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Abstract: Under low oxygen conditions (hypoxia), cells activate survival mechanisms including
metabolic changes and angiogenesis, which are regulated by HIF-1. The estrogen-related receptor
alpha (ERRα) is a transcription factor with important roles in the regulation of cellular metabolism
that is overexpressed in hypoxia, suggesting that it plays a role in cell survival in this condition. This
review enumerates and analyses the recent evidence that points to the role of ERRα as a regulator
of hypoxic genes, both in cooperation with HIF-1 and through HIF-1- independent mechanisms, in
invertebrate and vertebrate models and in physiological and pathological scenarios. ERRα’s functions
during hypoxia include two mechanisms: (1) direct ERRα/HIF-1 interaction, which enhances HIF-1′s
transcriptional activity; and (2) transcriptional activation by ERRα of genes that are classical HIF-1
targets, such as VEGF or glycolytic enzymes. ERRα is thus gaining recognition for its prominent role
in the hypoxia response, both in the presence and absence of HIF-1. In some models, ERRα prepares
cells for hypoxia, with important clinical/therapeutic implications.

Keywords: ERR; HIF-independent response to hypoxia; cancer; metabolic adaptation to hypoxia;
VEGF; angiogenesis; ischemia; PGC-1α

1. Introduction

Oxygen, the final electron acceptor of the mitochondrial respiratory chain for ATP
production, is crucial for all aerobic organisms. Despite the complex systems that higher
organisms have developed to irrigate every organ and constantly provide all cells with
oxygen, a variety of conditions can limit oxygen levels: some pathological (ischemia, tumor
development, anemia, lung disease) and some physiological (embryonic development,
exercise). Hypoxia is thus defined as a decrease in the oxygen supply to levels insufficient
for cellular function [1]. The precise O2 concentration that represents hypoxia varies from
tissue to tissue, and likely even between individuals, as different tissues are exposed to
different physiological oxygen concentrations (termed “physioxia”), most ranging from
3 to 9% oxygen (23–70 mmHg) [1]. O2 determinations suggest that most mammalian
high-energy-demand tissues, such as the brain, muscle, liver, renal cortex and heart, main-
tain physiological oxygen concentrations between 2.5 and 5.5% [1,2]. Since hypoxia can
quickly become life threatening, it triggers a response to modulate blood flow, change energy
metabolism, induce angiogenesis and cell differentiation and, ultimately, induce apoptosis [3].

The hypoxia response has a fast component that relies on existing proteins, such
as ion channels and already-expressed signaling pathways, with effects such as blood
redistribution, tachypnea/tachycardia, widespread inhibition of protein translation and
impaired cell proliferation [4,5]. It also has a well-characterized slower component that
induces the expression of about one-thousand specific hypoxia genes once hypoxia is
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installed [6]. Hypoxia-inducible factors (HIFs) are central transcription factors responsible
for protein expression during the slow component of the hypoxia response [7], but other
transcription factors also participate. One such example is the estrogen-related receptor
alpha (ERRα), a ubiquitously expressed orphan nuclear receptor, abundant in high-energy-
demand tissues such as the heart, kidneys and cancer cells [8–11]. This review discusses
the role that ERRα plays in the hypoxia response in synergism with HIF-1 and by HIF-
independent mechanisms.

2. HIF-1, -2 and -3 Mediate the Hypoxia Response

The HIF-mediated transcriptional response to hypoxia was discovered in the 1990s [7]
and received the Nobel Prize in Physiology or Medicine in 2019 [12]. Due to its central
importance to physiology and to pathological states such as cancer, HIF has been extensively
studied and reviewed [6,12–15]. HIF-1 was the first such factor described and remains
the most characterized, but HIF-2 and HIF-3 have been described as well [14,16]. All
three, are heterodimeric basic helix–loop–helix transcription factors consisting of subunits
α and β. Each α subunit is O2-regulated, as it is constantly targeted for destruction during
normoxia via the Von Hippel Lindau protein and the E2-ligase/ubiquitin proteasome
pathway [12–15,17]. In turn, the HIF-1β subunit (initially known as the aryl hydrocarbon
nuclear translocator ARNT, UniProt P27540) is constitutively expressed [12–15] and can
heterodimerize with the different oxygen-sensitive α subunits (HIF-1α, HIF-2α or HIF-3α)
to create tissue-specific HIF-1, HIF-2 or HIF-3 transcription factors. While HIF-1α is
conserved from Parazoa to vertebrates and expressed in most cells [13,14], HIF-2α and -3α
are only present in vertebrates and expressed tissue-specifically [12,14,16].

HIF-1α (HIF1A, UniProt Q16665), the most characterized homolog, is an 826-residue pro-
tein that locates to the cytoplasm during normoxia where it is constantly destroyed [12–15,17].
Under hypoxic conditions or in the presence of iron chelating agents, it translocates to the
nucleus and dimerizes with HIF-1β to form the functional HIF-1 complex that activates
gene transcription [12–15,17]. HIF-1α DNA binding activity and stabilization have half
maximal responses between 1.5 and 2% O2 and maximal response at 0.5% O2, determined
in human cultured cells [2]. HIF-1 requires co-activators/transactivators such as CREB
binding protein (CBP), p300 [18,19] and others [14], and the complex binds to hypoxia
response elements (HREs) with the 5′-RCGTG-3′ consensus [14,20].

Around one-thousand genes have been identified as HIF-1 targets [21] and they can
be grouped into two functional categories: those that increase oxygen supply to tissues and
those that decrease oxygen consumption by tissues [6,15]. In the first category, HIF elicits
an increase in oxygen delivery to tissues by triggering erythropoiesis and angiogenesis
through the expression of erythropoietin, the hormone that controls red cell production
and blood O2-carrying capacity [7], and VEGF (vascular endothelial growth factor), the
main protein that stimulates new blood vessel formation [22]. In the second category
(decreasing oxygen consumption) are many genes that modify energy metabolism [23,24].
For example, in hypoxia, oxidative phosphorylation (OXPHOS) is restricted due to the
lack of O2, and cells shift to anaerobic glycolysis through the increased expression of
glycolytic enzymes by HIF-1 [23]. To compensate for the much lower ATP generation per
glucose molecule through glycolysis than through OXPHOS, HIF-1 activates transcription
of the SLC2A1 and SLC2A3 genes coding the glucose transporters GLUT1 and GLUT3 that
increase glucose uptake [23]. Moreover, to inhibit the conversion of pyruvate to acetyl-CoA,
HIF-1 activates gene transcription to decrease pyruvate flux to the Krebs cycle and increase
lactate production. Examples of activated genes are the PDK1 gene encoding PDH kinase,
which phosphorylates and inactivates the catalytic subunit of pyruvate dehydrogenase
(PDH) [24], and the LDHA gene encoding lactate dehydrogenase A, which directly catalyzes
the conversion of pyruvate to lactate [20]. In this way, the HIF-1 response to hypoxia is, in
part, executed through metabolic adaptation.

To form HIF-2, HIF1-β heterodimerizes with HIF-2α (EPAS1, UniProt Q99814; also
called endothelial PAS domain protein 1, HIF-1α-like factor (HLF), HIF-1α related factor
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(HRF) and member of the PAS superfamily-1 (MOP-1)). HIF-2α has similarities to HIF-1α
in terms of domain structure, O2-dependent degradation, DNA sequence recognition (also
binds to hypoxia response elements, HREs) and heterodimerization, yet exhibits different
effects over gene expression mostly due to tissue-specific expression and kinetics [12,14,16].
The kinetics of HIF-1α and HIF-2α suggest that the former exerts a more rapid response at
oxygen levels around 1–2%, whereas HIF-2α action occurs after prolonged hypoxia [25].
In contrast to HIF-1α that expresses ubiquitously, HIF-2α only expresses in certain tissues
such as embryonic and adult vascular endothelia, lung, placenta, heart, renal interstitial
cells and liver [16,26]. HIF-2α also has specific coactivators such as NF-κB essential mod-
ulator, and Ets1 that do not interact with HIF-1α. Genes strongly activated by HIF-2 are
erythropoietin, VEGF receptor 2, insulin-like growth factor-binding protein-2 and plasmino-
gen activator inhibitor-1 [26,27]. HIF-2 acts more effectively than HIF-1 on erythropoietin
and iron metabolism genes, whereas VEGF and GLUT1 are similarly activated by HIF-1
and HIF-2, and glycolytic enzymes are more activated by HIF-1 [26,27]. Thus, within
the hypoxia response that requires gene expression, HIF-1 constitutes a faster metabolic
component; in turn, HIF-2 is more effective on erythropoiesis control once hypoxia persists.

In turn, HIF-3α (HIF3A, UniProt Q9Y2N7) can be present in different splice variants that
depend upon the tissue, some of which are proposed to have negative regulatory functions
on the hypoxia response [16,28]. This seems to be the case for the short HIF-3α variant that is
also called inhibitory PAS domain protein (IPAS), which expresses in corneal epithelium and
putatively prevents vascularization there [16,28]. Thus, HIF-3α could have specific regulatory
roles that will not be further reviewed here, but that have been discussed in [16,28].

3. Introduction to the Estrogen-Related Receptors (ERR)

The orchestration of metabolic adaptation central for hypoxia survival seems to involve
other transcription factors that specialize in the control of energy metabolism, such as the
estrogen-related receptor (ERR) subfamily of nuclear receptors. Here, we describe the
subfamily, with a focus on ERRα, and then analyze the evidence and mechanisms that link
ERRα to the regulation of hypoxic metabolism and angiogenesis.

The ERR subfamily belongs to group III of the nuclear receptor superfamily (orphan
nuclear receptors) [8,29]. In humans and most vertebrates, it comprises three members:
ERRα (NR3B1), ERRβ (NR3B2) and ERRγ (NR3B3). However, only one ERR gene has been
found in invertebrates such as Urochordates, Drosophila melanogaster, and in the mosquito
Anopheles gambiae, but none seem to exist in Caenorhabditis elegans [30–32]. A search in
the Inparanoid database (version 9) confirmed that no ERR homologs are identifiable in
nematodes [33].

The general structure of ERRs is common to nuclear receptors, including four func-
tional domains: N-terminal (NTD), DNA-binding (DBD), hinge, and a putative ligand-
binding domain (LBD) [8,10,34] (Figure 1A). The DBD comprises two cysteine-rich zinc
finger motifs, which are required for DNA binding and recognize the ERR response ele-
ments (ERREs), composed by the sequence TNAAGGTCA [35–37]. The three members
of the ERR family (α, β and γ) bear high similarity, particularly in the DBD and LBD
domains [38], but they have somewhat different functions and their expression is tissue-
specific. ERRγ and ERRβ bear more similarity with each other than with ERRα [38]. ERRα
is the most abundant member of the family, expressed in most cells, and with higher
levels in those with high energy demand, especially in cells that oxidize fatty acids [35–37],
compatible with its role in the transcriptional control of energy metabolism.
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absence (B) and presence of ligand (C). The binding site is lined by residues F232, F286, F399 and 
F414 (PDBIDs 1XB7 and 2PJL) providing bulky side chains that fill the ligand-binding pocket in the 
absence of ligand (B). Moreover, without ligand, helix 11 (H11) lifts away from the binding site; 
helix 12 (H12) is perpendicular to H11 and residue F414 occludes the binding site (B). (D) ERRα can 

Figure 1. ERRα’s structure and function. (A) The general domain topology of ERRα and other
estrogen-related receptors (NR3) includes an amino-terminal domain (NTD), a DNA binding domain,
a hinge, and a putative ligand-binding domain (LBD). (B,C) ERRα’s LBD has been crystalized in
the absence (B) and presence of ligand (C). The binding site is lined by residues F232, F286, F399
and F414 (PDBIDs 1XB7 and 2PJL) providing bulky side chains that fill the ligand-binding pocket
in the absence of ligand (B). Moreover, without ligand, helix 11 (H11) lifts away from the binding
site; helix 12 (H12) is perpendicular to H11 and residue F414 occludes the binding site (B). (D) ERRα
can bind DNA as a (i) monomer or (ii) dimer. ERRα’s transcriptional activity increases in complex
with co-activators, for example PGC-1 α or β (iii), and through posttranslational modifications, such
as phosphorylation (iv), mediated by HER2-EGF. ERRα activity increases in metabolic stress, cold,
fasting/nutrient deprivation, exercise and hypoxia.

ERRα (ESRRA, UniProt P11474) is a 423-residue protein and the first orphan nuclear
receptor identified in a 1988 screen for genes related to estrogen receptor alpha (ERα) [39],
just a few years before the identification of HIF. Unlike estrogen receptors, no endogenous
ligand has been described for ERRs; thus, ERRα, the first orphan nuclear receptor identified,
remains among the “non-adopted” orphans [34,40]. Recently, it was reported that an
endogenous 19-nor steroid estradienolone, found in the urine of pregnant women, can
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bind and act as an inverse agonist to ERRα and ERRγ [41]. There is still little information
to discern if this could be the long-sought endogenous ligand of the family, but it seems
unlikely due to the plethora of crucial functions that have been described for the ERRs and
which do not require a ligand (reviewed below).

Due to ERRα’s sequence identity to ERα, particularly in the DBD and LBD (68% and
37% residue identity, respectively [39]), it was initially suggested that these two recep-
tors shared common targets, co-regulatory proteins and sites of action [42,43]. However,
through the combination of computational biology; ERRα silencing; interaction with the
co-activators such as PGC-1α; DNA binding assays; chromatin immunoprecipitation with
sequencing (CHIP-seq); and reporter gene approaches, the differences between ERRα’s
and ERα’s functions have become apparent [8,36,37,44]. ERRα regulates a different set
of genes to Erα and is not involved in estrogen response. ERRα is mainly involved in
the transcriptional regulation of metabolic pathways spanning carbohydrate, lipid and
amino acid metabolism, importantly through the regulation of genes for mitochondrial
biogenesis, oxidative phosphorylation (OXPHOS) and fatty acid oxidation [8,10,11,37]. The
other members of the ERR family also control aspects of metabolism, although in specific
tissues [8,29,32,38]. Overall, ERRs occupy the promoters of over 700 genes that encode
mitochondrial proteins, regulating mitochondrial biogenesis [8].

Specifically, ERRα binds to the promoters of glycolysis and tricarboxylic acid cycle (TCA)
genes, and to OXPHOS genes such as ATP synthase b (ATP5PB), cytochrome c (CYCS), COX4,
GABPA and adenine nucleotide translocator 1 (ANT1) [44]. ChIP-seq studies performed in
mouse or human, liver, kidney, macrophages or cancer cell lines confirmed that ERRα can bind
to promoters for OXPHOS (SDHD and SUCLA2), TCA (FASN), glycolysis/gluconeogenesis
and lipid metabolism genes (GPAM and ELOVL6) [37,45–48]. Furthermore, ERRα activates
the promoters of β-oxidation genes, such as ACADM (medium-chain acyl co-A dehy-
drogenase) and CPT1A (carnitine palmytoyl transferase 1A), as well as the promoters
of glutamine transporters and enzymes for glutamine synthesis and catabolism [35,44].
In summary, ERRα’s function can be described as activating gene expression to adapt
energy production to physiological or pathological stress. ERRα’s functions in cellular
metabolism have been reviewed in [8]. In breast cancer, ERRα’s transcriptional activities
mediate metabolic adaptations leading to treatment resistance [46]. The metabolic pro-
grams it controls make ERRα an ideal contributor to the hypoxia response and a potential
pharmacological target.

The other members of the ERR subfamily also modulate metabolism with complemen-
tary and sometimes opposite functions to ERRα [8,29]. ERRβ has emerged as important in
maintaining multipotency [38]. In breast cancer, ERRα and ERRγ seem to play opposing
roles as modulators of cell metabolism: ERRγ activates TCA and OXPHOS while ERRα
redirects energy metabolism to glycolysis and lactate production [8]. This balance of control
is likely part of the mechanism at the core of the Warburg effect in many tumors, along
with HIF-1 [8,11], but it is far from a simple on/off switch. Rather, it is a dynamic balance
under tight control that is highly cell- and context-specific, where both members of the
ERR family, ERRα and ERRγ, activate metabolic pathways facilitating cell survival and
adaptation to the changing environment.

To bind DNA and to modulate target genes, ERRs can act as monomers, homodimers
or heterodimers [36,37] (Figure 1D), although in live cells mainly homo or heterodimers
have been associated to function [37,38]. ERR transcriptional activity is increased by
members of the steroid receptor co-activator (SRC) family [42,49,50] and by the peroxisome
proliferator-activated receptor gamma co-activator-1 (PGC-1) α and β [44,49,51] (Figure 1D).
Interactions with the cofactors are mediated by ERR’s LBD, particularly by helices 11 and
12 via leucine rich motifs (H11 and H12 in Figure 1B,C), also referred to in the literature as
ERR’s AF2 domain for “activation function 2” [49,52,53]. In particular, ERRα’s functions
on metabolism are dependent on PGC-1α [49]. ERRα and PGC-1α influence each other’s
expression, and both orchestrate the transcription of energy metabolism genes [37,53].
Recently, details on ERRα’s transcription initiation mechanism have been clarified. PGC1α
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was essential for p300 and mediator recruitment to activate transcription when ERRα acted
on chromatin, whereas on naked DNA ERRα established direct contact with initiation factor
TFIIH, and PGC1α did not further increase transcription [49,50]. While ERRα depends on
PGC-1α to transcribe metabolic genes, ERRβ and γ can function independently of PGC-1α
in stem cells and muscle [49], and other cofactors that interact with their AF2 domains,
such as NCOA, replace PGC-1α [49,50].

Unlike ERα, the ERRs do not need ligands to interact with its co-activators and to
bind DNA (they are constitutively active), probably because the putative ligand-binding
pocket (LBP) is occupied by residue side chains in a conformation favored by the cofactors.
In the empty ERRα crystal structures, the binding pocket is mainly occupied by the bulky
phenolic ring of Phe232 (XRD structures number this residue as 328; however, numbering
according to UniProt is used here), which corresponds to a less bulky Ala350 in ERα [41].
Despite this apparent lack of a ligand-binding pocket [34,52], synthetic compounds can
inhibit ERRα’s constitutive activity; thus, they are considered ERRα’s inverse agonists (i.e.,
compounds with affinity and intrinsic activity on the protein). Among the first synthetic in-
verse agonists described for ERRα was XCT790 (reported in 2004), a thiadiazole acrylamide,
which alters ERRα/PGC-1α signaling and is inactive against the rest of the ERRs and
ERα [54]. Later, “compound 1a” (ciclohexilmetil-(1-p-tolil-1H-indol-3-ilmetil)-amine) and
“compound 29” (4-(4-{[(5R)-2,4-dioxo-1,3-thiazolidin-5-yl]methyl}-2-methoxyphenoxy)-3-
(trifluoromethyl)benzonitrile) were synthetized and have been crystallized in complex with
ERRα’s LBD [55,56]. An analysis of these ERRα structures with inhibitors revealed a signifi-
cantly larger ligand-binding pocket than in the empty protein, created by the rearrangement
of amino acid residues F232, F286, F399 and F414 (328, 382, 495 and 510 in XRD 2PJL and
1XB7). F232 and F414 change conformation significantly when ERRα admits a ligand
(Figure 1B vs. Figure 1C). In addition, these structures suggest that the presence of the
inverse agonists disrupts the interaction between ERRα and PGC-1α, through the displace-
ment of ERRα’s helix, to a position that interferes with co-activator recruitment [57,58].

4. Evidence of ERRα’s Participation in the Hypoxia Response

Next, we review the evidence for ERRα’s participation in the hypoxia response in mod-
els that span invertebrates and vertebrates, and physiological and pathological scenarios.
These studies have led to the suggestion of HIF-dependent and independent mechanisms,
including some that transcend ERRα’s central role as a metabolic coordinator during stress.

4.1. ERRα Induces VEGF Expression during Muscle Ischemia and Other Models

The work that first pointed to ERRα’s role in hypoxia came from the study of an-
giogenesis/ischemia where VEGF, a classical HIF-1 target central to angiogenesis, was
discovered to also be inducible by ERRα in skeletal muscle [57]. Arany et al. first detected
that ERRα’s co-activator, PGC-1α, was induced by hypoxia in vitro in various cell types,
and in vivo in muscle [57]. Using a skeletal muscle ischemia model, these authors showed
that transgenic animals overexpressing PGC-1α had increased angiogenesis with VEGF
expression. PGC-1α/ERRα, but not other transcription factors co-activated by PGC-1α,
were necessary to increase VEGF expression, through a mechanism that neither depended
on HIF response elements (HREs) nor affected HIF-1 expression/stability [57]. Further-
more, conserved ERRα response elements (ERRES) were identified in the first intron of
the VEGF gene and were recognized by PGC-1α/ERRα [57]. ERRα’s ability to induce
VEGF expression and angiogenesis, as well as platelet-derived growth factor (PDGF) and
Angiopoietin 2, has been confirmed in other models [58–63]. Some studies suggest that the
effect does not require HIF-1 [57,58], while others suggest that HIF-1 can increase ERRα
expression [60], and that, in turn, ERRα suppression can decrease HIF-1α [59].

In skeletal muscle, the alternatively spliced truncated isoforms of PGC-1α, NT-PGC-
1α and PGC-1α4, induced VEGF expression by ERRα without increasing mitochondrial
biogenesis [63] (Figure 2B). These PGC1α isoforms bind ERRα but not other transcription
factors, such as NRF-1 and NRF-2 [52,63]. This suggests a mechanism by which the PGC-
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1α/ERRα axis can operate in hypoxia without increasing mitochondria (Figure 2A), which
would likely be impaired in respiration due to the limited O2 to act as a terminal acceptor
for OXPHOS. Additionally, other authors have suggested that PGC-1α could amplify
intracellular hypoxia by activating mitochondrial biogenesis/OXPHOS as a mechanism to
consume all remaining intracellular oxygen [64], thus precipitating hypoxia responses and
stabilizing HIF-1α.
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Figure 2. Metabolic adaptation via ERRα/PGC1α in normoxia (A) vs. hypoxia (B). (A) In normoxic
nutrient deprivation, ERRα/PGC1α activate mitochondrial biogenesis. (B) In hypoxia, PGC-1α’s
truncated isoform NT-PGC-1α binds ERRα but prevents the engagement of other transcription factors,
limiting mitochondrial biogenesis and favoring the expression of angiogenesis genes such as VEGF.
Oxygen consumption by mitochondria favors local hypoxia with concomitant HIF-1α stabilization.

Other recent studies suggest that some ERRα’s responses to hypoxia in the skeletal
muscle are dependent on HIF-1. ERRα is expressed during hindlimb muscle ischemia.
Transgenic mice overexpressing ERRα in the skeletal muscle have faster revascularization
with more muscle capillaries and higher artery/arteriole density after ischemia [65,66].
ERRα overexpression was also induced in C2C12 myotubes by oxygen deprivation (culture
in 95% nitrogen, 5% CO2), hypoxia-mimetics such as dimethyl-oxaloylglycine (DMOG)
or cobalt chloride (CoCl2), or by nutrient deprivation [65]. Further in vitro experiments
showed that ERRα regulates angiogenic gene expression through promoter recognition
in C2C12 myotubes, and pointed out that ERRα’s expression was HIF-1-dependent [65],
for which the authors predicted 12 putative HIF1A::ARNT response elements in the ES-
RRA gene promoter [65]. Altogether, these authors suggest that HIF is involved in the
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hypoxic induction of ERRα in the skeletal muscle through the transcriptional regulation of
ERRα expression. However, ERRα’s activity was not explored under HIF-1 depleting or
activating conditions.

4.2. ERRα in Brain and Spinal Cord Hypoxia/Ischemia

Studies with astrocytes treated with CORM2, a CO-releasing compound that imitates
ischemic brain injury, showed that ERRα/PGG1α can increase VEGF expression indepen-
dent of HIF-1 (that is, even in HIF-1α-deficient cells) [67]. The treatment induces Heme
Oxygenase-1 (HO-1) expression and its metabolites (CO and bilirubin) and promotes Ca2+

influx through L-type Ca2+ channels producing CaMKKβ-mediated AMPKα activation [67].
AMPKα increases NAMPT expression and NAD+ synthesis, which in turn increases SIRT
activity. PGC-1α can be deacetylated by SIRT1 [67], and once deacetylated it interacts
with ERRα to increase mitochondrial biogenesis and oxygen consumption [67] (Figure 3).
With this model, the authors previously suggested that oxygen consumption aggravates
intracellular hypoxia, allowing HIF-1α stabilization that further increases ERRα/PGG1α
expression [60]. Using ChIP assays, the authors proposed that HIF-1 can stimulate ERRα’s
transcription by binding to putative HIF-1 response elements (+539 to +542, 5′-CGTG-3′)
within the promoter region of the ERRα gene [60]. HIF-1α knockdown blocked ERRα’s
expression but not PGG1α’s in that HO-1 inducing model. Therefore, it is likely that HO-1
can stimulate VEGF both via HIF1-α dependent and independent mechanisms, the latter
involving PGC-1α/ERRα and calcium regulation through the Ca2+/CaMKK/AMPK path-
way [67] (Figure 3). These authors also propose some reciprocal and dynamic coordination
between HIF-1α, and PGC-1α/ERRα for VEGF expression in astrocytic ischemia, involving
mitochondrial biogenesis [60].
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Other processes such as spinal cord injury (SCI) can manifest with ischemia, which
aggravates secondary injury and neurological dysfunction [68–70]. Therefore, the vascular
response is critical for SCI repair and includes HIF-1α and VEGF expression. In an SCI rat
model, ERRα inhibition with XCT790 decreased VEGF and angiopoietin-2 expression [71],
which in turn decreased endothelial cell proliferation, vascular density and produced
histopathological changes to the spinal cord, such as inflammatory cell infiltration, hem-
orrhage and vacuolation, and fewer normal neurons, suggesting that ERRα activity is
essential for SCI repair, in part by favoring adequate re-vascularization via VEGF [71]. In
this model, it has not been explored whether ERRα‘s effects require HIF-1.

In the microglial cell line, BV2, pharmacological ERRα inhibition (with XCT790) or
activation (with pyrido [1,2-α]-pyrimidin-4-one) were explored in combination with CoCl2
to mimic the hypoxia that accompanies SCI. Hypoxia induced HIF-1α and autophagy.
ERRα’s effects were similar with/without hypoxia although more pronounced in hypoxia.
During hypoxia, ERRα inhibition increased autophagy markers and increased IL-6, TNF-α
and IL-10 mRNAs, but decreased FNDC5 (fibronectin type III domain containing protein 5).
In turn, ERRα’s activation decreased p38 MAPK phosphorylation. The authors suggest
that ERRα helps maintain homeostasis in microglia during hypoxia by down-modulating
autophagy and inflammation [72].

4.3. ERRα in Hypobaric Hypoxia

On the other hand, in a non-pathological process such as exposure to high altitude,
the expression of ERRα and PGC-1α are downregulated and the cell suffers mitochondrial
dysfunction [73]. Treatment with dexamethasone maintains ERRα and PGC-1α levels
similar to normoxia. This effect allows adaptability to hypobaric hypoxia in part through
the expression of ERRα transcripts of mitochondrial dynamics proteins Fis1, Drp1 and
Mfn2, that in turn increase OXPHOS [73]. This suggests that ERRα-mediated protection of
mitochondrial bioenergetics is required for adaptation to hypobaric hypoxia.

4.4. ERRα’s Role in Cancer-Related Hypoxia

In parallel, ERRα has been extensively studied in solid tumors where blood vessels
frequently become limiting to irrigate the tumor mass, leading to hypoxia. Thus, can-
cer represents another model where extensive evidence points to ERRα’s contribution to
the hypoxia response. Cancer cells in solid tumors use typical HIF-1 orchestrated mech-
anisms to survive hypoxia [74], impacting angiogenesis, cancer stem cell maintenance,
metabolic reprogramming, epithelial–mesenchymal transition (EMT), invasion, metastasis
and resistance to therapy (radiation and chemotherapy) [74–76].

Simultaneously, the overexpression of ERRα has been associated with tumor aggres-
siveness and poor prognosis [77–79]. In 2002, Ariazi et al. suggested ERRα as a biomarker
of unfavorable clinical prognosis in breast cancer, due to increased ERRα mRNA levels in
primary tumor cells compared to normal mammary epithelial cells. ERRα’s expression cor-
related with high Her2/ErbB2, a tyrosine kinase receptor amplified in 15% to 25% of breast
cancers that also confers aggressiveness [77] and that increases ERRα’s transcriptional
activity via phosphorylation through MEK/MAPK and PI3K/Akt [79,80] (Figure 1).

Subsequent immunohistochemical analyses, mRNA quantification and gene expres-
sion profiles in several solid tumors (breast, cervix, colon, endometrium, ovary and prostate)
are in agreement with Ariazi et al. and relate ERRα overexpression to cancer aggressiveness,
increased risk of recurrence and lower survival [9,76,81–85].

In breast and prostate cancer, ERRα has been found to interact directly with HIF-1
with two main effects: (1) HIF-1 stabilization; and (2) an increase in the HIF-dependent
expression of hypoxic genes [85,86]. This evidence has led to the suggestion that the direct
ERRα-HIF interaction is another important mechanism by which ERRα contributes to the
hypoxic response. The physical interaction between HIF and ERRα has been explored
using a series of ERRα truncation mutants covering the N terminus, DBD, and LBD in GST
pull down assays. Ao et al. suggested that the ERRα’s DBD is involved in HIF binding [86].
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Anti-ERRα immunoprecipitation of MDA-MB-435 breast cancer cellular lysates treated
with the iron chelator dipyridyl (DP) to stabilize endogenous HIF-1α, showed that all
three ERRs associate to HIFα/β heterodimers both in vitro and in vivo, and this was
abolished in ERRα mutants or with ERRα inhibitors [86]. Subsequent studies using co-
immunoprecipitation and FRET in prostate cancer cells confirmed that the interaction
happens and that it increases HIF-1′s transcription, but disagree on the ERRα domains
involved [85]. Zou et al. suggest that the domain required for interaction with HIF-1 is the
AF-2 region in ERRα’s LBD [85]. These authors further suggest that ERRα’s co-activator
PGC1α may be necessary for its interaction with HIF-1. These effects are prevented in ERRα
knockdowns or with ERRα’s inverse agonist XCT790 [85,86]. Evidence in prostate cancer
cells suggests that the ERRα/HIF-1α interaction reduces the proteosomal degradation
of HIF-1α [85]. These authors suggest that ERRα overexpression stabilizes HIF-1α and
enhances HIF-1 transcriptional activity even under normoxia, with these effects amplified
in hypoxia, resulting in a mechanism for the pre-adaptation to hypoxia [85].

In parallel, Stein et al. reported that ERRα regulates VEGF expression in breast cancer
cell lines [61], similar to what was described in the previous section in angiogenesis models.
A modified PGC1α that only binds to ERRα was used to induce VEGF expression in MDA-
MB231 and MCF7 breast cancer cells, and this effect was abolished with ERRα knockdowns.
A main ERRE was located within the transcribed region of the VEGF gene [61]. The positive
regulation of VEGF by ERRα has also been observed in human breast tumors and in murine
models [62], supporting that VEGF is a direct transcriptional target of ERRα in cancer, as in
other cell types.

In summary, ERRα overexpression enhances the hypoxia response in solid tumors.
It is likely that ERRα functions as an aggressiveness factor in cancer because it prepares
cancer cells to resist metabolic stress and hypoxia. ERRα has been observed as active in
immunosuppressive and immunoresistant tumors [87]. Cancer models have pointed to
HIF-dependent mechanisms such as the physical interaction between ERRα/HIF-1α, as
well as HIF-independent mechanisms such as direct VEGF modulation by ERRα.

4.5. ERRα and Kidney Hypoxia

Organs with high energy demand such as the brain, heart and kidney have low tol-
erance to hypoxia and are good models to evaluate ERRα’s effects. Physiological oxygen
gradients across the renal cortex and medulla participate in the mechanisms to concentrate
urine [88,89]. The healthy human kidney cortex presents around 50 mmHg of oxygen pres-
sure, while the medulla has much lower oxygen pressures between 10 and 20 mmHg [88].
Keppner et al. recently evaluated the transcriptome during hypoxia (24 h at 0.2% O2)
of the cortical kidney murine cell line mCCD(cl1) [89]. They found over 3000 differen-
tially expressed genes, many related to aerobic metabolism and ATP production through
mitochondria, and the hypoxia response was mainly driven by HIF-1 and not HIF-2. In-
terestingly, they knocked down ERRα and identified a reduced expression of some genes
that typically function in hypoxia, such as EGLN3 (an alpha-ketoglutarate dependent hy-
droxylase that controls cell proliferation and transcription upon hypoxia) and SERPIN1
(plasminogen activator inhibitor-1, involved in the control of blood clotting) [89]. Since this
regulation happened without a change in HIF-1α, the model suggests that ERRα controls
the expression of specific genes important for the hypoxia response.

4.6. Hypoxia in the Invertebrate Fly Model

D. melanogaster is tolerant to oxygen starvation and can survive hypoxia for long
periods of time. As in humans, the hypoxia response is importantly mediated by HIF (called
sima in D. melanogaster); thus, D. melanogaster has been a study model for hypoxia [90] and
represents an invertebrate model with a recognizable ERR. Li et al. showed that, in addition
to HIF, the single ERR present in flies (called dERR) is necessary for the hypoxic response
in D. melanogaster, since less than 25% of dERR mutant flies survived hypoxia [91]. Using
single and double dERR and dHIF-1α mutants, they described genes sets that are important
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for hypoxia response and detected a subset of 282 dERR-dependent transcripts that are
HIF-independent and whose expression changed in hypoxia, such as Pgi, Pfk, GAPDH2
and LDH [90]. This work suggests that the dERR has a prominent HIF-independent role in
hypoxia adaptation, particularly via the upregulation of glycolytic enzymes.

Additionally, dERR was found to bind dHIF and participate in the HIF-mediated
expression of its subset of genes [91]. The binding was shown by two hybrid screen and
GST pull-downs and required dHIF’s residues 1289–1293 (LKNLL) and dERR’s LBD [91],
in accordance to what Zou et al. described in cancer cells [85].

5. Conclusions

HIF-1 is the transcription factor usually considered the main regulator of the hypoxia
response. However, ERRα, a cellular metabolism regulator, also plays a key role in hypoxia
survival, in models ranging from invertebrates to vertebrates and in physiological and
pathological scenarios. ERRα’s functions in hypoxia in most models include two mecha-
nisms: (1) direct ERRα/HIF-1 interaction, which enhances HIF-1′s transcriptional activity
at HREs (possibly without ERRα’s direct interaction with DNA); and (2) transcriptional
activation by ERRα of genes that are classical HIF-1 targets, such as VEGF or glycolytic
enzymes. The second mechanism can even happen in a HIF-1 independent manner that
depends on ERREs coexisting with HREs.

ERRα is thus gaining recognition for its prominent role in the hypoxia response, both
in the presence and absence of HIF-1. In many models, ERRα prepares cells for hypoxia,
with important clinical/therapeutical implications and perspectives that could allow for
the manipulation of tissues so they are pre-adapted to resist hypoxia or where ERRα is
inhibited to hinder this adaptation. This is important, as hypoxia is central to numerous
diseases with significant human mortality and high costs, such as cancer, cardiovascular
and pulmonary disease, stroke, bacterial infections, inflammation, disorders related to
prematurity and wound healing.

ERR’s expression and activity are conserved from Urochordates to mammals, suggest-
ing that the ERR-mediated response to hypoxia appeared early in evolution. Phylogenetic
exploration of the ERR-HIF interaction warrants more interrogation, with the potential to
yield insights into its mechanisms and how they evolved.

Despite the many models that have described ERRα as responding to ischemia, it is
unknown if ERRα may directly sense oxygen. No mechanism for direct oxygen sensing by
ERRα has been described. Alternatively, ERRα’s activation upon ischemia/hypoxia may
arise from the metabolic signals derived from ischemia or through HIF-1 stimulation. Protein
tyrosine phosphatase 1B (PTP1B) and Parkin have also been shown to, respectively, decrease
and increase the transcriptional activity of ERRα in hypoxia models (pancreatic islets [92] and
HeLa cells [93]); thus, other pathways and layers for ERRα modulation likely exist.
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