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Abstract: For practical applications of superconductors, understanding the vortex matter and dy-
namics is of paramount importance. An important issue in this context is the transition of the vortex
glass, which is a true superconducting phase, into a vortex liquid phase having a linear dissipation.
By using multi-harmonic susceptibility studies, we have investigated the vortex glass—vortex liquid
phase transitions in CaKFe4As4 and BaFe2(As0.68P0.32)2 single crystals. The principle of our method
relates the on-set of the third-harmonic susceptibility response with the appearance of a vortex-glass
phase in which the dissipation is non-linear. Similar to the high-critical temperature cuprate supercon-
ductors, we have shown that even in these iron-based superconductors with significant lower critical
temperatures, such phase transition can be treated as a melting in the sense of Lindemann’s approach,
considering an anisotropic Ginzburg-Landau model. The experimental data are consistent with a
temperature-dependent London penetration depth given by a 3D XY fluctuations model. The fitting
parameters allowed us to extrapolate the vortex melting lines down to the temperature of liquid
hydrogen, and such extrapolation showed that CaKFe4As4 is a very promising superconducting
material for high field applications in liquid hydrogen, with a melting field at 20 K of the order of
100 T.

Keywords: vortex glass; Lindemann melting; anisotropic superconductors; pnictides; vortex melting
line; multi-harmonic susceptibility

1. Introduction

The discovery of superconductivity in cuprates at much higher critical temperatures
Tc than in the classical superconductors (metals, inter-metallic compounds or alloys) raised
the fundamental question regarding the influence of thermally-activated processes in these
new materials, given the much larger thermal energy kBT. It has long been recognized that
defects (disorder) that act as flux pinning centers in the mixed state of type-II superconduc-
tors destroy the translational long-ranged order (TLRO) of the Abrikosov flux lattice [1] and
lead to an extremely low voltage due to vortex creep at small currents [2]. Since disorder
destroys the TLRO, the question of the existence of a sharp equilibrium phase boundary
separating the normal phase at low temperatures and magnetic fields H (but H larger
than the lower critical field Hc1) arises. The original Anderson-Kim theory [2], although
predicting a strong crossover from fast to slow dynamics upon cooling, gives no sharp
phase boundary since. Even at low T, a nonzero (flux flow) resistance is predicted, as in
the normal phase (but obviously having a much smaller value). However, in a seminal
paper [3], M.P.A Fisher argued that in bulk disordered systems there is a sharp equilibrium
phase boundary below which exists a new thermodynamic phase, namely a vortex-glass
(VG) superconducting state. In certain systems (granular superconductors) and in certain
conditions, mean-field theoretical treatment led to a glass phase similar to an XY spin-
glass [4]. Fisher, Fisher, and Huse [5] provided a consistent and comprehensive theoretical
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treatment, backed by various experimental proofs, on the thermal fluctuations, quenched
disorder, phase transitions, and transport in type-II superconductors. They argued that a
vortex-glass phase may occur with vanishing resistivity and long-range phase coherence,
with a nontrivial spatial structure reflecting the positions of the randomly pinned vortices.
This ordering into a specific nontrivial arrangement determined by the particular details of
the quenched disorder in the system is very analogous to the magnetic order that occurs in
a spin glass (hence the name vortex glass). The vortex glass phase is most conveniently
described through its response: as the current J goes to zero the barriers inhibiting vortex
motion U diverge as Uc(Jc/J)µ, and the vortex velocity v ∝ exp[−U(J)/T] goes to zero
in a singular manner (Uc and Jc represent some characteristic values of the barrier and
current). The glass exponent µ describing the divergence of the barriers is a characteristic
quantity of the vortex phase. As the temperature is raised, increased thermal fluctuations
will cause the vortex glass phase to disorder (melt) into a vortex fluid/liquid (VL) phase at
a temperature lower than the mean-field transition, wherein the superconductor becomes
normal. The vortex liquid phase is a fully disordered phase that is not separated from the
normal phase by a true phase transition. They should be connected by a smooth cross-over,
the true phase transition being the one between the vortex glass and the vortex fluid at a
temperature-dependent melting field BM(T).

A decade later, C. Reichhardt and co-authors [6] suggested that in some systems vortices
freeze in the same way as window glass, and introduced the vortex molasses (VM) scenario
based on numerical simulations (the main difference being the dependence of resistivity
at the transition). Their work was ignited by some experimental results on un-twinned
YBa2Cu3O7-x single crystals, very “clean” thus without strong pinning centers. Our samples
are known to have a large density of strong pinning centers and, in addition, in both VG
and the newly-proposed VM, the dissipation is non-linear, so our method stands.

The VG-VL melting transition can be treated using the Lindemann melting approach,
where the thermally driven disorder of the vortex solid (lattice, or glass in the presence of
quenched disorder) can be quantified by the Lindemann index, which is a mean-square
displacement of a vortex line in a system composed of N vortices per unit surface per-
pendicular to the applied field with separation between them being rij (i, j from 1 to N,
i 6= j):

qi =
1

N − 1 ∑j 6=i

√
〈r2

ij〉 −
〈
rij
〉2〈

rij
〉 (1)

where angle brackets indicate a time average. The global Lindemann index q is a system
average, and the system melting is considered to occur at a certain temperature where
q deviates from linearity, or increases above a threshold value, which in the classical,
empirical theory of melting is taken as cLa0, with a0 being the lattice spacing (or the average
distance between near-neighbors in glasses) and cL is the Lindemann number (usually chosen
to be a constant between 0.1 and 0.3). In the case of high-temperature superconductors,
cL ≈ 0.12–0.15 gave results consistent with various experiments, and, most importantly, the
“lattice spacing” depends on the applied magnetic field B as a0 ≈ (φ0/B)1/2, with φ0 being
the magnetic flux quanta.

The fact that the vortex glass melting line in the temperature-field space diagram
separates the true superconducting phase (suitable for practical applications) from the
dissipative liquid phase makes this line a paramount property of various superconducting
materials. The aim of this work is to determine the vortex glass—vortex liquid melting line
in single crystals of two of the most important iron-based superconductors, discovered quite
recently, by using a straight-forward method that implies multi-harmonic susceptibility
response of the material to an AC magnetic field excitation superimposed on a high DC
magnetic field, an original method developed first for Tl-based high-temperature cuprate
superconductors [7]. To our knowledge, such measurements were not described so far for
iron-based superconductors, so this work also aims at checking if our method is suitable
for iron-based superconductors.
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2. Materials and Methods

CaKFe4As4 single crystals were synthesized in AIST Tsukuba, Japan, via the self-
flux method using FeAs, the preparation being described in detail in [8]; they are thin
square discs, having the typical dimensions a ≈ 1.2 mm, b ≈ 1.2 mm and c ≈ 0.04 mm.
The BaFe2(As0.68P0.32)2 single crystals analysed in this work have been grown by the
Ba2As3/Ba2P3-flux method [9] at the Institute of Physics, Chinese Academy of Sciences;
they are also square-shaped, with dimensions a ≈ 1.7 mm, b ≈ 1.7 mm and c ≈ 0.05 mm.
Depending on the growth conditions, the amount of P in the BaFe2(As1-xPx) single crystals
can be between x = 0.21 (heavily under-doped) and x = 0.64 (heavily over-doped). It was
shown that the optimum doping, resulting in the largest critical temperature of 29 K, is with
P content corresponding to x = 0.3. BaFe2(As0.68P0.32)2 sample studied here is a slightly
over-doped sample with a critical temperature of 27.8 K.

The multi-harmonic AC susceptibility studies were performed using a commercial
Quantum Design Physical Property Measurement System (PPMS), with frequencies up
to 10 kHz and AC field amplitudes up to 16 Oe, in DC fields up to 14 T in the case of
CaKFe4As4 single crystal, or up to 7 T in the case of BaFe2(As0.68P0.32)2 single crystal. In
all of the experiments reported here, the applied field (both DC and AC) is parallel to the
c-axis (perpendicular to the largest plane a–b) of the single crystals.

3. Results

The principle of our method comes from the very basic properties of vortex matter de-
scribed in the introduction: in the VG state below the field-dependent melting temperature
Tm(B), the electric field response (dissipation) to a current density J is strongly nonlinear, of
the form E(J) ~ exp[−(JT/J)µ], where JT is a characteristic current density and µ≤ 1. Exactly
at Tm(B) the current-voltage characteristic is a power law, and, finally, for T > Tm(B) (in
the VL state), there is an ohmic behavior E(J) ~ J for sufficient low current levels. The first
method to determine the VG-VL transition was through measurements of current-voltage
(I-V) characteristics at extremely low dissipation levels, usually by using a very sensitive
pico-voltmeter, at a large number of temperatures around the melting temperature Tm in a
fixed DC applied field. Double-logarithmic plot of I-V curves shows downward curvatures
for temperatures smaller than Tm, upward curvatures for temperatures higher than Tm (at
low voltage levels), and a straight line (in the double logarithmic plot), i.e., a power-law
relation of the form V(I, T = Tm) ∝ I(z+1)/(d−1) where z is the dynamical exponent of the VG
and d is the dimensionality [5]. However, this method is very difficult to employ, since it
requires ultra-sensitive voltmeter and exceptional contacts with very low resistivity for
the transport measurements. For these reasons, contact-less magnetic measurements are
highly desirable. In a solid sample immersed in a magnetic field having the strength H
there will be a magnetic flux density B. If the solid has also magnetic properties, there will
be the sample magnetization M = χH, where χ is the magnetic susceptibility of the sample,
so magnetic flux density will be B = µ0(1 + χ)H with µ0 being the magnetic permeability
constant. If the magnetic field is a periodic function, then magnetization can be expressed
in a Fourier expansion. For a function f which is periodic with the period 2π, Fourier
expansion is:

f (t) =
1
2

a0 + ∑∞
n=1[an cos nt + bn sin nt], (2)

where an = 1
π

∫ π
−π f (t) cos nt dt and bn = 1

π

∫ π
−π f (t) sin nt dt are the Fourier coefficients.

In our case, the Fourier expansion of the time-dependent magnetization M(2πf 1t) of
the sample, in a magnetic field H(2πf 1t) = HDC + hACcos(2πf 1t) takes the form

M(2π f1t) = χ0HDC + hAC ∑n

[
χ′ncos(2πn f1t) + χ

′′
nsin(2πn f1t)

]
(3)

where f 1 is the fundamental frequency of the excitation AC magnetic field while χ’n and
χ”n are the in-phase and out-of-phase components of the harmonic susceptibility, with
n = 1, 2, 3, etc., and represents the Fourier coefficients of the magnetization. The first term in
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Equation (3), χ0HDC is an offset by the DC magnetic field. Figure 1 shows the temperature
dependence of the terms of the complex susceptibility of the CaKFe4As4 single crystal
from Equation (3), χ’n and χ”n, for n = 1, 2, and 3, in a DC field of 3 T, measured with an
excitation AC field with amplitude of 1 Oe and frequency of 10 kHz.
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10−4 emu/Oe, practically constant just below the critical temperature Tc, the sample enter-
ing the superconducting state which is generated by the shielding supercurrents. The fun-
damental out-of-phase susceptibility has a sharp peak around Tc, with a peak value of 
about 2 × 10−5 emu/Oe, and is proportional to the dissipation. The in-phase second har-

Figure 1. Temperature dependence of in-phase (χ’) and out of phase (χ”) susceptibility of CaKFe4As4,
from top to bottom: fundamental (n = 1), second harmonic (n = 2) and third harmonic (n = 3),
displayed in emu/Oe, measured in the conditions shown in the figure (µ0HDC = 3 T, hAC = 1 Oe,
f = 10 kHz).

In the first panel, representing the fundamental in-phase susceptibility response, a
very sharp superconducting transition can be seen, with a diamagnetic response of about
10−4 emu/Oe, practically constant just below the critical temperature Tc, the sample en-
tering the superconducting state which is generated by the shielding supercurrents. The
fundamental out-of-phase susceptibility has a sharp peak around Tc, with a peak value
of about 2 × 10−5 emu/Oe, and is proportional to the dissipation. The in-phase second
harmonic is almost constant below Tc, 4 × 10−8 emu/Oe, while the out-of-phase second
harmonic is practically just noise. The in-phase and out-of-phase third harmonic susceptibil-
ity display sharp features near Tc, in the range of 5 × 10−7 emu/Oe. Fabbricatore et al. [10]
performed a comprehensive theoretical and experimental work on the effects of vortex
dynamics on higher harmonics of AC susceptibility in type-II superconductors. For the
purpose of our study, the most important result of their work is that the odd harmonics (e.g.,
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third harmonics in our case) is generated only by nonlinearity in the current-voltage curves
which means that, if the out-of-phase fundamental susceptibility is the measure of the total
dissipation, the third harmonic susceptibility is the measure of the nonlinear dissipation
only. The even harmonic (second harmonic in Figure 1) is a measure of non-symmetries,
which may arise if the DC field and AC excitation field are not perfectly parallel, if the
single crystal’s c-axis is not perfectly parallel with the magnetic field(s), or if the single
crystal itself is not symmetric.

To distinguish between the on-set of the non-linear dissipation and the on-set of the
total dissipation, one has to look very close to the transition temperature, and to perform
a zoom very near those on-sets. Figure 2 shows such zoom for the two different single
crystals, in a DC field of 7 T.
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Figure 2. Temperature dependence of the out-of-phase fundamental susceptibility and of the module
of the third harmonic, in a DC field of 7 T, near the transition temperature, zoomed at very low
dissipation levels, for the: (a) CaKFe4As4 single crystal using an excitation field of amplitude 1 Oe
and frequency 10 kHz; and (b) BaFe2(As0.68P0.32)2 single crystal using an excitation field of amplitude
0.05 Oe and frequency 10 kHz. A much smaller AC excitation field amplitude was used because this
single crystal has a much smaller critical current density.

In both panels of Figure 2 it can be clearly seen that the on-set of the third harmonic
susceptibility, marked with an arrow in the figure, appears at a temperature Tm(HDC),
field-dependent vortex melting temperature, lower than the on-set temperature of the fun-
damental out-of-phase susceptibility (which is actually the critical temperature Tc(HDC) for
the DC field of 7 T, or, in other words, 7 T is the upper critical field at the temperature where
onset of χ” appears). It can also be seen that, at 7 T, the difference in the two temperatures,
Tc(HDC) − Tc(Hm) is smaller for the 1144 single-crystal (about 0.4 K) than for the 122 single
crystal (>1 K).

Between the two temperatures, Tm(HDC) and Tc(HDC) there is the vortex liquid phase,
where there is only linear dissipation, while below Tm(HDC) there is also non-linear dissipa-
tion, hence there is vortex glass. Repeating such measurements for many more applied DC
fields, the vortex glass—vortex liquid melting line can be constructed, either as Tm(B), with
B = µ0HDC, or as Bm(T). Inserts in Figure 3 show the Bm(T) experimental points (full black
squares) for the two single crystals, while the same symbols in the main panels represent
the ln(Bm) vs. T experimental data. The meaning of the lines in Figure 3 will be addressed
in the next section.
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4. Discussion

Analysis of the melting transition in type-II anisotropic superconductors, subjected
to an applied DC field with arbitrary orientation, in the framework of an anisotropic
three-dimensional (3D) Ginzburg-Landau rescaling approach [11] gives the following
temperature dependence of the melting field:

Bm(T) =
C2c4

Lφ5
0

(kBT)2λ4
abγ(cos2α + γ2sin2α)

1/2 , (4)

where C ≈ 1/4π2 is a constant, cL is the empirical Lindemann parameter, φ0 is the magnetic
flux quanta, λab is the penetration depth along the (a,b) plane, γ is the anisotropy factor, and
α is the angle between the applied magnetic field lines and the (a,b) plane. For our single
crystals and with the experimental setup used, α = π/2, cosα = 0, sinα = 1, and Equation (4)
becomes

Bm(T) =
C2c4

Lφ5
0

(kBT)2λ4
abγ2

(5)

It can be seen that the melting field depends on temperature from two sources, the
thermal activation energy kBT, and the temperature-dependent penetration depth λab.
Regarding the temperature dependence of the in-plane penetration depth λab, there are
currently three different models: (i) critical behavior of the 3D XY model [12] which
predicts λab(T) = λab(0)(1 − T/Tc)−1/3; (ii) mean-field approximation with λab(T) = λab(0)(1
− T/Tc)−1/2; and (iii) two-fluid model [13] which predicts λab(T) = λab(0)[1 − (T/Tc)4]−1/2.
In the main panels of Figure 3 are shown the one-parameter fits of the experimental data
with Equation (5), for the two single crystals: 3D XY model (red full lines), mean field
model (blue dash lines), and two-fluid model (green dash dot lines). It can be clearly seen
that the best fit is with the 3D XY model.

As mentioned before, such experiments and analysis were performed on cuprate su-
perconductors, especially those grown by high-pressure synthesis (mostly metastable super-
conductors that cannot be produced as large single crystals or epitaxial thin films), for esti-
mations of the anisotropy factors. The first work [7] studied the TlBa2Ca2Cu3O10-y, and, for
comparison and proof-of-principle of the new technique, the well-known and most studied
YBa2Cu3O7-δ. For both materials, the experimental results were best fitted (one-parameter
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fit) using the λab(T) dependence given by the critical behavior of the 3D XY model. However,
later on it was found that the 3D XY model is not the best for all cuprates. A first exam-
ple was provided by (Cu0.6C0.4)Ba2Ca3Cu4Oy [(Cu,C):1234] and (Cu0.5C0.5)Ba2Ca2Cu3Oy
[(Cu,C):1223] multi-component cuprates having various carrier concentrations obtained by
annealing in flowing nitrogen gas in various conditions. It was shown [14] that the vortex
melting lines of all (Cu,C):1223 samples and of optimum-doped (Cu,C):1234 were well
described by the two-fluid model. Overdoped (Cu,C):1234 proved to have an anomalous
melting line which was explained by a significant opening of a second superconducting
gap due to CuO2 outer planes at a temperature lower than the critical one, where the first
superconducting gap due to inner planes opens. Two-fluid model was successful in de-
scribing the vortex melting lines of Hg-based multi-layer (n = 3, 4, 5) and super-multi-layer
cuprates (n ≥ 6) HgBa2Can−1CunOy [15], and in a series of cuprates with F-substitution
at apical oxygen site, Ba2Ca3Cu4O8(O1−yFy)2 (2y = 2) and Ba2CaCu2O4(O1−yFy)2 (2y =
1.3, 1.6, 2) [16]. A further investigation of Ba2Ca3Cu4O8(O1−yFy)2 samples with different
fluorine content [17] showed that the heavily underdoped sample (2y = 2) is described
by the two-fluid model, as previously mentioned, the underdoped sample (2y = 1.6) is
described by the mean-field model, while the near-optimally doped sample (2y = 1.3) is
better described by the 3D XY model.

The one-parameter fit of the vortex melting line of CaKFe4As4 single crystal in Figure 3a
with the temperature dependence of the penetration depth given by the 3D XY model
was performed using a Lindemann parameter cL = 0.12, critical temperature Tc = 36 K
(as resulted from our measurement), and λab(0) = 208 nm as determined from muon-spin
rotation measurements [18], with the resulting fit parameter being the anisotropy factor
γ = 2.11 in perfect agreement with other types of measurements reported in the literature.
In the case of the similar fit of the vortex melting line of the BaFe2(As0.68P0.32)2 single
crystal in Figure 3b, cL = 0.12, critical temperature Tc = 27.8 K, but the possible value of
λab(0) needs further attention. The first results on the BaFe2(As1-xPx)2 system determined
λab(0) = 108 nm [19], but most likely the samples studied and reported there were not very
close to x = 0.3, where a work by Hashimoto et al. [20] demonstrated the existence of a
sharp peak of λab(0), (≈300 nm) at optimum composition (x = 0.3) in BaFe2(As1-xPx)2, most
likely due to the closeness of a Quantum Critical Point. Carefully studying the data in [8]
allowed us to estimate a reasonable value for λab(0) in the case of our slightly over-doped
single crystal (x = 0.32) to be around 250 nm. With this value, the resulted fitting parameter
is γ = 4.5, a quite reasonable value.

Let’s now extend our discussion to the possible practical applications of these new
superconducting materials. Considering the increased interest in a clean, sustainable hydrogen-
based economy, in which liquid hydrogen will be an abundant, cheap, energy vector, possible
applications of superconducting materials at 20 K are becoming very attracting. Based
on the experimental data and the best fits, we have extrapolated the vortex melting lines
towards T = 20 K, using the fitting parameters described above, to have an idea about
how large the melting (irreversibility) field may be at liquid hydrogen temperature. The
extrapolation is shown in Figure 4, showing a huge Bm(20 K) of about 250 T.

It can be clearly seen that, unlike BaFe2(As0.68P0.32)2 which has a critical temperature of
28.5 K and a reasonably high melting field at 20 K (<20 T), CaKFe4As4 is a very remarkable
and promising material for high-field applications in liquid hydrogen, with a critical
temperature of 36 K. However, a closer look at the main panel of Figure 3a shows that at
lowest temperature the full red line goes above the experimental point, and, considering
the range of extrapolation, more reasonable value of Bm(20 K) is probably around 100 T,
which is a very large value for most conceivable practical applications.
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5. Conclusions

In conclusion, we have investigated the vortex glass—vortex liquid phase transitions in
two representative single crystals from the 1144 and 122 families of newly-discovered iron-
based superconductors, namely CaKFe4As4 and BaFe2(As0.68P0.32)2. We have employed
for our studies multi-harmonic AS susceptibility measurements with the samples subjected
to a superposition of high DC magnetic fields and AC excitation magnetic field, using
commercial Quantum Design MPMS systems. The magnetization response of the samples
in the periodic field was written as Fourier expansion, with the Fourier exponents being
the in-phase and, respectively, out-of-phase multi-harmonic susceptibility. The MPMS
system can record up to the 9th harmonic, but for this study we have employed only
up to the third harmonic. The principle of our method is based on the fundamental
properties of vortex glass, namely the strongly non-linear dissipation, unlike the linear
dissipation that occurs in the vortex liquid phase. As for the susceptibility response, the
out-of-phase fundamental susceptibility is a measure of total dissipation, linear plus non-
linear, while the third harmonic is a measure of non-linear dissipation only. By determining
the temperature where the on-set of the third harmonic occurs, at a given DC field, we
were able to construct the vortex glass vortex liquid melting lines for the two single crystals.
Theoretical and numerical analysis allowed us to conclude that our method is suitable
also for iron-based superconductors; to determine that the temperature-dependence of
the London penetration depth suitable for our samples is given by the model of 3D XY
fluctuations; and to determine the anisotropy factors, which are in good agreement with
other methods in the literature. From a practical point of view in terms of high-field
applications at liquid hydrogen temperature, extrapolated values of the melting field are
about 20 T for the 122 crystal, and of the order of 100 T, (considering the much larger
domain of our speculative extrapolation, hence much larger errors), for the 1144 crystal.
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