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Abstract: The apelinergic system is a highly conserved pleiotropic system. It comprises the apelin 
receptor apelin peptide jejunum (APJ) and its two peptide ligands, Elabela/Toddler (ELA) and ape-
lin, which have different spatiotemporal localizations. This system has been implicated in the regu-
lation of the adipoinsular axis, in cardiovascular and central nervous systems, in carcinogenesis, 
and in pregnancy in humans. During pregnancy, the apelinergic system is essential for embryo car-
diogenesis and vasculogenesis and for placental development and function. It may also play a role 
in the initiation of labor. The apelinergic system seems to be involved in the development of pla-
centa-related pregnancy complications, such as preeclampsia (PE) and intrauterine growth re-
striction, but an improvement in PE-like symptoms and birth weight has been described in murine 
models after the exogenous administration of apelin or ELA. Although the expression of ELA, ape-
lin, and APJ is altered in human PE placenta, data related to their circulating levels are inconsistent. 
This article reviews current knowledge about the roles of the apelinergic system in pregnancy and 
its pathophysiological roles in placenta-related complications in pregnancy. We also discuss the 
challenges in translating the actors of the apelinergic system into a marker or target for therapeutic 
interventions in obstetrics. 
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1. Overview of the Apelinergic System 
The apelinergic system is composed of a group of three actors, namely, a receptor 

named apelin peptide jejunum (APJ) and its two peptide ligands, Elabela/Toddler (ELA) 
and apelin [1]. The APJ gene, APLNR, was discovered in 1993 and showed homology with 
the angiotensin II type 1 receptor [1,2]. However, APJ, a seven-transmembrane G protein-
coupled receptor (GPCR), did not bind to angiotensin II [2] and was initially considered 
as an orphan GPCR [1,2]. Its first endogenous ligand, the peptide hormone apelin, was 
discovered several years later in 1998 by Tatemoto et al. by means of monitoring APJ ac-
tivity from bovine stomach extracts [3]. 

APJ and the preproapelin, consisting of 77 amino acid residues, are expressed in em-
bryo and adult human tissues, including heart, vasculature (particularly in endothelial 
cells), and lung tissue; white adipose tissue; the gastrointestinal tract and the liver; several 
regions of the central nervous system; retinas; limbs; the skin; kidneys; mammary glands; 
and placental tissue [1,4–14]. The preproapelin can be cleaved from its C-terminal domain 
to produce several apelin peptides with different polypeptide chain lengths (apelin-36, 
apelin-17, and apelin-13). Research has shown that the longer chains of this protein are 
characterized by lower biological activity, which is why they are converted into short-
chain forms [15]. Apelin-36 predominates in rat lung, testis, and uterus [16] and in bovine 
colostrum [3]. Its concentration is much lower in rat brain as well as in rat and human 
plasma, where the most abundant forms of apelin are apelin-17 and pyroglutamate-ape-
lin-13 [17,18]. The naturally pyroglutamated apelin-13 form is structurally more resistant 
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Abstract: The apelinergic system is a highly conserved pleiotropic system. It comprises the apelin
receptor apelin peptide jejunum (APJ) and its two peptide ligands, Elabela/Toddler (ELA) and
apelin, which have different spatiotemporal localizations. This system has been implicated in the
regulation of the adipoinsular axis, in cardiovascular and central nervous systems, in carcinogenesis,
and in pregnancy in humans. During pregnancy, the apelinergic system is essential for embryo
cardiogenesis and vasculogenesis and for placental development and function. It may also play
a role in the initiation of labor. The apelinergic system seems to be involved in the development
of placenta-related pregnancy complications, such as preeclampsia (PE) and intrauterine growth
restriction, but an improvement in PE-like symptoms and birth weight has been described in murine
models after the exogenous administration of apelin or ELA. Although the expression of ELA, apelin,
and APJ is altered in human PE placenta, data related to their circulating levels are inconsistent.
This article reviews current knowledge about the roles of the apelinergic system in pregnancy and
its pathophysiological roles in placenta-related complications in pregnancy. We also discuss the
challenges in translating the actors of the apelinergic system into a marker or target for therapeutic
interventions in obstetrics.
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1. Overview of the Apelinergic System

The apelinergic system is composed of a group of three actors, namely, a receptor
named apelin peptide jejunum (APJ) and its two peptide ligands, Elabela/Toddler (ELA)
and apelin [1]. The APJ gene, APLNR, was discovered in 1993 and showed homology with
the angiotensin II type 1 receptor [1,2]. However, APJ, a seven-transmembrane G protein-
coupled receptor (GPCR), did not bind to angiotensin II [2] and was initially considered
as an orphan GPCR [1,2]. Its first endogenous ligand, the peptide hormone apelin, was
discovered several years later in 1998 by Tatemoto et al. by means of monitoring APJ
activity from bovine stomach extracts [3].

APJ and the preproapelin, consisting of 77 amino acid residues, are expressed in
embryo and adult human tissues, including heart, vasculature (particularly in endothelial
cells), and lung tissue; white adipose tissue; the gastrointestinal tract and the liver; several
regions of the central nervous system; retinas; limbs; the skin; kidneys; mammary glands;
and placental tissue [1,4–14]. The preproapelin can be cleaved from its C-terminal domain
to produce several apelin peptides with different polypeptide chain lengths (apelin-36,
apelin-17, and apelin-13). Research has shown that the longer chains of this protein are
characterized by lower biological activity, which is why they are converted into short-
chain forms [15]. Apelin-36 predominates in rat lung, testis, and uterus [16] and in bovine
colostrum [3]. Its concentration is much lower in rat brain as well as in rat and human
plasma, where the most abundant forms of apelin are apelin-17 and pyroglutamate-apelin-
13 [17,18]. The naturally pyroglutamated apelin-13 form is structurally more resistant to
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aminopeptidases and is also the most active isoform. It is located in the mammary gland
and hypothalamus [16], but also in the heart, where it is the most abundant form [19].

A second endogenous ligand, ELA, was identified in 2013 in zebrafish embryos [20,21]
by Chng et al. While seeking to identify the first hormonal peptide implicated in the ability
of naive blastomeres to differentiate into one of the three embryonic germ layers, they
isolated a human gene named ‘APELA’ (apelin early endogenous ligand), annotated until
then as a noncoding transcript. APELA was predicted to encode a hormone with a signal
peptide, ELA [20]. Concurrently, Pauli et al. also identified the same gene and named it
‘TODDLER’ [21]. Thus, even if they both bind to APJ, ELA and apelin differ not only in
their structure [22] but also by their encoding genes, which is rather unusual for peptide
ligands of the same GPCR. ELA is the early ligand in humans, but it remains present in
blood during adulthood by means of its expression in the prostate, the kidney, the cardiac
endothelium, blood vessels, and the placenta [20,23–27]. Its crucial role in early human
development will be further reviewed in Section 2.2.

ELA is a 54-amino acid preprotein processed in different isoform lengths: ELA-32, ELA-
22, ELA-11 and, probably, ELA-14 and ELA-21. More precisely, as a result of proteolysis, the
ELA sequence is cleaved by furin, generating ELA-11 and ELA-21 [20]. However, cleavage
of the signal peptide in the N-terminus produces a 32-amino acid proprotein. ELA-32 is
a mature form that becomes a biologically active molecule upon binding to APJ, similar to
other isoforms [20]. Although putative furin cleavage sites were predicted to generate the
other shorter peptides previously cited [27,28], the detection of a small number of them
still needs to be proven in vivo.

Further research is still necessary to identify preponderant ELA and apelin isoforms
and the mechanisms regulating their production, especially during physiological and
pathological pregnancy. However, the high conservation of APJ, apelin, and ELA suggests
that the apelinergic system is a key regulator of essential physiological functions [20,29].

2. The Apelinergic System in the Reproductive System—Pregnancy and Postpartum
2.1. Reproductive System

The topographical distribution of apelinergic-synthesizing neurons in rats [30] and
the hypothalamic localization of apelin fibers and receptors [31] have suggested an im-
plication of the apelinergic axis in behavior control and pituitary hormone release [32].
Its implication in reproductive regulation was further supported by the findings of Pope
et al., who reported high levels of APJ mRNA and apelin binding sites in the mouse uterine
endometrium and ovary [33]. In addition, the corpus luteum presented a high level of APJ
expression. These observations suggest that the intraovarian apelinergic system may have
an autocrine role [33].

Apelin and APJ are also present in bovine granulosa and oocytes. Apelin increases
the secretion of basal and insulin-like growth factor 1 (IGF-1)-induced progesterone in
bovine luteinizing granulosa cells, whereas it inhibits oocyte maturation and progesterone
secretion from cumulus cells in vitro [34]. Accordingly, in a porcine model, apelin also
increased the secretion of basal and IGF1- and FSH-induced progesterone and estradiol
secretion, with an increased expression of both apelin and APJ with follicular growth [35].
In the human ovary, the apelinergic axis is localized through different developmental
stages, including luteinized human granulosa cells, theca, oocytes, and the corona cumulus
complex [36]. In cultured human luteinized granulosa cells, IGF-1 increased APJ expression,
and recombinant human apelin stimulated the secretion of both basal and IGF1-induced
progesterone and estradiol secretion [36]. The coherence of former data suggests that
the apelinergic system, more specifically apelin, plays several roles in the hypothalamus–
pituitary–gonadal axis and in the female reproductive organs, thus highlighting a crucial
involvement in steroidogenesis [37].
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2.2. Development of the Embryo

In human embryonic stem cells (hESC), ELA can potentiate the TGF-β pathway to
prime hESCs toward the endoderm lineage [38]. It is abundantly secreted by undifferenti-
ated hESCs, which do not express APJ [38], thus implying that ELA might use a secondary
receptor [39]. ELA also appears to be an important endogenous growth factor in human em-
bryos with a crucial role in maintaining the growth and self-renewal of human and mouse
ESCs [38], which have a key function in maintaining genome stability. ELA facilitates
hESC cell-cycle progression, as well as protein translation, and suppresses stress-induced
apoptosis [38]. Accordingly, the inhibition of ELA causes decreased cell growth, cell death,
and loss of pluripotency in hESC [38].

The apelinergic system has a complex spatiotemporal regulation in embryology, which
needs to be fully elucidated and appears to be species-specific, making it difficult to
extrapolate from animal models to human physiology. For example, Freyer et al. observed
that, in contrast to zebrafish, ELA is not the first apelinergic ligand to be expressed in
mice [40]. In fact, in mice, apelin is first expressed in extraembryonic visceral endoderm
and the primitive streak at embryonic day (E) 6.5, whereas APELA expression is detected
at E7.0 in the distal epiblast and shortly thereafter in the definitive endoderm [41]. At E8.25,
APELA is expressed in extraembryonic tissues and in the chorion and at E9.5 in peripheric
trophoblast cells [40]. These authors also observed APJ in the allantois and the vasculature
invading the placenta at E9.5, which suggests that apelinergic signaling may function in
extraembryonic and embryonic tissues, with an impact on the formation of mesoderm
derivatives, such as yolk sac vasculature, hematopoietic progenitors, the chorion, and the
allantois [40]. Interestingly, apelin knockout mice do not exhibit the endoderm defects [20]
found in zebrafish [20,21], thus suggesting non-conserved roles in vertebrate gastrulation,
which could be due to species-specific mechanisms of mesendoderm migration [40]. Apelin
was also observed at the end of gastrulation during zebrafish heart development [20,42,43].

ELA is also a key factor in the process of gastrulation. Notably, knockdown of APELA
in zebrafishes resulted in the reduced movement of ventral and lateral mesendodermal
cells during gastrulation [21]. Indeed, during gastrulation, ELA increases cell velocity in
a nondirectional manner toward progress in mesendoderm internalization [21]. Moreover,
in zebrafish, it is also involved in guided cell migration by driving angioblast migration to
the midline in dorsal aorta formation [44]. In embryo development, the ELA/APJ pathway
is also implicated in skeletal development, bone formation, and bone homeostasis [45].

By contrast, ELA is essential for the proper differentiation of endodermal precursors
that are known to be crucial for guiding the overlying cardiac progenitors to the heart-
forming region [20]. The presence in zebrafish embryos of the grinch mutation, localized in
the APLNR zebrafish ortholog, often results in the complete absence of cardiomyocytes,
thus highlighting the critical role played by APLNR in myocardial development [46].
Indeed, APLNR knockdown 1-cell embryos and APLNR-deficient mice also show higher
lethality due to cardiovascular abnormalities [4,5,43,46,47]. Moreover, later cardiovascular
defects in adulthood were observed in most surviving mice embryos [4,5].

Paskaradevan et al. [47] demonstrated a novel mechanism for APLNR signaling in
the establishment of a niche required for the proper development of zebrafish myocardial
progenitor cells via the activation of Gata5/Smarcd3. However, despite the fact that
apelin−/− mutants exhibited cardiac developmental defects, apelin-/- zebrafish [43] and
mice [4,48] remained viable and fertile, suggesting that another APJ ligand other than
apelin could be involved in embryonic development, i.e., ELA. The implication of ELA
was later confirmed as its loss of function in zebrafish [20], and the mouse [24] model
produced similar results to APJ deletion, i.e., partial embryonic lethality and cardiovascular
defects. Indeed, Chng et al. observed that the loss of ELA in zebrafish embryos caused the
development of a rudimentary heart or no heart at all [20]. The authors proposed a zebrafish
model in which APLNR is required to fine-tune nodal output, acting as a specific rheostat
for the Nodal/TGFβ pathway during the earliest stages of cardiogenesis [49]. In mice,
ELA deficiency inhibits embryo blood vessel remodeling and suppresses the angiogenic
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sprouting of vitelline vessels, dorsal aorta, and outflow-tract and inter-somitic vessels [50].
Moreover, ELA deficiency further causes angiogenesis defects in the mouse embryo through
the promotion of the expression of the endothelial cell-specific molecule 1 (ESM1) gene [50].
Likewise, in human embryos, ELA has been proposed as an endogenous secreted growth
factor for hESCs that activates the TGF-β pathway to promote vasculogenesis [51].

Globally, the Elabela/APJ axis induces cardiogenesis, vasculogenesis, and bone for-
mation during embryonic development. Furthermore, in adults, it also enhances cardiac
contractility, promotes vasodilatory effects, mediates fluid homeostasis, and reduces food
intake. In addition, the apelin/APJ axis is involved in embryonic vascular, ocular, and
heart development [52]. Apelin has actions on blood pressure [53,54] and vasodilatation,
and it has a stimulatory effect on endothelial cell proliferation that may be involved in
blood vessel diameter during angiogenesis [55,56]. Of note, these cardiovascular effects of
the apelinergic system in adults have not yet been studied during pregnancy.

2.3. The Apelinergic System in Placenta

In zebrafish, APELA is first expressed in trophoblasts and is robustly upregulated after
allantoic fusion, which occurs at an early phase of placental vascular development [24].
After E10.5, ELA becomes restricted to the syncytiotrophoblasts (STBs) juxtaposed to
APJ-expressing fetal endothelial cells, suggesting a paracrine mode of action [24].

Georgiadou et al. observed that, in first trimester human placentas, both ELA and
apelin were expressed in villous cytotrophoblasts (CTBs), in STBs, and in distal column
extravillous CTBs (EVTs), while APJ was expressed in villous CTBs and distal column
EVTs, but not in STBs [57]. In addition, they observed strong ELA expression in stromal
cells of term placentas [57] in some samples, indicating that trophoblasts are not the only
source of placental ELA and that stromal cells might also play a functional role. However,
in contradiction to this study, Inusuka et al. observed strong APJ expression on the cellular
membranes of first trimester STB, whereas weaker expression was detected in villous
CTBs and EVTs [58]. In addition, APJ location varies throughout human gestation. At the
beginning of pregnancy, it is mainly located on the cellular membranes of STB and EVTs,
and in the second and third trimesters, its presence is more pronounced in the cytoplasm
of STBs [58].

The expression of apelin was also observed in the cytoplasm of the blood capillar-
ies, the endothelium, and the placental arteries in term placentas [59]. The apelinergic
system might therefore play a role in placental development, such as cell differentiation,
proliferation, apoptosis, and invasion (Figure 1).
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2.3.1. Differentiation

The development of the placenta depends on the coordination of the proliferation
and differentiation of trophoblast cells [60,61]. Each differentiation stage may be related
to impaired placental development and cause placental-related pregnancy complications,
highlighting the central role of differentiation in their pathogenesis [62]. ELA plays a key
role in the regulation of the differentiation stage of human EVTs, including transition
from a proliferative to an invasive phenotype [57]. Abnormal EVT differentiation leads to
impaired invasion into the decidua by interstitial EVTs and the altered remodeling of spiral
arteries by endovascular EVTs. The failure of the physiological transformation of spiral
arteries has a role in preeclampsia (PE).

2.3.2. Cell Cycle and Proliferation

The human trophoblast cells must exit the cell cycle in order to differentiate and fuse to
form multinucleate STBs [63]. Studies have shown that the depletion of a cell cycle inhibitor
(p21) could lead to the reduced expression of fusion-related genes, which adversely affects
the fusion capability of trophoblastic cells [64]. Increasing evidence emphasizes the major
roles of cell cycle regulators in trophoblast cell division and differentiation [65]. Several cell
cycle regulators are expressed in human placenta, with distinct and dynamic expression
levels [66]. Apelin-13 treatment alters cyclin expression by particularly stimulating the
expression of cyclins D and E and thus the cell cycle progression in both JEG-3 and BeWo
cells [59]. It has also been demonstrated that apelin-13 promotes JEG-3 proliferation via
APJ and the extracellular signal-regulated kinases (ERK)1 and 2, the signal transducer and
activator of transcription 3 (STAT3), and the adenosine monophosphate-activated protein
kinase alpha (AMPKα) signaling pathways [59] (Figure 2). Similarly, Ma et al. recently
found that ELA promoted the proliferation of BeWo cells [67].
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Figure 2. Activation of different signaling pathways through ELA (framed in green), apelin (framed in
green), or both (framed in cyan) in the binding of APJ in human trophoblast [59,68,69]. ELA: Elabela;
APJ: apelin peptide jejunum; AMPK: adenosine monophosphate-activated protein kinase; ERK1/2:
extracellular signal-activated kinase 1/2; PKA: protein kinase A; PI3K: phosphatidylinositol 3-kinases.
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2.3.3. Cell Survival

ELA and apelin can also exert anti-apoptotic effects on BeWo cells by the activation of
the PI3K-Akt pathway [67,69] (Figure 2). The apelin/APJ system increases the expression
of pro-survival and decreased proapoptotic factors on mRNA and protein levels in both
BeWo cells and villous explants [69]. Ferroptosis, a programmed cell death caused by iron-
dependent peroxidation of lipids, might be rescued by ELAs by disrupting ferritinophagy
and increasing ferritin heavy chain (FTH1) in HTR-8/SVneo cells. Interestingly, some
authors report an increased grade of ferroptosis accompanied by a downregulation of the
expression of ELA in PE placentas and further confirm an increased grade of ferroptosis
together with a downregulation of ELA in PE-like model mouse placentas, thus providing
new insights into the mechanism and therapeutic targets of PE [70].

2.3.4. Trophoblastic Invasion

Abnormal EVT invasion into the decidua led to an alteration of spiral artery remodel-
ing by endovascular EVTs and, ultimately, to utero–placental insufficiency. The addition
of ELA in the culture medium of the choriocarcinoma cell line JAR was reported to in-
crease their invasiveness in transwell invasion assays [24]. It has also been shown that
the treatment of HTR-8/SVneo with apelin or ELA also increased their invasiveness [57]
and is dependent on APJ [71]. In addition, ELA induces the invasion and migration of
HTR-8/SVneo cells through the phosphatidylinositol-3-kinase/protein kinase B (PI3K/Akt)
pathway [72] (Figure 2).

2.3.5. Placental Hormone Secretion

The apelinergic system might be implicated in the production and secretion of placen-
tal hormones [73], which is probably the reason why they vary through pregnancy [74].
Apelin could decrease the secretion of protein hormones through the protein kinase A (PKA)
and extracellular signal-regulated kinases (ERK1/2) signaling pathways (Figure 2) [68].

2.4. Labor

Apelin has been shown to inhibit human uterine contractility in vitro [75], suggesting
its potential role in parturition. In rats, apelin levels were increased at the end of pregnancy
and induced myometrium contractions, with their frequency and amplitude depending
on its concentration. This effect does not occur with the PKC inhibitor, indicating that the
PKC pathway might be implicated in its mechanism of action [76]. By contrast, an in vitro
study showed that apelin suppresses both spontaneous and oxytocin-induced contractions
in human myometrial fibers [75]. These contradictory results may be explained by the
intracellular balance between vascular dilatation and the smooth-muscle contraction mech-
anisms of the apelinergic system, as well as the impact of species diversity and reagent
concentrations [37].

Higher concentrations of apelin have been found in pregnant women with obesity
during pregnancy, which could explain their decreased myometrial contractility, potentially
due to the inhibition of the myometrial RhoA/ROCK (RhoA kinase) pathway [77]. Women
with obesity have a higher frequency of cesarean sections compared to non-obese women,
which is associated with an altered myometrial function that leads to a lower frequency
and potency of contractions. The association of apelin and lower uterine contractility in
pregnant women with obesity deserves further evaluation. Regarding ELA, neither its
expression in the uterus nor its role in myometrium contractility has yet been reported.

2.5. The Apelinergic System and Postpartum/Breastfeeding

Apelin is abundant in breastmilk [78,79] and its level increases with long- and short-
term overnutrition, possibly via maternal hyperinsulinemia and the transcriptional up-
regulation of apelin expression in the myoepithelial cells of the mammary gland [80].
Interestingly, the apelin level is lower in the breast milk of lactating women who have gesta-
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tional diabetes [79]. At present, little is known regarding the mRNA or protein expression
of APELA and ELA in the mammary gland in any mammalian species.

3. Placenta-Related Complications

The apelinergic system has a central role in early placentation. Early placentation
dysfunction is a known trigger mechanism for placenta-related pregnancy complications.
We review here current knowledge on the possible implication of the apelinergic system in
several complications.

3.1. Preeclampsia (PE)

PE is a hypertensive disorder with multiple organ involvement. It affects 5% to 8%
of all pregnancies [81] and remains the leading cause of fetal and maternal morbidity and
mortality. PE and related disorders cause 14% of maternal deaths each year globally [82].
However, authors suggest that the addition of angiogenic markers to the conventional
diagnostic criteria would improve the detection rate of both maternal and perinatal adverse
outcomes [83]. In mice, ELA deficiency leads to hallmarks of PE such as hypertension,
proteinuria, glomerular endothelial cell hyperplasia, and low birthweight (i.e., intrauterine
growth restriction [IUGR]) [24], making ELA-deficient animals a suitable model for the
study of PE, as well as the involvement of ELA in the pathogenesis of PE [84].

ELA deficiency in mice causes placental dysfunction characterized by a thin labyrinth,
poor angiogenesis, increased apoptosis, decreased proliferation, and delayed STB differ-
entiation [24]. In addition, circulating ELA levels correlate with the severity of maternal
proteinuria and kidney damage. Interestingly, the infusion of exogenous ELA normalizes
hypertension and proteinuria in ELA-deficient pregnant mice [24], suggesting that circu-
lating ELA participates in maternal cardiovascular and renal adaptations to pregnancy
independently of other well-known PE angiogenic factors (soluble fms-like tyrosine kinase-
1 (sFlt-1)/placental growth factor [sFlt1/PlGF]) [24]. Moreover, Ma et al. showed that ELA
significantly reversed NG-nitro-l-arginine methyl ester (L-NAME)-induced hypertension
in mice, reversed the condition of maternal blood sinuses narrowing (in the placental
labyrinth zone), and regulated the expression of mouse placental apoptosis factors [67].
L-NAME is a nitric oxide synthase inhibitor that disrupts uterine spiral artery remodeling
in pregnant animals and increases placental vasoconstriction and vascular reactivity, and it
thus decreases blood flow, leading to placental ischemia [85–87]. Treating pregnant rodents
in their second and third trimesters with L-NAME results in hypertension, proteinuria,
renal damage, IUGR, and thrombocytopenia [88–90].

In humans, ELA data are highly contradictory. At the protein level, translational
studies do not support the hypothesis that human PE is characterized by an early deficiency
in circulating ELA levels. There is no association between circulating ELA-32 in maternal
blood and preterm PE [91,92]. By contrast, placental and circulating ELA-32 have been
found to be elevated in two studies including women with late-onset PE [92,93] and
decreased in another study by Zhou et al. [71]. In addition, Georgiadou et al. found
significantly lower levels of circulating ELA in women with a normal body mass index (BMI)
who later developed late-onset PE compared to women with uncomplicated pregnancies,
while levels in early-onset PE did not reach statistical significance [57]. The authors
suggested that ELA could not be used as a first trimester PE screening biomarker due
to the large variability and dependence of ELA levels on BMI. Indeed, the study by Zhou
et al. included women with a mean BMI < 25, while the study by Panaitescu et al. included
a majority of women with a BMI > 25.

Another study reporting on the screening of APELA variants in PE women versus
controls concluded that two rare variants were found only in PE cases, suggesting that
women who express these rare variants might have a reduced transcription of the protein,
which could result in an increased risk of PE [94]. Thus, the apelinergic system could be
impaired in a very specific subset of women with PE, and future research should focus
on their identification. More studies are also needed to identify whether specific ELA
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isoforms are dysregulated before the diagnosis of PE [95], but specific enzyme-linked
immunosorbent assay (ELISA) tests would be required. To date, only two different ELISA
tests are available for this purpose [96]. Pritchard et al. [31] and Panaitescu et al. [32] used
the most frequently used one, the kit from Peninsula Laboratories (Peninsula Laboratories
International, Inc., BMA Biomedicals, Augst, Switzerland), which is said to react for ELA-32,
whereas Villie et al. [53] chose the kit from Creative Diagnostics (Shirley, NY, USA), which
cross-reacts with human ELA-21 and ELA-32, and is more expensive.

Regarding apelin, Hamza et al. found that PE-induced rats (L-NAME) showed signifi-
cantly decreased apelin serum levels [97]. Moreover, they observed significantly increased
blood pressure and urine proteins. These parameters negatively correlated with the serum
apelin level, and exogenous apelin-13 administration significantly improved them, together
with an improvement in the placental histoarchitecture [97]. Accordingly, in reduced uter-
ine perfusion pressure PE-induced rats, Wang et al. observed that apelin-13 treatment
significantly improved the symptoms of PE, suggesting that apelin may be a potential
target for treating PE [39].

There are also contradictions between the clinical results regarding the expression of
apelin and its circulating levels and correlation with PE. Several studies have shown that the
serum apelin level was increased in PE [98,98,99], whereas other studies showed decreased
apelin mRNA and proteins in PE placentas [58] or maternal blood [100], serum [101,102],
or plasma [103] levels compared with normotensive pregnancies [58,71,100,101,103,104].
However, most authors have assessed total apelin levels using the same Apelin-36 ELISA
kit from Phoenix Pharmaceuticals (Burlingame, CA, USA) [96], which targets the last
12 amino acids of all isoforms and thus is said to cross-react with apelin-12, apelin-13
and apelin-36. Nevertheless, two teams also studied apelin-13 and also found decreased
serum levels [104,105]. On the other hand, a recent review determined that, although there
was a high heterogeneity within available studies, there was no difference in circulating
maternal apelin levels between the two patient groups [106]. Nevertheless, it was observed
that patients with PE had a higher BMI and lower gestational age and birthweight at
delivery. When performing a subgroup analysis, PE women with a higher BMI had signifi-
cantly lower apelin levels, whereas there was no significant apelin difference depending on
PE severity.

Data about the apelinergic system levels in newborns are still critically lacking. How-
ever, it was demonstrated that ELA and apelin levels were decreased in newborns’ venous-
arterial cord blood in women with PE and severe PE compared with healthy pregnant
women [100].

3.2. Intrauterine Growth Restriction (IUGR)

IUGR, also called fetal growth restriction, is defined as the failure of the fetus to reach
its genetically established growth potential [107,108] and is diagnosed in approximately
10% of pregnancies [109]. Malamitsi-Puchner et al. found the presence of markedly high
concentrations of apelin in umbilical plasma samples, which suggests a potential role for
this peptide in intrauterine growth [110]. Subsequently, it was observed that apelin levels
were decreased in IUGR serum and placenta staining [111] compared to uncomplicated
pregnancies or to pregnancies complicated by PE, but the study sample was too small
(four cases of IUGR) to reach any conclusion. Apelin is known to stimulate proliferation
and inhibit apoptosis in mouse and human osteoblasts [112], which could be a potential
mechanism linking apelin and fetal growth.

As mentioned previously, ELA levels were correlated with birthweights in mice [24].
In humans, ELA serum levels have been found to be lower in cases of IUGR in one
study [113] but higher in another [114]. These contradictory results might be explained
by different IUGR inclusion criteria (estimated fetal weight below the third percentile in
the study by Berham et al. and fetal abdomen circumference measurement below the 10th
percentile in the study by Yener et al.) and different gestational ages at sample collection (at
approximately 30 weeks and at delivery date for Berham, and at approximately 36 weeks
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for Yener). In addition, Berham et al. excluded hypertensive patients, but Yener et al.
did not.

3.3. Gestational Diabetes Mellitus (GDM)

Apelin is known to play a role in blood glucose metabolism [56]. Two studies have
shown an increase in the apelin serum level of GDM pregnant women [74,115], whereas
other studies reported either decreased concentrations [115–117] or an absence of any
difference [118–121]. Other authors studied specifically the second and third trimesters of
pregnancy and found that ELA serum levels were decreased in GDM, whereas apelin serum
levels increased [74]. Dasgupta et al. reported that apelin expression in GDM placentas was
significantly reduced compared with matched controls [122]. Moreover, GDM mice treated
with apelin showed a significant improvement in inflammatory cytokines, oxidative stress
in the placenta, and glucose and lipid metabolism [123]. This suggests that the apelinergic
system pathway is a promising target for the development of prophylactic and therapeutic
agents for GDM in the future. However, the data are still inconsistent and more studies
are required.

3.4. Miscarriage

Spontaneous abortions are multifactorial, but apart from genetic causes, a placental
implication is plausible [124]. Placental histological changes have been reported in this
field, but also delays in trophoblast development, impairment in villous vasculogenesis–
angiogenesis [125], and insufficient syncytialization [126]. ELA-like APLNR null mice [40]
and zebrafish [20] have reduced survival, probably mainly due to heart development and
placental defects, but little is known about the direct influence of the apelinergic system
on spontaneous abortion. To our knowledge, there is only one publication demonstrating
an association of lower maternal ELA levels with spontaneous abortion [127].

4. From Research to the Clinical Setting: Challenges and Limitations

Studies have reported an alteration of circulating and placental ELA and apelin
levels in pathologies of pregnancy such as PE and GDM, suggesting that these peptides
could be used as biomarkers (Table 1). However, the results of these studies vary signifi-
cantly (Table 1). First, obtaining specific proper dosages of apelinergic ligands is chal-
lenging. Apelin and ELA protein levels have mainly been evaluated using commercial
antibody-based immunoassays against various synthetic peptide fragments [73,128,129].
These assays are probably not isoform-specific [130]; this may contribute to the reported
large plasma concentrations ranges observed. High-performance liquid chromatogra-
phy combined with radioimmunoassay detection has also been used, with a confirmed
relative specificity for different apelin isoforms [131–133], but only a small number of
authors have successfully detected apelin in vivo [130,134,135].
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Table 1. Altered APJ, apelin, and ELA levels in human pregnancy disorders compared to a physiological pregnancy during pregnancy and in the postpartum period.

Variable Tissue/Fluid Expression Methods Pathologies Reference
Pregnancy

Molecule: APLNR
delivery placenta mRNA, protein Real-time PCR, IHC Late onset PE (↘) [71]
delivery placenta protein IHC PE (≈) [58]
delivery placenta protein IHC PE (↗) [136]
delivery placenta mRNA RT-qPCR Maternal obesity (≈) [137]
delivery placenta, adipose tissue mRNA Real-time PCR GDM (≈) [138]

Molecule: APLN
delivery serum, cord blood protein ELISA GDM (≈in cord blood,↗ in serum) [115]

24–28 WG serum protein ELISA, EIA GDM (↘) [117]
2nd and 3rd trimester serum protein ELISA GDM (↗only in the 2nd trimester ) [74]

delivery serum protein ELISA GDM (≈) [118]

delivery maternal and cord blood protein ELISA GDM (↘ in cord blood, ≈ in maternal
blood ) [119]

24–32 WG and delivery plasma, adipose tissue, placenta protein ELISA, Real-time PCR GDM (≈mRNA and circulating level) [138]
delivery placenta protein IHC GDM (↘) [122]

2nd trimester serum protein ELISA GDM (↗) [139]

20–34 WG and delivery serum, placenta protein, mRNA ELISA, IHC, RT-PCR Preterm ≈, IUGR and PE (↘ prot,
≈mRNA) [111]

delivery placenta protein RIA PE (↘) [140]
delivery plasma protein ELISA PE (↘) [103]

time of diagnosis serum protein EIA PE (↗) [98]
time of diagnosis serum protein EIA PE (↘) [101]

delivery maternal and cord blood protein ELISA PE (↘ in both maternal and cord
blood) [100]

delivery placenta protein IHC PE (↘) [122]
delivery serum protein ELISA PE (↘) [104]

delivery placenta, serum protein, mRNA ELISA, IHC, WB, RT-qPCR PE (↘ in placenta,↗ in maternal
circulation) [58]

delivery serum protein ELISA PE (↘) [105]
delivery placenta protein IHC PE (↗) [136]

time of diagnosis serum protein ELISA PE (↗) [99]

delivery plasma, cord blood, placenta protein, mRNA ELISA, RT-qPCR Maternal obesity (≈mRNA and
plasma,↘ in cord blood) [137]
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Table 1. Cont.

Variable Tissue/Fluid Expression Methods Pathologies Reference
Molecule: ELA

time of diagnosis serum protein ELISA IUGR (↘) [113]
delivery serum protein ELISA IUGR (↗) [114]

delivery maternal and cord blood protein ELISA PE (↘ in both maternal and cord
blood) [100]

delivery plasma protein ELISA Early-onset PE (≈), late-onset PE (↗) [92]

delivery serum, urine, placenta protein, mRNA ELISA, IHC, Real-time PCR Late-onset PE (circulating and
placental level↘) [71]

delivery plasma, placenta protein, mRNA ELISA, RNA sequencing PE (≈ placental mRNA and circulating
protein) [91]

1st trimester serum protein ELISA GH/PE (≈) [67]
2nd trimester serum protein ELISA GDM (↗) [139]

2nd and 3rd trimester serum protein ELISA GDM (↘ during second trimester) [74]

delivery plasma, cord blood, placenta protein, mRNA ELISA, RT-qPCR Maternal obesity (≈mRNA and
protein) [137]

time of diagnosis serum protein ELISA MA (↘) [127]
Post-partum

Molecule: APLN
serum, colostrum and mature

milk protein ELISA GDM (↘ in colostrum and milk) [79]

plasma protein ELISA GDM (↘) [116]
plasma, breast milk protein ELISA Obesity (↗with BMI) [80]

PCR: polymerase chain reaction; IHC: immunohistochemistry; PE: preeclampsia; GDM: gestational diabetes mellitus; IUGR: intrauterine growth restriction; EIA: enzyme immunoassay;
ELISA: enzyme-linked immunosorbent assay; MA: missed abortion.
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Second, the variability of results using the same commercial antibody-based im-
munoassays suggests critical variances in the specificity of ELA tests from different manu-
facturers. Indeed, using the same ELISA kit, Pritchard et al. [91] and Panaitescu et al. [92]
found different ELA concentrations in samples collected at term (~30 pg/mL and 5 ng/mL,
respectively).

A third limitation of the evaluation of the apelinergic system is the lack of guidelines
and recommendations for sample handling procedures, such as sample extraction, to
ensure the correct use of the ELISA kit. Georgiadou et al. [128] reviewed eight studies
reporting data on circulating ELA in human plasma or serum. These studies used ELISA
kits from three different companies (Phoenix Pharmaceuticals, Peninsula Laboratories
International, and Creative Diagnostics) all recommending sample peptide extraction by
means of high performance liquid chromatography. In two studies [25,141], it appears
that sample extraction was not performed. In the other studies, the procedures for sample
extraction were unclear, making their results difficult to interpret. Interestingly, when
the authors indicated that peptide extraction was performed, the results obtained by the
commercial kit mirrored the levels obtained by the custom ELISA used by Georgiadou et al.,
whereas when peptide extraction was not performed, the ELA levels no longer showed
their typical large inter-individual variations. In addition, all isoforms have a short half-life,
probably of only a few minutes [28], thus implying a rapid and transient response to
homeostatic changes and differences in potency [142] and signaling pathways, resulting in
difficulties in establishing their correct dosage and in their subsequent use as a therapeutic
agent. Thus, further studies are needed to establish guidelines for sample handling and for
the measurement and conservation of apelinergic system isoforms.

Another limitation is the variation in the population’s intrinsic characteristics. Apelin
varies according to body mass index [143,144], patient age [145], and the presence of dia-
betes [146,147], or in cases of an inflammatory condition, such as psoriasis [148]. Variations
linked to thyroid disorders have also been evaluated [149,150] but are not conclusive.
Moreover, apelinemia could decrease during the second half of pregnancy [151,152]. Ad-
ditionally, as the apelin gene is located on the X chromosome, analyses are sometimes
conducted in a sex-specific manner. For example, specific apelin genotypes were associated
with lower high-density lipoprotein cholesterol in Iranian women without a metabolic
syndrome [153]. Likewise, gender-specific associations between apelin/APJ gene polymor-
phisms have been highlighted in humans [154]. In the APLNR knockout mouse model,
sex-specific effects on conditioned fear responses were observed [155].

ELA levels correlate with age, BMI, heart rate, BNP levels, and left atrial dimen-
sion [156]. ELA levels also appears to be higher during pregnancy [24,25] and linked
to gestational age [128]. In 50% of women in the resistance to aspirin during and after
pregnancy (RADAR) cohort, ELA could not be detected throughout pregnancy and the
postpartum period [57]. However, Panaiteiscu et al. were able to detect ELA in the plasma
of women during the second and third trimesters [92]. Of note, ELA levels were highly
variable between women and did not particularly change during pregnancy, although
a slightly higher level was observed in the first trimester [57]. Finally, both the apelin and
the ELA peptide levels might be altered in some other pathologies of pregnancy such as
GDM, which is an issue that must be considered.

Preclinical studies have also evaluated these peptides for the treatment of PE. Regard-
less of the rat PE models used, the administration of apelin or ELA peptides significantly
improved the symptoms of PE (Table 2). However, these studies were only conducted in
rats with PE, and these results should be confirmed in other animal models. Indeed, the
spatiotemporal regulation of the apelinergic system in embryology appears to be species-
specific [40,41], making it difficult to extrapolate from animal models to human physiology.
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Table 2. Effect of administration of apelin and ELA peptides during pregnancy
pathologies [39,97,140,157,158].

Model Peptide Output Reference

Obesogenic diet mice Apelin Improvement in placental function of obese dams [157]

L-NAME-induced PE in rats Apelin-13 Reno-protective effects [97]

PE rat model (TGA-PE) Pyr-
Apelin-13

Improvement in hemodynamic response and renal injury
without fetal toxicity [140]

PE rat model by reduced uterine
perfusion
pressure

Apelin Amelioration of PE symptoms [39]

L-NAME-induced PE in rats ELA Reversion of the phenotypes of L-NAME-induced PE [158]

PE: preeclampsia; L-NAME: L-nitro-arginine methyl ester; ELA: Elabela. Many technical challenges need to be
overcome before these can be used in clinical settings.

5. Conclusions

The apelinergic system in the reproductive field plays a central role in both physi-
ological pregnancy and placenta-related complications in pregnancy. More specifically,
apelin has a crucial role in steroidogenesis and in the metabolic regulation of the ovary.
ELA also has a potential role in the onset of PE. These data suggest that the apelinergic
system is a promising research field with a translational potential related to therapeutic
interventions in pregnancy. Further studies investigating the role of the apelinergic system
in the development of early pregnancy development and complications remain necessary
to fully understand its role and its potential in the development of therapeutic strategies.
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