with a high mortality [1,2]. Group I PAH is the most
vital of all pulmonary hypertension subtypes, because of its aggressiveness, restricted
therapeutic option, and dismal prognosis. As great efforts have been made in the past
30 years, the survival rate of Group I PAH patients has increased, owing to improved
medical services; however, the underlying molecular mechanisms are still unknown [3].
Recently, PAH research has focused on investigating novel diagnostic biomarkers and
therapeutic targets. For instance, Nies et al. found that the Insulin-like growth factor (IGF)
axis could serve as a diagnostic biomarker for severe pulmonary hypertension [4]. Similarly,
Yang et al. uncovered mitogen-activated protein kinase 6 (MAPK6) to be an important gene
for discriminating IPAH from healthy controls [5]. A few biological processes have been
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reported to participate in developing Group I PAH; however, the search of biomarkers
associated with this disease needs further exploitation.

The Gene Expression Omnibus (GEO) database-based mining of bioinformatics in-
formation is accessible and is useful to identify possible disease pathogenic genes, further
paving the way for subsequent studies [6]. In recent years, an increasing amount of research
has applied machine learning (ML) techniques that are widely used in disease diagnosis [7]
and genomics [8]. ML refers to a computer science branch, which enables computers to
“learn” based on training data and make predictions or decisions without being explicitly
programmed [9]. ML is broadly classifiable into “supervised” and “unsupervised” learning.
The supervised learning (e.g., decision trees, support vector machines) is akin to a type
of model fitting with reference to the final outcome, whereas unsupervised learning (e.g.,
k-means clustering) attempts to identify natural relationships within the data without refer-
ence to any outcome [9]. Xiao et al. used different ML models for cancer prediction based
on RNA-seq data from diverse cancer datasets and found that the deep-learning-based
multimodel ensemble methods had better performance on all the datasets [10]. Liu et al.
applied multiple ML models to distinguish between T-cell-mediated rejection (TCMR)
and stable function (STA) samples based on RNA-seq data and clinical variables and
reported that the random forest (RF) achieved the best performance [11]. Alanni et al.
proposed a gene selection method using SVM for classifying cancer types based on mi-
croarray datasets [12]. The gene set selected by SVM showed a superior performance in
cancer classification compared to that selected by other selection methods. Dai et al. found
glaucoma diagnostic markers based on a logistic regression-RF (LR-RF) model coupled
with experimental validation [13]. However, no study has been carried out using ML for
PAH diagnosis and potential biomarker discovery and further validated the results using a
pathway analysis and experiments.

In the current study, Group I PAH-associated molecular biomarkers were identified
using seven machine learning methods. The underlying biological significance as well as
the immune cell infiltration, potential transcription factor (TF) binding sites, and therapeutic
targets relevant to the identified biomarkers were explored using various bioinformatics
approaches. Moreover, based on the results from the functional analysis, the key ferroptosis-
related genes (FRGs), which were closely associated with these key biomarkers were
determined. Finally, the differential expressions of the potential biomarkers were confirmed
in clinical tissue samples at the mRNA and protein levels.

2. Results
2.1. Differentially Expressed Genes between PAH Patient and Control Samples

The study design followed in the current study is shown in Figure 1. For identifying
DEGs between PAH patient and control samples, a differential analysis was performed
using the GSE15197 and GSE113439 datasets independently. In the GSE15197 dataset, there
were 1523 DEGs between patients and healthy subjects, including 926 upregulated and
597 downregulated genes (Figure 2A). A heatmap of the 100 most significant DEGs showed
that almost half of these genes were upregulated in PAH patients (Figure 2B). A total of
585 DEGs (488 upregulated and 97 downregulated) were found between PAH patients and
healthy subjects in the GSE113439 dataset (Figure 2C). As shown in the heatmap, most of
the top 100 DEGs were highly expressed in the patient group (Figure 2D). Using an RRA
integration analysis, 48 DEGs (39 up- and 9 downregulated in patient versus control group)
were found to be common in both datasets (Figure 2E) and were considered further.
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Figure 1. Workflow of the study design. DEGs: differentially expressed genes; AUC: area under the 
curve; GO: Gene Ontology; KEGG: Kyoto Encyclopedia of Genes and Genomes; PPI: protein–pro-
tein interaction; ROC: receiver operator characteristic; RFC: random forest classifier; ANN: artificial 
neural network; DT: decision tree; GBDT: gradient boosting decision tree; XGBoost: extreme gradi-
ent boosting; AdaBoost: adaptive boosting; MNB: multinomial naïve Bayes; GSEA: gene set enrich-
ment analysis; TF: transcription factor; FRGs: ferroptosis-related genes; PCA: principal component 
analysis; PAH: pulmonary arterial hypertension; HPMEC: human pulmonary microvascular endo-
thelial cells. 

 
Figure 2. Screening of key differentially expressed genes (DEGs) between PAH patient and control 
groups. (A) Volcano plot showing DEGs obtained in the GSE15197 dataset, with red and green col-
ors indicating up- and downregulated genes, respectively. (B) Heatmap showing the top 100 DEGs 
with red and blue indicating high and low expression patterns across PAH and control samples in 
GSE15197. (C) Volcano plot showing DEGs with up- (red) and downregulated (green) genes ob-
tained in the GSE113439 dataset. (D) Heatmap showing the top 100 DEGs with red and blue colors 
indicating a high and low expression of the genes, respectively, across PAH patient and control 

Figure 1. Workflow of the study design. DEGs: differentially expressed genes; AUC: area under the
curve; GO: Gene Ontology; KEGG: Kyoto Encyclopedia of Genes and Genomes; PPI: protein–protein
interaction; ROC: receiver operator characteristic; RFC: random forest classifier; ANN: artificial
neural network; DT: decision tree; GBDT: gradient boosting decision tree; XGBoost: extreme gradient
boosting; AdaBoost: adaptive boosting; MNB: multinomial naïve Bayes; GSEA: gene set enrichment
analysis; TF: transcription factor; FRGs: ferroptosis-related genes; PCA: principal component analysis;
PAH: pulmonary arterial hypertension; HPMEC: human pulmonary microvascular endothelial cells.
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Figure 2. Screening of key differentially expressed genes (DEGs) between PAH patient and control
groups. (A) Volcano plot showing DEGs obtained in the GSE15197 dataset, with red and green colors
indicating up- and downregulated genes, respectively. (B) Heatmap showing the top 100 DEGs
with red and blue indicating high and low expression patterns across PAH and control samples in
GSE15197. (C) Volcano plot showing DEGs with up- (red) and downregulated (green) genes obtained
in the GSE113439 dataset. (D) Heatmap showing the top 100 DEGs with red and blue colors indicating
a high and low expression of the genes, respectively, across PAH patient and control samples in the
GSE113439 dataset. (E) RRA integration analysis of DEGs with up- (red) and downregulated (green)
genes obtained from both GSE15197 and GSE113439 datasets.
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2.2. Candidate DEGs

Our principal component analysis (PCA) results showed insignificant batch effects
between both datasets (Figure 3A). In addition, the expression pattern of the resulting
candidate DEGs based on both datasets also showed a significant difference between the
patient and control groups (Figure 3B). Furthermore, a favorable diagnostic value was
obtained for the 48 candidate DEGs by the receiver operator characteristic (ROC) curve
analysis (AUC > 0.75) (Table 1).
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Table 1. Key candidate genes identified for Group I PAH. 

Candidate 
Gene Regulation logFC p-Value AUC AUC CI 

KLRF1 down −1.349514767 0.11706773 0.783 0.664–0.902 
CX3CR1 down −1.287895847 0.022492566 0.783 0.658–0.908 
TSPAN7 down −1.022431101 0.012950506 0.926 0.857–0.994 
AJAP1 down −1.118195957 0.036788191 0.848 0.744–0.953 

SOSTDC1 down −1.680530516 0.000676038 0.862 0.755–0.969 
S100A3 down −1.590859215 0.0016257 0.905 0.829–0.982 

Figure 3. Functional enrichment and PPI network analyses. (A) PCA results. The red color circles
denote GSE113439 samples and the blue color triangles represent GSE15197 samples. (B) The expres-
sion pattern of the 48 candidate DEGs. Red color indicates a high expression, whereas green color
represents a low expression of the genes across PHA and control samples. (C) Bubble plot showing
GO enrichment results for the 48 candidate DEGs with x- and y-axes indicating annotation terms
and richness factor (DEG number-to-total gene number ratio within one specific term), respectively.
Dot color and size indicate adjusted p-value range and gene count, respectively. (D) PPI network
analysis results. The node size indicates the number of interacting partners (larger nodes have more
interacting partners). Red color nodes are upregulated, and green color nodes are downregulated.

Table 1. Key candidate genes identified for Group I PAH.

Candidate
Gene Regulation logFC p-Value AUC AUC CI

KLRF1 down −1.349514767 0.11706773 0.783 0.664–0.902
CX3CR1 down −1.287895847 0.022492566 0.783 0.658–0.908
TSPAN7 down −1.022431101 0.012950506 0.926 0.857–0.994
AJAP1 down −1.118195957 0.036788191 0.848 0.744–0.953

SOSTDC1 down −1.680530516 0.000676038 0.862 0.755–0.969
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Table 1. Cont.

Candidate
Gene Regulation logFC p-Value AUC AUC CI

S100A3 down −1.590859215 0.0016257 0.905 0.829–0.982
C2orf40 down −1.066587667 0.019138646 0.838 0.727–0.95
DLL4 down −1.070844547 0.03607353 0.879 0.79–0.907

SCN4B down −1.088543027 0.043459681 0.895 0.813–0.978
ALAS2 up 1.755557936 0.004588542 0.903 0.824–0.981

CA1 up 1.639222475 0.001211991 0.931 0.866–0.995
TXLNG up 1.606123262 0.003413892 0.937 0.869–1
LARS up 1.478386085 0.16211777 0.922 0.85–0.994
CEP97 up 1.473332937 0.037459459 0.893 0.802–0.984
PBRM1 up 1.156107034 0.015174985 0.966 0.923–1
ACE2 up 1.107381186 0.024049503 0.919 0.84–0.998

VEPH1 up 1.148259545 0.019732353 0.891 0.81–0.972
ESF1 up 1.139501155 0.023748417 0.908 0.825–0.99

ZNF148 up 1.040895681 0.033516829 0.937 0.876–0.998
RSRC1 up 1.103381776 0.03927137 0.96 0.916–1

SECISBP2L up 1.067323553 0.044551819 0.903 0.822–0.984
ZFX up 1.066420893 0.038982434 0.938 0.88–0.996

EPHA4 up 1.067115797 0.039949703 0.905 0.817–0.994
HSP90AB3P up 1.145135459 0.01306175 0.92 0.844–0.997

PPP1R9A up 1.013500448 0.039078627 0.924 0.861–0.987
PARP14 up 1.024736403 0.040732053 0.847 0.747–0.948
ITSN2 up 1.147534029 0.022053977 0.908 0.829–0.987
PKP2 up 1.167878389 0.013092511 0.824 0.72–0.929

USP15 up 1.206258609 0.009817843 0.933 0.868–0.998
RSPO3 up 1.189539709 0.010857124 0.881 0.78–0.982

IQGAP2 up 1.458016279 0.00580652 0.819 0.698–0.941
IL13RA2 up 1.350594967 0.00580652 0.819 0.698–0.941
FKBP5 up 1.296433874 0.006691228 0.827 0.718–0.936

ZNF292 up 1.278994973 0.00751151 0.881 0.791–0.971
ANKRD50 up 1.271971317 0.007723989 0.908 0.83–0.986

RFC1 up 1.247043964 0.016211777 0.946 0.893–0.998
MACC1 up 1.246789565 0.017027733 0.885 0.801–0.969

TFEC up 1.32215869 0.008379207 0.918 0.843–0.982
IGF1 up 1.318199859 0.010011771 0.902 0.815–0.988

FMO5 up 1.2962632 0.010504888 0.792 0.674–0.909
FGD4 up 1.23373543 0.023974054 0.948 0.896–1
MPP7 up 1.245878219 0.04033993 0.902 0.817–0.986
EHF up 1.485013582 0.002842598 0.919 0.845–0.993

ZC3H13 up 1.433143528 0.004006581 0.934 0.871–0.998
TTN up 1.585014364 0.0055049 0.856 0.756–0.956

CCDC88A up 1.014479213 0.045188545 0.866 0.775–0.957
HSP90AA1 up 1.145135459 0.01306175 0.889 0.804–0.974

ROCK2 up 1.145759039 0.0032232649 0.939 0.881–0.998

2.3. Functional Enrichment Analysis of Candidate DEGs

The results from the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway analyses revealed that the DEGs were associated with 19 GO
terms, but no KEGG pathways. This could be due to the low number of genes used for the
enrichment analysis. The key DEGs were annotated in 10 biological process (BP) terms,
including the cell–cell junction organization, the regulation of amyloid-beta formation, and
the negative regulation of long-term synaptic potentiation, and six cellular components
(CC), such as filopodium, adherens junction, lamellipodium, actin-based cell projection,
cell–cell contact zone, and axonal growth cone (Figure 3C).
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2.4. Protein–Protein Interaction (PPI) Network of Candidate DEGs

Using the STRING database, a PPI network was constructed among the 48 candidate
DEGs to identify the most significant clusters and interactions among DEGs (Figure 3D).
Most of the candidate genes were found to be interacting with other genes in the network.
The average node degree of the PPI network was found to be ~3, while there were a total of
75 connections among the candidate genes. Interestingly, a few genes, such as HSP90AA1,
TTN, IGF1, PBRM1, and ROCK2 had a high node degree and interacted with multiple
partners in the PPI network. The average log2-fold change (based on both datasets) for
these genes was >1.0 in PHA patient samples compared to normal controls. While TTN
was upregulated by approximately 1.6-fold, IGF1 and PBRM1 were each upregulated by
at least 1.2-fold, and HSP90AA1 and ROCK2 were each upregulated by 1.1-fold in the
PHA patient samples. At the same time, many highly differentially regulated genes had
a smaller number of connections with other genes, suggesting that these have not been
well-studied and demand further investigation.

2.5. Diagnostic Models and Potential Biomarkers

In order to obtain the potential biomarkers with diagnostic value, seven machine
learning algorithms were implemented using 48 candidate DEGs to determine the accuracy
and positive predictive rates.

Following the performance comparison of seven models using five repeated fivefold
cross-validation methods, multiple techniques for feature selection were tested and it was
found that gradient boosting decision tree (GBDT)-based models gave the best performance
in terms of a mean AUC value of one and an accuracy rate of 0.93 compared with the others
(Table 2). Hence, GBDT was used to construct the final diagnostic classification model.
Extreme gradient boosting (XGBoost) has been used in many high-dimensional datasets
and outperformed other models. However, we did not observe this in our study; it might be
due to the small dataset that XGBoost did not perform well in the testing set. Figure 4A–E
shows the ROC curve of the models in each fold of the testing set. We found the shape of
the curve to look rigid, and we double-checked the probability output of the prediction
and found that the output of the decision tree model was [0, 1] or [1, 0]. It could be because
for a tree-based model, the probabilities are proportional to the class distribution of the
samples contained in the leaf; for a single fully grown tree, all terminal nodes are pure, so a
leaf contains only one single sample, hence the class “distribution” is [0, 1] or [1, 0]. For
the other models, we think it might be due to the small sample size, so the model had a
very high/low probability of one class in the testing data, leading to limited thresholds on
the curve. However, this did not limit the selection of the optimal model as we considered
both AUC and accuracy.

Based on the optimal algorithm, the AUC reached the maximum value when the model
included the top three genes, PBRM1, CA1 and TXLNG, which were defined as potential
biomarkers of PAH (Figure 4F). The PCA analysis result showed that the biomarkers
could effectively distinguish normal and disease samples in the datasets GSE15197 and
GSE113439 after batch calibration (Figure 4G). The optimal AUC was one, indicating
the excellent performance of the GBDT model with the three genes. On the other hand,
this might be because the sample size was small, causing the model to easily distinguish
disease and normal samples. To justify the credibility of the marker genes identified by
machine learning, we used GSE53408 as an external dataset to validate the model, and the
AUC was found to be one when testing on the GSE53408 dataset. The biomarkers could
effectively distinguish the control samples from the disease samples (Figure 4H). We further
employed a functional enrichment analysis and experimental validations to support the
prediction results.
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Table 2. Results for diagnostic value and accuracy of seven machine learning algorithms through a
5-fold cross-validation approach.

Nfold 1 2 3 4 5 Mean

AUC Accuracy
Rate AUC Accuracy

Rate AUC Accuracy
Rate AUC Accuracy

Rate AUC Accuracy
Rate AUC Accuracy

Rate

RF 1.00 0.83 1.00 1.00 0.83 0.82 1.00 0.91 1.00 1.00 0.97 0.91
XGB 0.67 0.67 0.90 0.92 0.69 0.82 0.94 0.91 1.00 1.00 0.84 0.86

GBDT 1.00 0.92 1.00 0.92 1.00 0.91 1.00 0.91 1.00 1.00 1.00 0.93
ANN 0.89 0.89 1.00 0.92 0.94 0.91 1.00 1.00 1.00 1.00 0.97 0.93

DT 0.67 0.67 0.90 0.92 0.69 0.82 0.73 0.82 0.93 0.91 0.78 0.83
AdaBoost 0.83 0.92 0.80 0.83 0.69 0.82 1.00 1.00 1.00 1.00 0.97 0.91

MNB 0.94 0.92 1.00 1.00 0.75 0.91 0.94 0.91 0.93 0.91 0.91 0.93

nfold: N-fold cross-validation represented by numbers 1 through 5; AUC: Area under ROC curve; RF: random
forest; XGB: extreme gradient boosting; GBDT: gradient boosting decision tree; ANN: artificial neural network;
DT: decision tree; AdaBoost: adaptive boosting; MNB: multinomial naïve Bayes.
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Figure 4. Construction and validation of diagnostic models. (A–E) The ROC curves for five repeated
fivefold cross-validations are shown for individual machine learning algorithms as well as the
multivariable model. The area under the ROC curve (AUC) values are shown for each model in the
same color as the ROC curve. (F) The AUC of the GBDT algorithm was found to be significantly higher
than that of the others in fivefold cross-validations (left), and the AUC of the GBDT model under
different gene numbers is shown (right). Gene sets were incorporated in a Bayesian multiple kernel
model in line with time order in the case of change point occurrence. The AUC showed an increasing
trend first, which peaked at the inclusion of a 3rd gene set, later showing a decreasing trend when
up to 25 gene sets were added, followed by another increase. (G) PCA analysis of the biomarkers
could effectively distinguish normal and disease samples in datasets GSE15197 and GSE113439 after
batch correction. (H) The ROC curves in the GSE53408 dataset (left) and the PCA analysis of the
biomarkers could effectively distinguish the normal samples from the case cohorts (right).
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2.6. Functional Enrichment Analysis of the Three Biomarkers

Following the identification of the three biomarkers, a single-gene GSEA was first used
for analyzing gene sets with a statistically significant difference between the high-expression
and low-expression groups of PBRM1, CA1, and TXLNG. Coexpressed genes associated
with these biomarkers were obtained through a Pearson correlation analysis using the
GSE113439 and GSE15197 datasets. The top five GO annotations and KEGG signaling path-
ways are displayed in Figure 5A–F (Supplementary Table S1). The result showed that the
three biomarkers were commonly enriched in the Notch signaling pathway, nonalcoholic
fatty liver disease, and asthma pathways (Figure 5G). In addition, these biomarkers were
commonly annotated to the GO biological processes (GOBP) terms aminoglycan biosyn-
thesis process and aminoglycan metabolic process, the GO molecular functions (GOMF)
term catalytic activity acting on RNA, and the GO cellular components (GOCC) terms
intrinsic component of organelle membrane and catalytic step 2 spliceosome (Figure 5H–J).
Meanwhile, we noticed that the GOMF terms corresponding to the CA1 and PBRM1 genes
included ferroptosis-related annotations, such as iron–sulfur cluster binding.
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Figure 5. Functional enrichment analysis of the three biomarkers. Top 5 GO annotations and KEGG
pathways for (A,B) CA1, (C,D) PBRM1, and (E,F) TXLNG, respectively. (G) Summary of CA1,
PBRM1, and TXLNG KEGG pathways. (H–J) Summary of GO annotations for CA1, PBRM1, and
TXLNG, respectively. GOBP: GO biological processes, GOMF: GO molecular functions, and GOCC:
GO cellular components.

2.7. Immune Infiltration and Its Relation to the Biomarkers

To investigate the relationships between immune cells and the three biomarkers in
PAH, an immune infiltration analysis in Group I PAH was conducted As a result, the
expression of seven immune cell gene sets (natural killer T cell, activated CD8 T cell, ef-
fector memory CD4 T cell, central memory CD4 T cell, T follicular helper cell, natural
killer cell, and monocyte) were significantly different between controls and PAH patients
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(Figure 6A). In addition, a correlation analysis indicated that effector memory CD4 T
cells were positively associated with the three biomarkers (Figure 6B), and the correla-
tion between memory CD4 T cell and CA1, PBRM1, TXLNG was 0.33155 (p = 0.01170),
0.6120 (p = 4.21 × 10−7), and 0.43983 (p = 0.00061), respectively. Most immune cells showed
a negative correlation with the biomarkers (Table 3, Figure 6C).

Int. J. Mol. Sci. 2023, 24, 8050 9 of 24 
 

 

expression of seven immune cell gene sets (natural killer T cell, activated CD8 T cell, ef-
fector memory CD4 T cell, central memory CD4 T cell, T follicular helper cell, natural killer 
cell, and monocyte) were significantly different between controls and PAH patients (Fig-
ure 6A). In addition, a correlation analysis indicated that effector memory CD4 T cells 
were positively associated with the three biomarkers (Figure 6B), and the correlation be-
tween memory CD4 T cell and CA1, PBRM1, TXLNG was 0.33155 (p = 0.01170), 0.6120 (p 
= 4.21 × 10−7), and 0.43983 (p = 0.00061), respectively. Most immune cells showed a negative 
correlation with the biomarkers (Table 3, Figure 6C).  

 
Figure 6. Analysis of immune infiltration. (A) Infiltration of different immune cells between Group 
I PAH patients and normal controls. The red boxplot corresponds to Group I PAH patients, while 
Figure 6. Analysis of immune infiltration. (A) Infiltration of different immune cells between Group I
PAH patients and normal controls. The red boxplot corresponds to Group I PAH patients, while the
blue boxplot corresponds to normal controls. * p < 0.05, ** p < 0.01, **** p < 0.001, ns: not significant.
(B) Effector memory CD4 T cells showed a positive association with the three biomarkers, whereas
(C) activated CD8 T cells showed a negative association.
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Table 3. Correlation between PAH biomarkers and immune cells.

Immune Cells
CA1 PBRM1 TXLNG

Correlation R p-Value Correlation R p-Value Correlation R p-Value

Activated CD8 T cell −0.32 0.01611 −0.37 0.00459 −0.36 0.00526
Central memory CD4 T cell −0.26 0.05130 −0.32 0.01490 −0.35 0.00840
Effector memory CD4 T cell 0.33 0.01170 0.61 4.21 × 10−7 0.44 0.00061

Monocyte −0.18 0.18123 −0.41 0.00147 −0.46 0.00035
Natural killer cell −0.03 0.80401 0.19 0.15172 0.18 0.17243

Natural killer T cell −0.25 0.05918 −0.31 0.01999 −0.29 0.03127
T follicular helper cell −0.26 0.04738 −0.32 0.01399 −0.36 0.00554

Correlation between the biomarkers (first row) and immune cells (first column) is represented as R values and their
significance as p-values. Positive and negative R values represent positive and negative correlations, respectively.
The Pearson correlation method was used for the analysis.

2.8. Regulatory Network of Biomarker-TFs and Predicted Therapeutic Drugs

TFs targeting the three biomarkers were predicted and regulatory networks were
constructed to understand the regulation underlying the three biomarkers. A total of 70,
60, and 121 TFs were predicted to bind CA1, PBRM1, and TXLNG promoters, respectively
(Figure 7A). Among these, six TFs, including PRDM1, FOXO3, FOXP1, IRF1, ZNF263, and
ZNF384, targeted all three biomarkers (Figure 7B).
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Figure 7. Biomarker-TF regulatory network and prediction of therapeutic drugs. (A) TFs targeting
the three biomarkers were predicted by JASPAR and AnimalTFDB3.0 databases and were used to
construct a regulatory network. A total of 70, 60, and 121 TFs were predicted for CA1, PBRM1, and
TXLNG, respectively. (B) Network of predicted TFs and candidate genes; blue circles are TFs and
red diamonds are candidate genes. (C) Prediction of therapeutic drugs targeting the three candidate
genes; red diamonds represent the candidate genes, and green circles represent the drugs. Yellow
arrows represent drugs that reduce the activity of the gene, purple arrows represent the drugs that
inhibit gene expression, red arrows indicate drugs that elevate the expression of the gene, and the
gray arrows indicate drugs that have other effects on the genes. (D) ROC curve analysis of the
ferroptosis-related genes associated with potential biomarkers.
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Moreover, the comparative toxicogenomics database (CTD) database was used to ex-
plore potential therapeutic drugs targeting the identified biomarkers to provide a reference
for the treatment decisions (Table 4). A total of 71 potential drug compounds targeted
the CA1 gene, most of which were reported to reduce its activity. Around 19 drugs were
retrieved for the PBRM1 gene, and many were found to reduce its expression. The TXLNG
gene was targeted by 21 potential drug molecules, a considerable number of which were
reported to elevate the expression of this biomarker (Figure 7C).

Table 4. Potential therapeutic drugs targeting PAH biomarkers.

Biomarker Gene
Symbol Chemical Interaction Action Biomarker Gene

Symbol Chemical Interaction Action

PBRM1 Acetaminophen Increases TXLNG 1-Methyl-3-isobutylxanthine Increases
PBRM1 Antirheumatic agents Increases TXLNG Aristolochic acid I Decreases
PBRM1 Aristolochic acid I Decreases TXLNG Aflatoxin B1 Decreases
PBRM1 Atrazine Decreases TXLNG Atrazine Other
PBRM1 Copper sulfate Decreases TXLNG Bisphenol F Increases
PBRM1 Cyclosporine Increases TXLNG Copper sulfate Increases
PBRM1 Doxorubicin Other TXLNG Cylindrospermopsin Increases
PBRM1 Epigallocatechin gallate Decreases TXLNG Dexamethasone Increases
PBRM1 Lactic acid Decreases TXLNG Doxorubicin Decreases
PBRM1 Methotrexate Increases TXLNG Valproic acid Increases
PBRM1 Methylmercuric chloride Other TXLNG Ethyl methanesulfonate Decreases
PBRM1 Plant extracts Increases TXLNG Hydrogen peroxide Other
PBRM1 Potassium chromate Decreases TXLNG Indomethacin Increases
PBRM1 Quercetin Increases TXLNG Jinfukang Decreases
PBRM1 Riddelliine Decreases TXLNG Perfluoro-n-nonanoic acid Increases
PBRM1 Sunitinib Increases TXLNG Potassium chromate (VI) Increases
PBRM1 Trichostatin A Decreases TXLNG Sunitinib Increases
PBRM1 TAK-243 Other TXLNG Tobacco smoke pollution Increases
PBRM1 Valproic acid Decreases TXLNG Tretinoin Decreases

CA1 Acetaminophen Decreases CA1 Bicarbonates Other
CA1 Acetazolamide Decreases CA1 Bromates Decreases
CA1 Aflatoxin B1 Other CA1 Butylated hydroxyanisole Decreases
CA1 Amides Decreases CA1 Candesartan Decreases
CA1 Anthocyanins Decreases CA1 Carbonates Decreases
CA1 Benzolamide Decreases CA1 Chalcone Decreases
CA1 Chalcone epoxide Decreases CA1 Crown ethers Other
CA1 Chloric acid Decreases CA1 Dimethylamines Decreases
CA1 Cobalt Decreases CA1 Ethoxzolamide Decreases
CA1 Cobaltous chloride Decreases CA1 Flavonoids Decreases
CA1 Coumarin Decreases CA1 Guaiacol Decreases
CA1 Crown compounds Decreases CA1 Indomethacin Decreases
CA1 Iodates Decreases CA1 Mercury Decreases
CA1 Irbesartan Decreases CA1 Methazolamide Decreases
CA1 Lactic acid Increases CA1 Methylamines Decreases
CA1 Lead Decreases CA1 Nitric acid Decreases
CA1 Malvidin-3-glucoside Decreases CA1 Oryzalin Decreases
CA1 Malvin Decreases CA1 pelargonidin-3-glucoside Decreases
CA1 Perchlorate Decreases CA1 Silychristin Decreases
CA1 Phenylephrine Decreases CA1 Sodium arsenite Decreases
CA1 Phenylthiourea Decreases CA1 Sodium metasilicate Decreases
CA1 Potassium periodate Decreases CA1 Sulfamic acid Decreases
CA1 Propofol Decreases CA1 Sulfates Decreases
CA1 Pyrimidines Decreases CA1 Sulfonamides Decreases
CA1 Rifampin Decreases CA1 Synephrine Decreases
CA1 Rosiglitazone Other CA1 Thiazolidines Decreases
CA1 Thiones Decreases CA1 Triazoles Decreases
CA1 Thiophenes Decreases CA1 Tungstate Decreases
CA1 Thiosemicarbazide Decreases CA1 Vanadates Decreases
CA1 Thiourea Decreases CA1 Vanillin Decreases
CA1 Tobacco smoke pollution Decreases CA1 Voriconazole Decreases
CA1 Topiramate Decreases CA1 Zonisamide Decreases

2.9. Correlation between Biomarkers and FRGs

Ferroptosis-related annotations in the single gene enrichment results of CA1 and
PBRM1 were noticed. These mainly included annotations, such as clustering on oxygen as
acceptor, acting on the heme group of donors, oxidoreductase activity, iron–sulfur cluster
binding, 4 iron, 4 sulfur cluster binding, and heme-copper terminal oxidase activity, which
is strongly associated with the lipid peroxidation of ferroptosis.
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For exploring the significance of ferroptosis-related signals in PAH patients, we ex-
plored the functional relationship between 259 FRGs and our 3 biomarkers. There were
two FRGs associated with CA1 gene, and nine each associated with PBRM1 and TXLNG
genes (correlation coefficient > 0.6, p < 0.05, Table 5). The ROC curve analysis indicated that
FRGs related to the potential biomarkers could perfectly distinguish PAH samples from
the control samples, and these FRGs may have a high diagnostic value for PAH patients
(Figure 7D).

Table 5. Correlation between biomarkers and ferroptosis-related genes.

Biomarker
Gene

Fer-Related
Gene Correlation R p-Value Biomarker

Gene
Fer-Related

Gene Correlation R p-Value

PBRM1 BECN1 0.869423423 1.76 × 10−18 TXLNG ZEB1 0.773220309 1.81 × 10−12

HMGB1 0.815007386 1.20 × 10−14 BECN1 0.731996746 9.84 × 10−11

SP1 0.757174898 9.40 × 10−12 HMGB1 0.724502669 1.88 × 10−10

ZEB1 0.728618544 1.32 × 10−10 LPCAT3 −0.705414565 8.97 × 10−10

IREB2 0.707501483 7.60 × 10−10 RIPK1 0.699642666 1.40 × 10−9

PLIN2 0.657847236 2.70 × 10−8 PRDX6 0.61934584 2.80 × 10−7

SLC3A2 −0.633598312 1.22 × 10−7 SP1 0.60633034 5.77 × 10−7

LPCAT3 −0.61500838 3.58 × 10−7 IREB2 0.604841956 6.26 × 10−7

RIPK1 0.610161027 4.68 × 10−7 YWHAE −0.602218341 7.20 × 10−7

CA1 PLIN2 0.629426281 2.29 × 10−5 CA1 IREB2 0.696001081 8.73 × 10−5

2.10. Differential Expressions of Potential Biomarkers and FRGs in PAH Were
Experimentally Confirmed

Finally, the expression of three biomarkers was determined through the qRT-PCR
and IHC approaches to validate the accuracy of the results obtained through machine
learning and the bioinformatics analysis. A pulmonary hypertension cell model was used
to detect the relative mRNA expression of key DEGs including the 3 biomarkers and
11 FRGs. As shown in Figure 8A,B, the key DEGs PBRM1, CA1, TXLNG, IGF1, ACE, and
RSPO and FRGs BECN1, HMGB1, SP1, ZEB1, RIPK1, and PRDX6 showed a remarkable
upregulation in the 24 h hypoxia-treated HPMEC group relative to the normoxic group.
BECN1, HMGB1, SP1, ZEB1, RIPK1, and LPCAT3 had a positive correlation with both
PBRM1 and TXLNG, whereas PRDX6 had a positive correlation with TXLNG, and SLC3A2
had a positive correlation with PBRM1. Furthermore, the expression of PBRM1 and TXLNG
biomarkers increased during pulmonary vascular remodeling relative to controls at the
protein level (Figure 8C–F).
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Figure 8. qRT-PCR validation using lung samples and IHC staining of pulmonary microarteries.
(A) The mRNA expression of seven upregulated (PBRM1, CA1, TXLNG, IGF1, ACE, RSPO) and
three downregulated (C2of40, TSPAN7, SCN4B) candidate genes were confirmed by qRT-PCR. All
10 genes were notably differentially expressed in HPMEC under hypoxia for 24 h compared with
normoxic control. (B) The mRNA expression levels of ferroptosis-related genes (BECN1, HMGB1,
SP1, ZEB1, SLC3A2, LPCAT3, RIPK1, PLIN2, IREB2, PRDX6, YWHAE) were confirmed by qRT-PCR.
The 11 genes showed remarkable differential expression after a 24 h hypoxia treatment of HPMECs
relative to normoxic controls (n = 3; * p < 0.05, ** p < 0.01). Immunohistochemistry (IHC) staining
with pulmonary microarteries for (C) PBRM1 and (D) TXLNG of normal and Group I PAH patients.
(E,F) Typical IHC images obtained at a 400× magnification together with average integral optical
density (IOD) were used for analyzing the IHC results of PBRM1 and TXLNG, respectively, in
pulmonary control (n = 3) and Group I PAH (n = 3) samples. Results are the IOD of three visual fields
per sample per group (mean ± SD, * p < 0.05, ** p < 0.01, *** p < 0.001).

3. Discussion

Pulmonary artery hypertension is a highly fatal pathophysiological syndrome featured
by pulmonary vascular remodeling and progressively increasing pulmonary vascular
resistance, finally causing right heart failure (HF) or even death. As high-throughput
technologies have been increasingly applied in PAH, largescale data can be obtained in
publicly available databases. Moreover, many studies have been performed to identify
molecular biomarkers and explore the underlying mechanisms of PAH based on public
data [5,14–16]. Despite the recently made great efforts, Group I PAH remains largely
unexplored concerning its molecular mechanism and pathogenesis. This is possibly due
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to the intricate gene mutations and the incapability of conventional PAH cell and animal
models to solve such problems.

We started with seven ML methods (RFC, ANN, DT, GBDT, XGBoost, AdaBoost, and
MNB) to build an initial diagnostic model. GBDT was chosen to build the final diagnostic
model based on the AUC value. Its major idea is that the gradient descent direction
of a previous model loss function is built whenever the model is constructed. Model
performance can be evaluated by a loss function (in general, it represents the fitting degree
and a regular term), with a decreased loss function indicating superior performance. The
continuous decline of the loss function can improve the performance of the model, and it is
advisable to decrease the loss function along the gradient direction. Gradient boosting is a
framework that can fit a number of different algorithms into it and the GBDT algorithm
has the following advantages [17]: a high prediction accuracy; suitable for low dimensional
data; able to deal with nonlinear data; a flexible processing of diverse data types such as
discrete and continuous data; a great accuracy for a low decision time; the use of certain
robust loss functions; and robustness to outliers [17]. Here, we processed a total of 48
key DEGs with preferable diagnostic value, compared seven machine learning algorithms,
and eventually applied the GBDT machine learning algorithm to build a diagnostic model
with three genes, PBRM1, CA1 and TXLNG, that had a significant differential expression
between PAH and control samples and were finally regarded as molecular biomarkers of
Group I PAH.

PBRM1 encodes BAF180; it is an important subunit of the chromatin remodeling
complex SWI/SNF and is related to cell growth, differentiation, as well as DNA repair [18].
PBRM1 has been identified as a recognition factor for the lysine acetylation (K382Ac) of
the p53 protein at position 382, specifically through its bromine domain (BD4) and known
to be the tumor suppressor of different cancer types. PBRM1 expression or mutation
exhibits a diverse significance in predicting the prognosis of different cancers [19]. Huang
et al. reported that the ablation of PBRM1 generated an impairment of the epithelial-
to-mesenchymal transition (EMT), while arresting epicardium maturation during early
development [20]. According to our results, PBRM1 is associated with ferroptosis-related
genes. Whether this is the cause of pulmonary hypertension needs to be explored further.

Carbonic anhydrase 1 (CA1) is a zinc enzyme that has an important role in acid–base
balance [21]. Fluctuation in carbonic anhydrase expression possibly induces glaucoma,
hypertension, neuropathic pain, epilepsy, and cancer [22–26]. Although CA1 is second
only to hemoglobin in content in red blood cells, a deficiency of CA1 does not cause blood
disease, possibly because other carbonic anhydrases compensate for its deficiency [27]. CA1
is highly expressed and is expected to become a new early diagnostic marker for non-small
cell lung cancer (NSCLC) [28,29].

TXLNG is one of the taxilin family members. It has been reported that TXLNG
in the cytoplasm may participate in regulating ER stress responses to hypoxia [30,31].
Currently, reports related to TXLNG are limited, and additional studies are needed to
explore its detailed functions. In this study, we found that TXLNG was correlated with
ferroptosis-related genes. However, further experiments are required to prove its causal
role in pulmonary hypertension.

The research related to the identification of new PAH biomarkers generally involves a
GSEA analysis of key biomarkers, a TF/miRNA regulatory network and its enrichment
analysis, and the expression verification of key genes (PMID: 32886110, PMID: 32849793,
PMID: 35710932). In the current study, the GSEA analysis revealed that the three biomarkers
were enriched in Notch signaling, iron–sulfur cluster binding, and asthma pathways. To
further study the immune cell infiltration in Group I PAH patients, we assessed the levels
of 28 immune cells using the ssGSEA algorithm.

The inflammatory basis of PAH (PMID: 29371380; PMID: 31094755; PMID: 34252346)
prompted us to mine immune cell targets associated with the identified biomarkers. Our
findings revealed that central memory CD4 T cells, activated CD8 T cells, monocyte, effector
memory CD4 T cells, T follicular helper cells, natural killer T cells, and nature killer cells
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were significantly different between controls and Group I PAH patients. While effector
memory CD4 T cells were remarkably positively correlated, most of the other immune
cells were negatively correlated to the three biomarkers. In recent years, there have been
many reports on the association of the immune system with pulmonary hypertension [32].
Nevertheless, the functions of T cell subpopulations have not been determined for Group
I PAH. The increased expression and activation of central memory T cells are related
to inflammatory and immune responses [33,34]. Type 17 T helper cells can induce a
PAH occurrence under chronic hypoxic conditions [35] and decreased levels of NKT cells
facilitate the occurrence of systemic sclerosis [36], which is similar to the findings reported
in the current work. Therefore, the aberrant T cell subpopulation levels among PAH cases
possibly reflected the impaired and exhausted immune system status; however, additional
experiments are needed to confirm this hypothesis.

Identifying the underlying molecular mechanisms of TF (dysfunction) is critical for
developing tailored regulatory strategies for PAH (PMID: 36684555). Here, we used the
AnimalTFDB3.0 and JASPAR databases to predict regulatory transcription factors binding
to the promoters of three biomarkers. All three biomarkers were targeted by six common
TFs, i.e., PRDM1, FOXO3, FOXP1, IRF1, ZNF263, and ZNF384. PRDM1 encodes a repressor
of beta-interferon gene expression and is known to increase during viral infections. This
gene has also been studied in the context of pulmonary function. Wang et al. revealed the
differential methylation of PRDM1 to be associated with decreased pulmonary function [37].
Both FOXO3 and FOXP1 belong to the forkhead family of transcription factors and are well-
known for their regulatory roles in tumorigenesis [38,39]. Nevertheless, the importance of
this family has been recently recognized in pulmonary hypertension [40]. In fact, a recent
study showed that exposure to trifluoperazine, an antipsychotic drug, was associated with
the downregulation of FOXO3 in pulmonary arterial smooth muscle cells (PASMCs) [41],
indicating its druggability in PAH. Another study based on genome-wide association data
suggested FOXP1 may be a novel therapeutic target for lung disorders [42]. IRF1 encodes a
protein that serves as an activator for genes involved in immune responses and it plays a key
role in tumor suppression. A study by Bai et al. [43] suggested that IRF1 and IRF8 might be
potential regulators of the SPHK1 (the sphingosine pathway promotes vascular remodeling
and induces PAH) overexpression gene set signature in human PASMCs. Furthermore,
two zinc finger proteins (ZNF263 and ZNF384) were identified to be targeting the PAH
biomarkers. While both these proteins have been studied in the context of carcinogenesis,
reports related to leukemia are more common for ZNF384 [44,45]. These zinc finger proteins
have not been explored in pulmonary hypertension till now and provide an opportunity to
be investigated further in PAH.

To explore the potential therapeutic agents targeting the biomarkers, we searched for
biomarker-related drugs or molecular compounds. Our results showed that of the three
biomarkers, CA1 was the most targeted molecule (by 71 compounds). Acetazolamide
was the most potent inhibitor compound for CA1; its inhibitory effect was supported by
more than 15 interactions in the CTD database. Acetazolamide has been found to decrease
the activity of CA1 by multiple studies [46,47]. The other important compounds against
CA1 were indomethacin, propofol, pyrimidines and sulfonamides, and tobacco smoke, the
inhibitory activity of each of which was supported by at least two interactions. Bisphenol
was the most potent compound targeting TXLNG with two interactions. While bisphenol
A has been reported to decrease the expression of TXLNG [48] in mice, and the cotreatment
of human primary adipocytes with bisphenol F along with other compounds increases
TXLNG expression [49]. Among the compounds targeting PBRM1, valproic acid was the
most promising one owing to its interaction with the marker gene, supported by multiple
studies. While two studies reported that valproic acid decreased PBRM1 expression [50,51],
one study showed a reduced methylation of the biomarker by valproic acid [52].

We observed that CA1 and PBRM1 were associated with pathways such as oxidore-
ductase, oxygen as acceptor, acting on heme group of donors, 4 iron, 4 sulfur cluster
binding, heme-copper terminal oxidase activity, and iron–sulfur cluster binding, showing
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a strong association of the biomarkers with ferroptosis-related lipid peroxidation. Hence,
we analyzed the relationship of our 3 biomarkers with 259 ferroptosis genes. There were
nine FRGs related to each of PBRM1 and TXLNG and two FRGs were correlated with
CA1. Pulmonary vascular remodeling represents an important pathological characteristic
of PAH, and it is characterized by endothelial dysfunction, extracellular matrix accumula-
tion, and the proliferation of medium smooth muscle cells (SMCs), resulting in thickened
vascular wall as well as enhanced pulmonary vascular resistance. In pulmonary vascular
endothelium, oxidative stress is suggested to suppress the activity of endothelial nitric
oxide synthase, reduce nitric oxide content in blood vessels, and induce abnormal EC and
SMC proliferation, thus accelerating pulmonary vascular remodeling as well as PAH [53].
Iron in the cytoplasm can be transported to mitochondria and catalyzed by the Fenton
reaction and the Harber–Weiss pathway leading to ROS generation. Nikolai et al. found
that Fe2+ accumulated in in vitro cultured lung vascular endothelial cells changes the cell
structure and polarity, resulting in a proinflammatory cell phenotype. In another study,
an iron-chelating agent was injected into chronic hypoxic rats, and it was found that the
desensitization reduced the right ventricular pressure and pulmonary arteriolar wall thick-
ness [54]. Ferroptosis is a pathological mechanism that can be interfered with and reversed
by related drugs; hence, a search for ferroptosis-related genes is of high clinical value in
finding better treatment options for Group I PAH patients.

There are several limitations to this study. First, this study did not investigate the
functions of diverse T-cell subpopulations during pulmonary vascular remodeling, which
should be explored in future studies. Second, the molecular biomarkers of Group I PAH
identified in this study are relatively novel, and they have not been studied in the context
of pulmonary hypertension, limiting the supporting evidence of these genes in Group I
PAH. Therefore, additional in vivo and in vitro experiments are needed for understanding
the molecular mechanisms underlying the three biomarkers we identified. CA1 could
not be detected by immunohistochemical methods using existing CA1 antibody; hence,
alternative methods for detecting CA1 protein need to be established. Third, further studies
are warranted to demonstrate the function of the identified hub genes and TFs in Group I
PAH vascular remodeling.

4. Methods

We used gene expression data from human PAH and normal lung tissues to identify
significantly differentially expressed genes between disease and control conditions. Gene
enrichment and protein-interaction analyses were performed to explore the functional
significance of the differential genes. Further, candidate genes with diagnostic value were
identified from a differential list through an area under the receiver operating charac-
teristic (ROC) curve (AUC) analysis. Following this, seven machine learning methods
were implemented to screen for potential biomarkers associated with Group I PAH using
independent training and validation sets. The identified biomarkers were then validated
through a series of bioinformatics-based methods including immune cell infiltration, FRG
analysis, TF-regulatory network, and a potential drug candidate analysis. Finally, in vivo
and in vitro experiments were conducted to confirm the biomarkers at the mRNA and
protein levels in human samples.

4.1. Gene Expression Data

The gene expression profiles of Homo sapiens lung tissue (including PAH disease and
normal control) were selected for this study. The data from nonhuman sources or nonor-
ganization categories were excluded. PAH-related datasets (GSE113439, GSE53408 and
GSE15197) were downloaded from the GEO database (https://www.ncbi.nlm.nih.gov/geo,
accessed on 8 May 2021). The GSE113439 dataset was available from 11 normal and
15 Group I PAH tissue samples profiled on GPL6244-17930 [55]. The GSE53408 study con-
tained 11 normal and 12 Group I PAH samples based on the GPL6244-17930 platform [56],
whereas the GSE15197 dataset was composed of 13 normal (age 60 ± 11, five males and
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eight females) and 18 Group I PAH samples (age 44 ± 10, seven males and eleven females)
that were profiled on GPL6480-9577 [57]. Moreover, we obtained 259 ferroptosis-related
genes (FRGs), which included 111 markers, 108 drivers, and 69 suppressors, from the Fer-
rDb database (http://www.zhounan.org/ferrdb/current/, accessed on 8 May 2021) [58].

4.2. Screening for Differentially Expressed Genes (DEGs)

Firstly, according to the chip annotation information, the probe names were modified
to the corresponding gene names, followed by the removal of the probes with no gene an-
notation. In addition, the expression values of multiple probes belonging to the same gene
were averaged. Differentially expressed genes (DEGs) between PAH and normal control
samples in the GSE15197 and GSE113439 datasets were identified by using the R package
“Limma” [59] with the significance threshold set as |Log2FC| > 1 and p-value < 0.05. Then,
the robust rank aggregation (RRA) algorithm was adopted for integrating the ranking list
based on the probability model, and the DEGs overlapping in both datasets were selected
as candidate DEGs [60].

4.3. Functional Enrichment Analysis and Protein–Protein Interaction (PPI) Network Construction

To explore the potential functions and pathways associated with the candidate DEGs,
the R package “clusterProlifer” [61] was used to perform Gene Ontology (GO) and Ky-
oto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. The enrichment
analysis was performed using a p-value threshold of 0.05 and “Homo Sapiens” as the
species, and the results were visualized using bubble diagrams. Additionally, we used
the STRING database (https://cn.string-db.org/, accessed on 10 June 2021) to analyze
protein interactions among the candidate DEGs with a confidence score of 0.15, and a PPI
network was constructed [62]. Cytoscape 3.7.1 software was used for the further analysis
and visualization of the PPI network.

4.4. Identification of Candidate DEGs with Diagnostic Value

In general, the identification of diagnostic biomarkers requires a considerable num-
ber of samples. However, when considered individually, the number of samples in the
GSE113439 and GSE15197 datasets was low. To overcome this limitation, we combined
both datasets. We utilized the accessory features of the R package “SVA” function for
reducing the batch effects between these two datasets [63]. Furthermore, a PCA was used
to evaluate the impact of batch effects [64]. Then, the candidate DEGs were analyzed for
their diagnostic value by determining the AUC values, and the R package “pROC” was
used to draw the ROC curve [65].

4.5. Construction and Validation of Diagnostic Model to Screen for Potential Biomarkers

For the derivation of classification models, a total of seven machine learning algorithms
(Figure 1), including a random forest classifier (RFC), an artificial neural network (ANN),
a decision tree (DT), a gradient boosting decision tree (GBDT), extreme gradient boosting
(XGBoost), adaptive boosting (AdaBoost), and multinomial naïve Bayes (MNB) were
implemented with 5 repeated fivefold cross-validations for the candidate DEGs with
diagnostic value. A RF (randomForest, version 4.6-14) is the typical bagging ensemble
algorithm, with a decision tree being the base estimator. An ANN (neuralnet, version 1.44.2)
is inspired by the signaling behavior of neurons and is capable of learning valuable patterns
from mass data and features [66]. The DT model (party, version 1.3-9) is a predictive tool
for categorical and numerical data, which aims to assign samples to specific classes [67].
GBDT (gbm, version 2.1.8) is a tree-based ensemble approach that iteratively builds weak
prediction models that seek to minimize the residual, eventually developing a single strong
model [68]. XGBoost (xgboost, version 1.4.1.1) has various tunning variables used in
cross-validation and regularization and is comparatively fast [69]. As a boosting algorithm,
AdaBoost (adabag, version 4.2) is used in conjunction with other learning algorithms to
improve performance by combining the output of other “weak learners” into a weighted
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sum [70], and we used a decision tree as the base model of AdaBoost in this study. MNB
(klaR, version 0.6-15) is a simple but very powerful linear classifier and has been very
successful in sorting spam and diagnosing diseases [71]. First, the batch-corrected datasets
(GSE113439 and GSE15197) were combined and used for model development. The models
were trained on the dataset with 57 samples (combined dataset GSE113439 and GSE15197)
and 48 features (the candidate DEGs) using a fivefold cross validation. Each model was
optimized using grid search by evaluating the average AUC and accuracy. Then, the genes
were ranked based on the importance of the candidate DEGs using the optimal algorithm.
In order to further select the candidate marker genes, we included the genes based on the
rank sequentially and cumulatively into the optimal model and evaluated the AUC of each
model with different numbers of genes. Finally, the smallest number of genes with the
greatest AUC value was considered as potential biomarkers. Furthermore, for evaluating
our model diagnostic performance, the GSE53408 dataset was employed to validate the
model. The ability of the identified biomarkers to distinguish disease samples from the
normal/control samples was evaluated by a PCA.

4.6. Exploration for the Potential Regulatory Mechanisms of Potential Biomarkers through a Series
of Bioinformatic Analyses
4.6.1. Single-Gene Gene Set Enrichment Analysis (GSEA)

In order to investigate the significant pathways between the low expression and high
expression groups of the potential biomarkers, we conducted a single-gene gene set enrich-
ment analysis (GSEA). The Pearson correlation coefficient between each of three potential
biomarkers and the remaining genes was calculated, and significantly correlated genes
(p < 0.05) were used for the GO and KEGG pathway analysis using the “clusterProfiler” R
package with “org.Hs.eg.db” as the database [14].

Furthermore, considering the enrichment of ferroptosis-related pathways in the single-
gene analysis results of biomarkers, 259 FRGs, including 111 markers, 108 drivers, and
69 suppressors were obtained from the FerrDb database (http://www.zhounan.org/ferrdb/
current/, accessed on 15 June 2021) to further investigate the key FRGs relevant to the
potential biomarkers in PAH patients [38]. FerrDb is the first manually curated database
to manage and identify markers as well as regulators associated with ferroptosis and
related diseases. At the time of the analysis, the database contained 784 ferroptosis-related
articles from PubMed, from which 259 regulatory genes had been extracted and collated.
A Pearson correlation analysis was used for evaluating the relationship between 259 FRGs
and 3 biomarkers based on their expression values, and FRGs correlated with p < 0.05 and
a correlation coefficient >0.6 were selected.

4.6.2. Analysis of Immune Cell Infiltration

The association of the immune system with PAH occurrence has been examined
for many years [32]. Furthermore, it has been shown that rats with T-cell deficiency
exhibit aggravated PAH following SU5416 injection [72]. To investigate the relationship
between new potential biomarkers and immune infiltration, the infiltration states of various
immune cells between the case and healthy control samples were explored. On the basis
of 28 published immune cell gene sets [73], gene expression profiles after normalization
were imported into the ImmuCellAI website (http://bioinfo.life.hust.edu.cn/ImmuCellAI,
accessed on 20 July 2021). Then, the abundance of immune cells in the blood of PAH
I patients was estimated by a single-sample GSEA (ssGSEA) algorithm, and significant
differences were estimated by a Wilcoxon rank test. Further, a Pearson correlation analysis
was performed between each of the three potential biomarkers and immune cells with
significant differences in PAH patients compared to controls to screen the key biomarker-
related immune cells.

http://www.zhounan.org/ferrdb/current/
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4.6.3. Construction of Biomarker-Transcription Factor Regulatory Network

The TF binding sites potentially regulating biomarkers were uncovered to construct a
transcriptional regulatory network for understanding the regulatory mechanisms underly-
ing the potential biomarkers. The promoter sequences of the biomarkers (2000 bp upstream
of the gene) were downloaded from the NCBI database (https://www.ncbi.nlm.nih.gov/,
accessed on 22 July 2021), and the JASPAR (https://jaspar.genereg.net/, accessed on 22 July
2021) and AnimalTFDB3.0 (http://bioinfo.life.hust.edu.cn/AnimalTFDB/, accessed on
22 July 2021) databases were used for predicting TFs binding to these promoters. A thresh-
old of Q < 0.05 was used for filtering the results predicted by AnimalTFDB3.0, whereas
a score >10 was considered for screening the results of the JASPAR database, and fi-
nally TFs predicted by both these databases were considered as the regulators of identi-
fied biomarkers.

4.6.4. Prediction of Therapeutic Drugs Targeting the Potential Biomarkers

The drugs and molecular compounds targeting the biomarkers were predicted us-
ing the Comparative Toxicogenomics Database (CTD) (http://ctdbase.org/, accessed on
25 August 2021) for exploring potential treatment options for Group I PAH patients.

4.7. Verifying the Expression of Potential Biomarkers Using in Vivo and In Vitro Experiments
4.7.1. Cell Culture and Hypoxia Culture Conditions

Human pulmonary microvascular endothelial cells (HPMECs) were obtained from
Yu Bo Biotech company (Shanghai, China) and were maintained in an endothelial cell
(EC) medium (ScienCell Research Laboratories, San Diego, CA, USA) containing 5 mg/mL
penicillin/streptomycin and 10% FBS at 37 ◦C. HPMEC cells were exposed to hypoxic [74]
(N2/O2/CO2 ratio = 94:1:5) or normoxic (O2/CO2 ratio = 21:5) conditions for 24 h.

4.7.2. Quantitative Reverse Transcription PCR (qRT-PCR)

The mRNA expression levels of the potential biomarkers were first determined
through qRT-PCR. A TRIzol reagent (Invitrogen, Carlsbad, CA, USA) was used for the
isolation of total RNA from HPMECs. cDNA was prepared with the PrimeScript RT reagent
kit (Vazyme, Nanjing, China) using the below-mentioned primer sequences. Subsequently,
qRT-PCR was performed using the SYBR Green Realtime PCR Premix (Vazyme, Nanjing,
China). The primer sequences used for the qRT-PCR experiment are provided in Table 6.
The 2−∆∆CT approach was used for determining the mRNA expression levels with GAPDH
used as a reference.

4.7.3. Human Lung Tissue Samples

We collected lung tissue samples from Group I PAH patients (n = 3 males of 35, 40, and
42 years, respectively; samples were collected during lung biopsy for diagnosis surgery)
and controls (n = 3 males of 50, 58, and 65 years, respectively; para-carcinoma tissue
samples were dissected during surgical resection of cancerous lung). The mean pulmonary
artery pressure was 50 ± 6 and 20 ± 4 mmHg for Group I PAH patients and controls,
respectively. The study was approved by the Ethics Committee of Zhongnan Hospital of
Wuhan University and was carried out following the Declaration of Helsinki. Patients
provided informed consent before sample collection.

4.7.4. Immunohistochemistry (IHC)

Immunohistochemical staining was used to determine the expression of the potential
biomarkers at the protein level. Lung tissue samples from Group I PAH patients and
controls were processed by fixation, embedding, sectioning, and staining with rabbit
antihuman PBRM1 polyclonal antibody (1:200, ABclonal, Oxfordshire, UK) and rabbit
antihuman TXLNG polyclonal antibody (1:200, ABclonal) for detecting protein expression.
Then, the samples were hybridized with biotinylated antirabbit secondary antibody and
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the avidin biotin enzyme complex (1:200, Abcam, MA, USA) staining was observed using
an Olympus IX73 microscope.

Table 6. Primers used for qRT-PCR.

Gene Name Forward Primer (5′-3′) Reverse Primer (5′-3′)

PBRM1 AGGAGGAGACTTTCCAATCTTCC CTTCGCTTTGGTGCCCTAATG
CA1 CTGACAGCTACAGGCTCTTTC CTACGTGAAGCTCGGCAGAAT

TXLNG ATCCATCAAAGCGCCATCAAAGCG ACAAATAAAGCAATAGCATCACAA
IGF1 AAGCCTACAAAGTCAGCTGC GGTCTTGTTTCCTGCACTT
ACE TCCTATTCCCGCTCATCT CCAGCCCTTCTGTACCATT

RSPO CAGCCATAACTTCTGCACCA AGAGCTGCTGCTTCTTGGAG
C2orf40 GGTACCAGCAGTTTCTCTACATG CAGCGTGTGGCAAGTCATGGTTAGT
TSPAN7 CTCATCGGAACTGGCACCACTA CCTGAAATGCCAGCTACGAGCT
SCN4B CAACAGCAGTGACGCATTCAA CTCCTTAGTAGAGCCTACCAGAG
IREB2 GCGATTTCCAGGCTTGCTTA GTTTAACACGCAGACCAGCT

LPCAT3 AGCCTTAACAAGTTGGCGAC TGCCGATAAAACAAAGCAAA
BECN1 AGGAACTCACAGCTCCATTAC AATGGCTCCTCTCCTGAGTT
ZEB1 AAACTCGAGTACTTCAATTCCTCGGTATTG AAATCTAGACACACTGTTCTACAGTCCAA

HMGB1 ATATGGCAAAAGCGGACAAG AGGCCAGGATGTTCTCCTTT
SLC3A2 ACCCCTGTTTTCAGCTACGG GGTCTTCACTCTGGCCCTTC
PLIN2 CTGTCTACCAAGCTCTGCTC CGATGCTTCTCTTCCACTCC

SP1 GTGGAGCAACATCATTGCTG GCCACTGGTACATTGGTCACAT
RIPK1 AGGCTTTGGGAAGGTGTCTC CGGAGTACTCATCTCGGCTTT

PRDX6 TTTCAATAGACAGTGTTGAGGATCA CGTGGGTGTTTCACCATTG
YWHAE CTAACACTGGCGAGTCCAAGGT GTAAGCCACG AGGCTGTTCTCT
GAPDH CAATGACCCCTTCATTGACC TTGATTTTGGAGGGATCTCG

4.8. Statistical Analyses

R packages and online software were used for statistical analyses. Normally dis-
tributed continuous data were compared by a t-test between groups. The statistical anal-
ysis was performed with a one-way ANOVA. A p-value < 0.05 was considered statisti-
cally significant.

5. Conclusions

Group I PAH represents an uncommon progressive disease with a high complexity,
which is difficult to treat and can ultimately lead to death. In this study, diagnostic models
using the lung tissue data from Group I PAH patients were compared through multiple
machine learning algorithms, and finally, a new diagnostic model including PBRM1, CA1,
and TXLNG genes was established. We performed a comprehensive analysis of the molecu-
lar biomarkers, including signaling pathway, PPI network, immune infiltration, regulatory
TF network, potential therapeutic drug, and ferroptosis-related gene analyses. Finally, the
expression of the biomarkers and a selected set of candidate genes were experimentally
validated at the mRNA and protein levels.
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