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Abstract: Crohn’s disease (CD) is a chronic relapsing inflammatory bowel disease of unknown etiol-
ogy. Genetic predisposition and dysbiotic gut microbiota are important factors in the pathogenesis of
CD. In this study, we analyzed the taxonomic composition of the gut microbiota and genotypes of
24 single nucleotide polymorphisms (SNP) associated with the risk of CD. The studied cohorts
included 96 CD patients and 24 healthy volunteers from Russia. Statistically significant differences
were found in the allele frequencies for 8 SNPs and taxonomic composition of the gut microbiota in
CD patients compared with controls. In addition, two types of gut microbiota communities were
identified in CD patients. The main distinguishing driver of bacterial families for the first community
type are Bacteroidaceae and unclassified members of the Clostridiales order, and the second type is
characterized by increased abundance of Streptococcaceae and Enterobacteriaceae. Differences in the
allele frequencies of the rs9858542 (BSN), rs3816769 (STAT3), and rs1793004 (NELL1) were also found
between groups of CD patients with different types of microbiota communities. These findings
confirm the complex multifactorial nature of CD.

Keywords: Crohn’s disease; microbiota; SNP

1. Introduction

Crohn’s disease (CD) is a chronic relapsing disease characterized by inflammation of
various regions of the gastrointestinal tract, mainly the small and large intestines. While the
etiology of this disease is still unclear, it is known to be multifactorial. The pathogenesis of
CD depends on environmental factors, genetic predisposition, individual immune response,
and intestinal microbiota.

Through the development of DNA sequencing technology in recent decades, there is a
significant amount of data on the intestinal microbiota in health and disease. It is known
that inflammatory bowel diseases (IBD) mainly affect the regions of the gastrointestinal
tract with the maximum density of the bacterial population (colon and small intestine).
Many studies confirm the association of microbiota composition with IBD [1–5], including
in the Russian population [6–9]. The microbiota of IBD patients is most often characterized
by reduced alpha diversity, and a decrease in abundances of Firmicutes and Bacteroidetes,
and an increase in Proteobacteria and E. coli, in particular. At the functional level, these
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changes lead to reduced levels of short-chain fatty acids (SCFAs), especially butyrate—anti-
inflammatory metabolites produced by microbiota, and shifts in oxidative stress pathways
and the secretion of toxins [10,11]. Many genetic polymorphisms associated with IBD
are located in genes related to the host immune response and, in particular, interaction
with the microbiota. The most studied is the mutation in the NOD2 gene, which deter-
mines the immune response to the peptidoglycan of the bacterial cell wall [12]. Thus,
patients with CD carrying a mutation in NOD2 are characterized by an increased amount
of adhesive bacteria and decrease in the representation of Faecalibacterium [13,14], and
NOD2-deficient mice have an altered microbiome [15]. The NOD2 gene product interacts
with the ATG16L1 gene product, mutations in which are also associated with CD [16]. TH1
and TH17 immune responses are increased in mice with the ATG16L1 T300A variant, and
the bacterial genera Bacteroides and Escherichia are more prevalent in the intestines of these
mice [17,18]. Mutations in the FUT2 and CARD9 genes also affect the gut microbiota of
patients with IBD [18–20].

It is known that CD is accompanied by disturbed integrity of the intestinal wall due
to inflammation [21]. This leads to an increased intestinal permeability and penetration
of food and microbial antigens into the bloodstream, which is characterized by elevated
serum antibodies against them. The most frequently mentioned immunoglobulins are
anti-Saccharomyces cerevisiae antibodies (ASCA), which are significantly increased in the
serum of patients with CD, coeliac disease, rheumatoid arthritis, and autoimmune liver
diseases [22–24]. ASCA is known to be elevated even in unaffected relatives of IBD patients,
probably due to a genetic predisposition to abnormal intestinal permeability [25]. In
addition, bacteria can affect barrier function by degradation of the mucus layer, regulation
of epithelial cell apoptosis, and synthesis of components necessary for tight junctions [26].
Thus, microbiota antigens can interact with the host immune system not only on the
intestinal mucosa, but also in the bloodstream due to the impaired barrier function.

However, identifying human genome and microbiome associations in IBD patients
remains an urgent task for a deeper understanding of the disease pathogenesis and further
personalized treatment selection.

2. Results
2.1. Human Subjects

The present study involved 96 patients with Crohn’s disease (53 female and 43 male,
mean age 32.3 ± 11.8 years). CD was diagnosed using standard clinical, endoscopic,
and histological criteria. All patients were in the acute stage with varying severity and
localization of inflammation (Table 1). The average duration of the CD was 9.3 ± 4.5 years.
The control group consisted of 24 healthy volunteers (15 female and 9 male, mean age
35.3 ± 10.0 years).

Table 1. Clinical characteristics of CD patients.

Clinical Characteristics % of Samples (Total n = 96)

Location of inflammation
Ileitis—13.5%
Colitis—47.9%

Ileocolitis—38.6%

Phenotypic subtype
Inflammatory—33.3%

Stricturing—55.2%
Fistulizing—11.5%

Crohn’s disease activity index (CDAI)
Mildly active (150–220 points)—68.75%

Moderately active (221–450 points)—25%
Severely active (>451 points)—6.25%
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Table 1. Cont.

Clinical Characteristics % of Samples (Total n = 96)

Therapy:
no treatments (0)

5-aminosalicylic acid (1)
steroids (2)

immunosuppressor (3)
biologics (4)

(0)—7.29%
(1)—28.13%
(2)—5.21%
(3)—9.38%

(1) + (2)—5.21%
(1) + (3)—2.08%

(1) + (4)—4.17% (1) + (2) + (3)—1.04%
(1) + (2) + (4)—2.08%
(1) + (3) + (4)—2.08%

(2) + (3)—6.25%
(2) + (4)—8.33%

(2) + (3) + (4)—4.17%
(3) + (4)—14.58%

2.2. Microbiota Analysis
2.2.1. Gut Microbiota of CD Patients and Healthy Volunteers

The number of sequencing read pairs obtained from fecal samples of CD patients
and healthy controls ranged from 53,175 to 182,362 (median 91,061). Raw reads were
deposited in the NCBI SRA under accession number PRJNA938107 in the fastq format.
After merging, quality control, removing of chimeric reads, and rarefying, 20,938 reads per
sample remained.

The major bacterial phyla constituting the intestinal microbiota of healthy volunteers
and CD patients were Firmicutes (65.2 ± 14.7% and 63.0 ± 16.6%, respectively), Bacteroidetes
(22.9 ± 15.5% and 19.8 ± 17.5%), Proteobacteria (2.5 ± 3.2% and 7.3 ± 10.9%), and
Actinobacteria (6.8 ± 6.0% and 6.9 ± 8.5%).

Shannon’s alpha diversity index and observed operational taxonomic units (OTUs)
were significantly reduced in CD patients compared with controls (Figure 1A). A decreased
abundance of the families Clostidiaceae, Coriobacteriaceae, and Rikenellaceae and an increased
representation of Lactobacillaceae, Enterococcaceae, Streptococcaceae, and Enterobacteriaceae
were also found (Figure 1B).
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Figure 1. Analysis of gut microbiota taxonomic composition of CD patients and healthy volunteers.
(A)—Number of OTUs and Shannon’s diversity index per group. (B)—Most abundant bacterial
families significantly differentiated between comparison groups. *—p < 0.05 (Kruskall-Wallis test).



Int. J. Mol. Sci. 2023, 24, 7998 4 of 19

Depending on the CDAI, differences in the taxonomic composition of CD patients’
microbiota are revealed. The Firmicutes phylum and Micrococcaceae and Enterococcaceae
families showed significant positive correlations with CD activity (Figure 2A). Significant
negative correlations with the severity of the disease were found for the Bacteroidetes phylum
and Eryspelotrichaceae, [Odoribacteraceae], Rikenellaceae, Coriobacteriaceae, Bacteroidaceae, and
Porphyromonadaceae families (Figure 2A). When CD patients were divided into three groups
according to the activity of the disease, significant differences in the representation of three
families were revealed—Micrococcaceae increased with the increase in CD severity, while
the abundance of Coriobacteriaceae and Bacteroidaceae decreased (Figure 2B).
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Figure 2. Analysis of gut microbiota taxonomic composition of CD patients with different disease
activity. (A)—Statistically significant Spearman’s correlations between CDAI and gut microbiota
taxonomic composition (p < 0.05). a—Bacterial phyla, b—Bacterial families. (B)—Most abundant
bacterial families significantly differentiated between comparison groups. *—p < 0.05 (Kruskall-Wallis
test with Benjamini-Hochberg correction for multiple comparisons).

Based on the Dirichlet multinomial mixtures method, two types of microbiota can be
distinguished according to the taxonomic composition (Figure 3). The first community type (I)
included 61 CD patients and all 24 controls, while the second group (II) included 35 CD
patients. Thus, the frequency of occurrence of microbiota types in CD patients and controls
is significantly different (p = 0.0003, Exact Fisher test). The main driver representatives
(the most abundant in these communities) of the first community type are the families
Lachnospiraceae, Ruminococcaceae, and Bacteroidaceae, and an unclassified member of the
order Clostridiales (Figure 4A), while the second type is determined by Lachnospiraceae,
Streptococcaceae, Ruminococcaceae, and Enterobacteriaceae (Figure 4B).

2.2.2. Analysis of Microbiota Community Types in CD Patients

When comparing the two types of communities identified in CD patients, the sec-
ond type showed a significant decrease in the number of observed OTUs and Shannon’s
alpha diversity index, indicating a more prominent dysbiosis (Figure 5A, Table S1). A
decrease in the abundance of the Bacteroidetes phylum and an increase in the Proteobacteria,
Fusobacteria, and Verrucomicrobia phyla were also observed. Moreover, the abundance of the
Bacteroidaceae, Prevotellaceae, Lachnospiraceae, Ruminococcaceae, and Erysipelotrichaceae families
and unclassified Clostridiales were significantly declined in the second type of community
of CD patients (Figure 5B, Table S1). These bacteria are members of the normal human
microbiota and play a role in maintaining intestinal homeostasis. An increased amount of
the Verrucomicrobiaceae, Enterococcaceae, Streptococcaceae, and Enterobacteriaceae families was
also found (Figure 5B, Table S1). Thus, the microbiome of CD patients with community
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type II is characterized by prominent dysbiosis, while the microbiome of patients with the
first type is more similar to the healthy ones.

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 5 of 20 
 

 

 
Figure 3. Principal component analysis based on bacterial composition of gut microbiota on family 
level. 

 
Figure 4. Top four driver families in different community types of gut microbiota. (A)—I community 
type; (B)—II community type. 

2.2.2. Analysis of Microbiota Community Types in CD Patients 
When comparing the two types of communities identified in CD patients, the second 

type showed a significant decrease in the number of observed OTUs and Shannon’s alpha 
diversity index, indicating a more prominent dysbiosis (Figure 5A, Table S1). A decrease 
in the abundance of the Bacteroidetes phylum and an increase in the Proteobacteria, Fusobac-
teria, and Verrucomicrobia phyla were also observed. Moreover, the abundance of the Bac-
teroidaceae, Prevotellaceae, Lachnospiraceae, Ruminococcaceae, and Erysipelotrichaceae families 

Figure 3. Principal component analysis based on bacterial composition of gut microbiota on
family level.

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 5 of 20 
 

 

 
Figure 3. Principal component analysis based on bacterial composition of gut microbiota on family 
level. 

 
Figure 4. Top four driver families in different community types of gut microbiota. (A)—I community 
type; (B)—II community type. 

2.2.2. Analysis of Microbiota Community Types in CD Patients 
When comparing the two types of communities identified in CD patients, the second 

type showed a significant decrease in the number of observed OTUs and Shannon’s alpha 
diversity index, indicating a more prominent dysbiosis (Figure 5A, Table S1). A decrease 
in the abundance of the Bacteroidetes phylum and an increase in the Proteobacteria, Fusobac-
teria, and Verrucomicrobia phyla were also observed. Moreover, the abundance of the Bac-
teroidaceae, Prevotellaceae, Lachnospiraceae, Ruminococcaceae, and Erysipelotrichaceae families 

Figure 4. Top four driver families in different community types of gut microbiota. (A)—I community type;
(B)—II community type.

2.2.3. Analysis of Clinical Parameters in CD Patients with Different Types of
Microbial Communities

When comparing CD patients with different types of microbial communities, no
significant differences were found in clinical characteristics—duration of disease, loca-
tion of inflammation (ileitis, colitis, ileocolitis), disease activity (based on the Crohn’s
disease activity index), phenotype of disease (inflammatory, stricturing, fistulizing), or stool
frequency (Table 2).
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Table 2. Clinical characteristics of CD patients with different types of communities.

Clinical Characteristics
Mean ± SD p Value (*-Kruskal-Wallis Test,

§-Exact Fisher Test)Community Type I Community Type II

CD duration, years 9.0 ± 4.4 9.7 ± 4.7 0.75 *

Number of stools per day, n 1.5 ± 1.2 1.8 ± 1.3 0.45 *

Crohn’s disease activity index (CDAI) 245.0 ± 77.2 274.8 ± 204.2 0.86 *

Body Mass Index 21.2 ± 4.1 24.2 ± 7.0 0.22 *

Location of inflammation
(ileitis/colitis/ileocolitis), % 9.7/58.1/32.3 17.4/34.8/47.8 0.27 §

Phenotypic subtype
(inflammatory/stricturing/fistulizing), % 32.3/54.8/12.9 34.8/56.5/8.7 1.00 §

2.3. SNP Analysis

SNP Analysis in CD Patients and Healthy Volunteers
All 24 genetic markers agreed to Hardy–Weinberg equilibrium proportions in the con-

trol population (p > 0.05). Allele frequencies of 8 genetic polymorphisms were significantly
different between the CD groups and healthy subjects (Table 3). The alleles rs1004819A
and rs11209026G of the IL23R gene, as well as rs2241880A (ATG16L1), rs4958847A (IRGM),
rs1992662G (PTGER4), rs2274910C (ITLN1), rs6601764T, and rs7807258C were found to be
more frequent in patients with CD.

Table 3. Allelic distribution of 24 SNPs in CD patients and healthy volunteers.

SNP (Gene) Alleles CD Patients
(% of Alleles)

Healthy Volunteers
(% of Alleles)

OR (Lower 95% CI;
Upper 95% CI)

p Value,
Exact Fisher Test

rs2241880 (ATG16L1) A/G 67.1/32.9 47.8/52.2 0.45 (0.23; 0.88) 0.024

rs9858542 (BSN) A/G 33.9/66.1 29.2/70.8 0.81 (0.39; 1.59) 0.609

rs6908425 (CDKAL1) C/T 75.5/24.5 68.8/31.3 0.71 (0.36; 1.46) 0.359

rs6596075 (IBD5) C/G 89.6/10.4 83.3/16.7 0.58 (0.24; 1.50) 0.219
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Table 3. Cont.

SNP (Gene) Alleles CD Patients
(% of Alleles)

Healthy Volunteers
(% of Alleles)

OR (Lower 95% CI;
Upper 95% CI)

p Value,
Exact Fisher Test

rs11805303 (IL23R) C/T 69.3/30.7 58.3/41.7 0.62 (0.32; 1.21) 0.171

rs1004819 (IL23R) A/G 47.9/52.1 29.2/70.8 0.45 (0.22; 0.88) 0.023

rs10489629 (IL23R) C/T 36.5/63.5 47.9/52.1 1.60 (0.84; 3.05) 0.185

rs11209026 (IL23R) A/G 9.4/90.6 27.1/72.9 3.57 (1.57; 7.99) 0.003

rs2522057 (IRF1-AS1) C/G 81.8/18.2 70.8/29.2 0.54 (0.26; 1.14) 0.109

rs13361189 (IRGM) C/T 10.9/89.1 6.3/93.8 0.57 (0.12; 1.76) 0.428

rs4958847 (IRGM) A/G 32.3/67.7 14.6/85.4 0.37 (0.14; 0.82) 0.020

rs2274910 (ITLN1) C/T 66.7/33.3 37.5/62.5 0.30 (0.15; 0.58) <0.001

rs1793004 (NELL1) C/G 18.8/81.3 29.2/70.8 1.79 (0.85; 3.64) 0.116

rs2836878 (PSMG1) A/G 6.8/93.2 2.1/97.9 0.32 (0.01; 1.67) 0.313

rs1992662 (PTGER4) A/G 33.3/66.7 56.3/43.8 2.56 (1.34; 4.93) 0.005

rs8111071 (RSPH6A) A/G 91.1/8.9 95.8/4.2 2.09 (0.57; 14.73) 0.380

rs2631367 (SLC22A5) C/G 55.7/44.3 39.6/60.4 0.52 (0.27; 0.99) 0.053

rs3816769 (STAT3) C/T 22.9/77.1 22.9/77.1 1.01 (0.45; 2.10) 1.000

rs7753394 (TNFAIP3) C/T 53.1/46.9 39.6/60.4 0.58 (0.30; 1.10) 0.108

rs1456893 (intergenic) A/G 65.6/34.4 72.9/27.1 1.40 (0.70; 2.93) 0.393

rs224136 (intergenic) C/T 86.0/14.0 87.5/12.5 1.07 (0.27; 7.90) 1.000

rs6601764 (intergenic) C/T 41.1/58.9 64.6/35.4 2.59 (1.35; 5.11) 0.006

rs7807268 (intergenic) C/G 37.0/63.0 6.3/93.8 0.12 (0.03; 0.34) <0.001

rs12037606 (intergenic) A/G 42.2/57.8 31.3/68.8 0.63 (0.31; 1.22) 0.190

2.4. Analysis of Association between Microbiota and SNPs Allele Frequency in CD Patients
2.4.1. SNP Analysis in CD Patients According to the Type of Microbial Community

In the group of CD patients with the second type of gut microbiota community, the
following allele frequencies: A in rs9858542 of the BSN gene, T in rs3816769 of the STAT3
gene, and C in rs1793004 of the NELL1 gene were significantly increased (Table 4). All of
these alleles are associated with an increased risk of CD [27–33].

Table 4. Allelic distribution of 3 SNPs with significantly differentiated occurrence in CD patients
with different types of gut microbiota communities.

SNP (Gene) Alleles Community Type II
(% of Alleles)

Community Type I
(% of Alleles)

OR (Lower 95% CI;
Upper 95% CI)

p Value,
Exact Fisher Test

rs9858542 (BSN) A/G 45.7/54.3 27.0/73.0 0.44 (0.24;0.82) 0.011

rs3816769 (STAT3) C/T 14.3/85.7 27.9/72.1 2.29 (1.08; 5.24) 0.033

rs1793004 (NELL1) C/G 27.1/72.9 13.9/86.1 0.44 (0.21;0.92) 0.034

2.4.2. Correlation between SNP and Taxonomic Composition of Gut Microbiota in CD Patients

Statistically significant negative correlations of rs9858542 (BSN) with the number of
observed OTUs and the representation of the Bacteroidetes phylum were revealed using
an additive model (Figure 6). Rs3816769 (STAT3) showed a negative correlation with
the phylum Bacteroidetes and especially with the family Bacteroidaceae. For rs1793004
(NELL1) a negative correlation was found with the family Ruminococcaceae and a positive
correlation with the family Enterococcaceae. Furthermore, significant negative correlations
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were found between abundance of Bacteroidaceae with rs2274910 (ITLN1), rs2522057 (IRF1-AS1),
rs224136 (intergenic), rs6908425 (CDKAL1), and rs12037606 (intergenic) and a positive
correlations with rs1992662 (PTGER4), rs1456893 (intergenic), and 13361189 (IRGM).
Enterococcaceae and Enterobacteriaceae families showed significant positive correlations with
rs224136 (intergenic).
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3. Discussion

Changes in the gut microbiota composition and role of genetics in CD patients have
been described in a number of studies. However, there is limited data on CD patients
in the Russian population. CD prevalence in Russia is estimated to be 3.0–7.88 cases
per 100,000 population [34,35], and it rises 8–10% annually [35], but it is still substantially
lower than in Western Europe and North America [36]. Patients in our study were recruited
from two regions of Russia (the Republic of Tatarstan and Moscow), ensuring that people
of different nationalities (mainly Russians and Tatars) were represented.

Our results indicate a decrease in the diversity of the gut microbiota in CD patients
compared to healthy volunteers, which has also been found in many other studies [37–39].
Changes in the abundance of the families Bacteroidaceae, Prevotellaceae, Clostridiaceae,
Lachnospiraceae, Ruminococcaceae, Eryspelotrichaceae, Enterobacteriaceae, Fusobacteriaceae,
Lactobacillaceae, Enterococcaceae, and Streptococcaceae are often detected. The families
Bacteroidaceae, Prevotellaceae, and Rikenellaceae are members of the phylum Bacteroidetes
and perform several important functions in the gut, including metabolizing proteins and
carbohydrates [40], producing butyrate [41], and preventing the colonization of the gas-
trointestinal tract by pathogenic bacteria [42]. In our study, among the most abundant
phylum Bacteroidetes in CD patients, only the Rikenellaceae family decreased significantly
compared to controls. The functions of this family in the gut microbiota have not yet
been studied, but there is evidence of its decrease in patients with IBD and an increase in
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patients with irritable bowel syndrome [43]. Among the representatives of the phylum
Firmicutes, there was a decrease in the proportion of the order Clostridiales and, in particular,
of the family Clostridiaceae. They are known to be SCFAs producers and are involved in
the metabolism of bile acids. There is a number of conflicting data on this taxon. While
some authors observe an increase of Clostidiaceae in healthy controls and a decrease in CD
patients [44–47], the others found an increase of this taxon in IBD patients [48,49]. In our
study, we found a decreased abundance of the Coriobacteriaceae family of the Actinobacteria
phylum in CD patients, which is consistent with previous studies [50–52]. Coriobacteriaceae
have important functions in the gut including the conversion of bile salts and steroids and
the activation of dietary polyphenols [53].

An increase of the Enterobacteriaceae family members was also found in the microbiota
of CD patients. This is consistent with previously reported data in which the increased rep-
resentation of this family was a marker of dysbiosis in IBD [8,54]. However, no association
of any E. coli virulence genes with CD was found in the Russian population [55]. In our
study, we found an increase in the proportion of lactic acid producing bacteria from the
Lactobacillaceae, Enterococcaceae, and Streptococcaceae families in patients with CD, which is
consistent with previous studies [9,56–60]. These bacteria are commensals; however, they
can sometimes cause inflammation of various tissues in the respiratory, cardiovascular, and
nervous systems [61–64]. Streptococci are known to provoke intestinal inflammation by
inducing a pro-inflammatory response to lipoproteins and other components, as well as to
the interaction of subtilisin-like protease (SspA) with Toll-like receptor 2 (TLR2) [65]. The
role of enterococci in the pathogenesis of IBD has been described in a study showing that
Enterococcus faecalis can cause IBD in the IL-10 knockout mouse model [66]. A pathogenic-
ity island encoding surface aggregating protein (asa1), gelatinase (gelE), cytolysin (cylA),
extracellular surface protein (esp), and hyaluronidase (hyl) was also identified as a possible
trigger of the host inflammatory response [67]. Whether lactobacilli can provoke IBD or are
simply adapted to survive in an inflamed gut is still an open question.

Many studies attempted to identify bacterial taxa that change with IBD activity/severity.
Many of them agree that Faecalibacterium prausnitzii is associated with minimal
inflammation [68–70]. However, the results for other taxa are conflicting. We found an
increase in the representation of the Enterococcaceae and Micrococcaceae families in the gut
microbiota of patients with more severe CD, which is consistent with the results of other
studies [71–73]. In addition, we found a decrease in the abundance of the Eryspelotrichaceae
and Coriobacteriaceae families with higher disease activity. A similar trend was observed for
the Eryspelotrichaceae, while the opposite was found for Coriobacteriaceae by Papa et al. [74].
In our study, similar to Tedjo et al. Bacteroidaceae were increased in patients with mild
CD [75], whereas other authors found the opposite [46,75,76]. Therefore, there is no clear
understanding of the microbiota composition of IBD patients according to disease severity.

According to our data, the microbiota of CD patients is heterogeneous and two types
of communities that can be identified. Thus, patients with a type I microbiota community
shared it with control samples. Patients with a type II microbiota community are char-
acterized by a lower diversity of the microbiota and a lower number of observed OTUs
compared with the type I, indicating a more severe dysbiosis. In a study by Vieira-Silva
et al., a similar method revealed four enterotypes, whose drivers were Ruminococcaceae,
Prevotella, and Bacteroides [70]. The microbiota enterotypes of the Japanese, European, and
American populations are characterized by the same taxa [77]. Other enterotypes were
identified in a model organism study by Barron et al. where the main driver taxa were
Lachnospiraceae and Ruminoccoacceae, Enterobacteriaceae and Lactobacillus, Erysipelotrichaceae
and Akkermansia [78]. In our study, a number of bacterial families were represented differ-
ently in the microbiota community types. Thus, study participants with community type II
had an increased abundance of Enterobacteriaceae, Enterococcaceae, and Streptococcaceae fami-
lies, which, as noted above, are typical characteristics of CD patients’ gut microbiota. In
addition, the abundance of Verrucomicrobiaceae, whose role in the pathogenesis of IBD is ac-
tively debated, was increased. Some authors noted a decrease of its representation in IBD and
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even suggested the use of Akkermansia muciniphila as a new generation probiotics [9,78–80],
while others showed its increase in the microbiota of CD patients and suggested that
it degrades the mucin of the intestinal mucosa, thereby provoking its inflammation [8].
There was also a decrease in the abundance of Bacteroidaceae, Prevotellaceae, Lachnospiraceae,
Ruminococcaceae, Erysipelotrichaceae, and unclassified Clostridiales in the CD patients’ mi-
crobiota community of type II. These bacteria belong to the normal microbiota and are
important in keeping the gut healthy. Thus, the second type of microbial community is
characterized with more prominent dysbiotic changes in the microbiota of CD patients.

We found no differences in the clinical characteristics of CD (duration of disease,
location of inflammation, disease activity, and stool frequency) between the two groups of
patients with different types of gut microbiota communities, suggesting the presence of
other reasons for this distribution.

As CD is a multifactorial disease, genetic factors may be responsible for differences in
the gut microbiota composition. There are 24 single nucleotide polymorphisms studied,
which have previously been associated with CD in various populations. Compared with
controls, patients with CD have a significantly higher allele frequency of 8 SNPs. For the
remaining 16 SNPs, no significant differences were found, probably due to the regional
characteristics of the Russian population o the limited size of the cohort. It is known that
the representation of some bacterial taxa in the intestinal microbiota is associated with
specific alleles of host SNP. Therefore, polymorphisms in the LCT gene determine the
percentage of Bifidobacterium in the gut microbiota of healthy individuals [81], which can be
explained by bacterial enzymes compensating for lactase deficiency. There are also data
on the relationship of representatives of Akkermansia, Anaerostipes, Clostridiaceae, Blautia,
Dialister, Bacteroides, Atopobium, etc. with various host genetic loci, but the mechanism of
these relationships has not been studied [81–83]. In the case of IBD, a high abundance
of Enterobacteriaceae was found in the microbiota of NOD2-deficient patients [84]. Cer-
tain polymorphisms in the FUT2 gene were associated with decreased SCFAs-producing
Faecalibacterium and increased Proteobacteria [85]. It is also known that the ATG16L1 T300A
variant is associated with increased abundance of the Bacteroides genus [17]. In our study,
rs9858542A allele in the BSN gene was found to be more frequent in CD patients with a
second dysbiotic type of microbiota community and negatively correlated with the number
of observed OTUs and Bacteroidetes phylum representation. The rs9858542A allele is known
to be associated with an increased risk of CD [27–29]. The BSN gene encodes Bassoon Presy-
naptic Cytomatrix Protein, which is involved in organizing the presynaptic cytoskeleton
and expressed primarily in brain neurons, although there is an evidence that this protein is
also expressed at low levels in enteroendocrine cells in the gastrointestinal tract, including
the stomach, duodenum, colon, and rectum [86]. These cells produce gut hormones that
control digesting and food absorbtion, insulin secretion, etc. [87]. It is also known that
the gut microbiota produce several metabolites (SCFAs, secondary bile acids, indoles, and
lipopolysaccharides) that stimulate enteroendocrine cells [88–92]. The mechanism of BSN
gene product interaction with intestinal microbiota is still unknown, but probably involves
the interplay of microbiota metabolites with host enteroendocrine cells. In our study, we
also found that the T allele in rs3816769 of the STAT3 gene is significantly more frequent
in CD patients with a second dysbiotic type of intestinal microbiota and negatively corre-
lates with the Bacteroidetes phylum and Bacteroidaceae family in particular. This variant is
also known to be associated with CD risk [30,93]. The transcription factor STAT3 (signal
transducer and activator of transcription 3) regulates apoptosis, cell growth and inflamma-
tion in response to internal and external stimuli. In animal models, STAT3 activation in
intestinal epithelial cells is required for wound healing, but also leads to the development
of colitis-associated cancer in chronic inflammation [92,94]. Additionally, STAT3-deficient
mice have increased sensitivity to bacterial lipopolysaccharide and increased levels of pro-
inflammatory cytokines, and are more prone to chronic enterocolitis [95]. Zhao et al. found
that microbial SCFAs activate STAT3 in intestinal epithelial cells, while STAT3 knockout
resulted in a decrease in SCFA-induced antimicrobial peptide production [96]. Therefore,
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the STAT3 gene mutation rs3816769T may affect the host-microbiota interaction. The C
allele of rs1793004 in the NELL1 gene was significantly more frequent in CD patients with
the second dysbiotic microbiota type. Furthermore, a negative correlation of this variant
with the Ruminococcaceae family and a positive correlation with Enterococcaceae were found.
NELL1 encodes neural epidermal growth factor-like 1, which is expressed at significant
levels in epithelial cells of the small and large intestine, including inflamed epithelium [97].
The association of rs1793004C with IBD has been demonstrated by a genome-wide asso-
ciation study in a German population of IBD patients [97]. However, the mechanisms by
which the NELL1 gene product interacts with the intestinal microbiota remain unknown.

The findings of this study regarding the association between genetic polymorphisms
and intestinal microbiota composition may help in developing personalized therapy for CD
patients. Probiotics are considered a promising treatment of various autoimmune diseases–
type 1 diabetes [98], multiple sclerosis [99], autoimmune hepatitis [100], rheumatoid
arthritis [101], etc. Such therapy may include traditional probiotics (based on lactobacilli
and bifidobacteria), next generation probiotics (based on Faecalibacterium prausnitzii [102]
or Akkermansia muciniphila [103]), or fecal microbiota transplantation [104].

The limitation of the study is the relatively small number of healthy volunteers.
However, differences in the microbiota of CD patients and healthy controls have been
described in many previous works, while the variability of the microbiota within a group
of CD patients is much less discussed. For this reason, we decided to study a larger number
of CD patients for more reliable results. Taking these limitations into account, further
investigations on associations of microbiota and genetic markers in both CD patients and
healthy controls are required.

4. Materials and Methods
4.1. CD Patient and Controls

Venous blood and stool samples were collected from CD patients admitted to the
Republican Clinical Hospital (Kazan, Russia) and clinical department of the Lopukhin
Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical
Biological Agency (Moscow, Russia) during the period 2017–2021 (43/53 male/female,
32.3 ± 11.8 years old). CD was diagnosed using standard clinical, endoscopic, and
histological criteria. The control group consisted of 24 volunteers (9/15 male/female,
35.3± 10.0 years old) from the same regions of Russia as the CD patients. Eligibility of patients
with CD and healthy volunteers was determined according to specific inclusion/exclusion
criteria as listed in Table S2.

4.2. Ethics Statement

Informed consent was obtained from all subjects involved in the study. The study
was conducted in accordance with the recommendations of the local ethics committee of
the Kazan Federal University, Kazan, Russia (Protocol No. 6, dated 13 October 2017) and
Interuniversity ethics committee, Moscow, Russia (Protocol No.8, dated 23 September 2021).

4.3. 16S rRNA Gene-Based Metagenomic Analysis of Stool Samples

Genomic DNA was extracted from fecal samples using the QIAamp DNA Stool Mini
Kit (Qiagen, Germantown, MD, USA) in accordance with the manufacturer’s instructions. A
16S rRNA sequencing library was constructed according to the 16S metagenomics sequenc-
ing library preparation protocol (Illumina, San Diego, CA, USA) targeting the V3 and V4
hypervariable regions of the 16S rRNA gene. The initial PCR was performed with template
DNA using region-specific primers shown to have compatibility with the Illumina index
and sequencing adapters (forward primer: 5′-TCGTCGGCAGCGTCAGATGTGTATAAGAG
ACAGTCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG-3′;
reverse primer: 5′-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGTCTCGTGGGCT
CGGAGATGTGTATAAGAGACAGGACTACHVGGGTATCTAATCC-3′). After purification
of PCR products with AMPure XP magnetic beads, the second PCR was performed using
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primers from a Nextera XT Index Kit (Illumina). Subsequently, purified PCR products were
visualized using gel electrophoresis and quantified with a Qubit dsDNA HS Assay Kit
(Thermo Scientific, Waltham, MA, USA) on a Qubit 2.0 fluorometer. The sample pool (4 nM)
was denatured with 0.2 N NaOH, diluted further to 4 pM, and combined with 20% (v/v)
denatured 4 pM PhiX, prepared following Illumina guidelines. Sequencing of 16S rRNA
gene V3-V4 variable regions was performed on the Illumina MiSeq platform in 2 × 300 bp
mode at the Interdisciplinary Center of Shared Use of Kazan Federal University.

Reads were further processed and analyzed using the QIIME software, version 1.9.1 [105]
according to protocols. Before filtering, there were 53,175–182,362 (median 91,061) read
pairs per sample. Paired-end reads were initially merged and then processed to remove
low quality and chimeric sequence data. The rarefaction step was performed to reduce
sequencing depth heterogeneity between samples. After quality filtering, chimera filtering
and rarefying, we analyzed on average 20,938 joined read pairs. Sequences were clustered
into operational taxonomic units (OTU) based on the 97% identity threshold (open reference-
based OTU picking strategy); the SILVA database v.138 [106] was used. To characterize the
richness and evenness of the bacterial community, the alpha diversity index was calculated
using Shannon’s metrics.

4.4. Genotyping

A total of 24 SNPs were selected based on data indicating their potential association
with risk for IBD (Table S3). Genomic DNA from venous blood was isolated and purified
using the QIAamp DNA Mini Kit (Qiagen, Germantown, MD, USA) as described by the
manufacturer. PCR amplification was performed using the primers listed in Table S3
according to the protocol [107]. Genotyping was performed using MALDI-TOF mass
spectrometry as described previously [107].

4.5. Statistical Analysis

The distribution of genotypes for all SNPs was tested for compliance with the Hardy-
Weinberg equilibrium using the chi-square test. Analysis of the allele frequencies was
done using Fisher’s exact test. The strength of associations was assessed using the odds
ratio (OR, (lower 95% confidence interval; upper 95% confidence interval)). Differences in
the taxonomic composition of the gut microbiota were assessed using the Kruskal-Wallis
test. Correlations between genotypes and gut microbiota composition were analyzed
using the R “psych” package [108] based on the Spearman’s rank correlation coefficient
using an additive genetic model (depending on the genotype, a higher risk of developing
CD corresponds to a higher rank). p < 0.05 values were considered as significant. To
determine the types of bacterial communities, the Dirichlet multinomial mixture algorithm
was applied to cluster the gut microbiota samples [109].
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