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Abstract: More than 80,000 new cases of bladder cancer are estimated to be diagnosed in 2023. 

However, the 5-year survival rate for bladder cancer has not changed in decades, highlighting the 

need for prevention. Numerous cancer-causing mutations are present in the urothelium long before 

signs of cancer arise. Mutation hotspots in cancer-driving genes were identified in non-muscle-

invasive bladder cancer (NMIBC) and muscle-invasive bladder cancer (MIBC) tumor samples. 

Mutation burden within the hotspot regions was measured in normal urothelium with a low and 

high risk of cancer. A significant correlation was found between the mutation burden in normal 

urothelium and bladder cancer tissue within the hotspot regions. A combination of measured 

hotspot burden and personal risk factors was used to fit machine learning classification models. The 

efficacy of each model to differentiate between adjacent benign urothelium from bladder cancer 

patients and normal urothelium from healthy donors was measured. A random forest model using 

a combination of personal risk factors and mutations within MIBC hotspots yielded the highest AUC 

of 0.9286 for the prediction of high- vs. low-risk normal urothelium. Currently, there are no effective 

biomarkers to assess subclinical field disease and early carcinogenic progression in the bladder. Our 

findings demonstrate novel differences in mutation hotspots in NMIBC and MIBC and provide the 

first evidence for mutation hotspots to aid in the assessment of cancer risk in the normal urothelium. 

Early risk assessment and identification of patients at high risk of bladder cancer before the clinical 

presentation of the disease can pave the way for targeted personalized preventative therapy. 

Keywords: urothelium; mutation hotspot; clonal mutations; carcinogenesis; bladder cancer; 

machine learning 

 

1. Introduction 

In 2023, there will be an estimated 82,290 new cases of bladder cancer, with an 

estimated 16,0 deaths, in the United States [1]. The most common clinical presentation of 

bladder cancer at the time of diagnosis is visible hematuria [2]. At diagnosis, cancers are 

classified as non-muscle-invasive bladder cancer (NMIBC) or muscle-invasive bladder 

cancer (MIBC). Most bladder cancers are NMIBC and are treated by resection with 

cystoscopy, with or without intravesical immuno- or chemotherapy. The current 

treatment regimens often cause a considerable physical, psychological, and economic 

burden. The costs for 5-year NMIBC surveillance range from $50,000 for low-risk patients 

to over $350,000 for high-risk patients [3]. More advanced stages of bladder cancer, such 

as MIBC, often require more aggressive treatments, including cystectomy combined with 
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radiation or chemotherapy [4,5]. Despite advances in oncology, the 5-year survival rate 

for bladder cancer has not changed in the last 20 years [1], highlighting the need for new 

strategies in bladder cancer prevention. 

Exposure to carcinogens is the highest risk factor for bladder cancer. The most 

common carcinogen exposures are tobacco and lifetime exposure to chemical byproducts 

[2,6]. The incidence of bladder cancer also increases with age [2,7]. Carcinogenesis is 

initiated long before the first clinical signs of cancer arise and requires the accumulation 

of multiple cancer-driving mutations [8]. Thus, similar to other carcinogen-exposed 

organs, clinically normal-appearing urothelium harbors numerous genomic mutations 

[9,10]. Several studies have found a positive selection of mutations in various genes, 

including MLL2, KDM6A, ARID1A, and RBM10 [9,10]. 

Many studies have highlighted the mutational vulnerability of specific genomic 

regions within cancer-driving genes [11–13]. The regions more sensitive to mutations are 

referred to as mutation hotspots. Numerous hotspots related to bladder cancer diagnosis 

and prognosis have been identified, including hotspots in TERT [14–16], TP53 [17,18], 

PIK3CA [15,17,18], and FGFR3 [14,15,18]. A study comparing mutation hotspots among 

various stages of bladder cancer revealed an association of TP53 mutations in more 

aggressive disease subtypes [15]. The presence of mutations at multiple hotspots has also 

been validated in normal urothelium [16,17], again supporting the occurrence of 

mutations before the manifestation of bladder cancer. Our previous publication shows 

mutation enrichment in normal epidermis within mutation hotspots of cutaneous 

squamous cell carcinoma [19]. However, no studies thus far provide a comprehensive 

comparison between highly mutated genomic regions of bladder cancer and normal 

urothelium. Although most cancer driver mutations cluster at hotspots, studies showing 

the utility of bladder cancer hotspot mutation analysis to predict cancer risk are lacking. 

Our work shows how mutation burden can help predict carcinogenic risk in clinically 

normal urothelium with no noticeable signs of disease. These findings provide data for 

the future development of genomic assays for individualized bladder cancer risk 

assessment and targeted bladder cancer prevention. 

2. Results 

2.1. Overlap between Highly Mutated Genomic Regions in MIBC and NMIBC 

We have developed a software tool, hotSPOT, that locates genomic regions with high 

mutation frequency [20]. Somatic mutation datasets for IMPACT targeted sequencing of 

103 NMIBC samples (MSK Eur Urol 2017) [21], and whole-exome sequencing of 409 MIBC 

samples (TCGA, 2017) [22] were run through hotSPOT as discovery cohorts to identify 

highly mutated genomic regions in both cancer sub-types. For unbiased comparison 

between the NMIBC and MIBC datasets, mutations considered from the all datasets were 

limited to the exome regions included in the MSK-IMPACT sequencing panel, which 

includes 5080 exons from 341 genes, covering a total of 922,349 bp [23]. HotSPOT was used 

to locate and rank genomic segments of 100 bp size containing one or more mutations. For 

each dataset, 10% of all segments containing the most mutations were ranked. Panels of 

the top 10% most mutated regions in NMIBC consisted of 105 segments (NMIBC10), and 

in MIBC consisted of 369 segments (MIBC10). The difference in segment quantity between 

NMIBC10 and MIBC10 is likely due to the increased number of available MIBC samples. 

There was no statistical difference in mutation frequency between the NMIBC and MIBC 

samples (p = 0.105, Wilcoxon Rank Sum Test). Several genomic areas contained large 

clusters of mutations, and, therefore, were covered by multiple genomic segments. A total 

of 44 genomic regions overlapped between the NMIBC10 and MIBC10 panels. There were 

61 genomic regions unique to NMIBC10 and 322 regions unique to MIBC10. A panel of 

combined genomic regions from NMIBC10 and MIBC10 was also generated to represent 

the top 10% mutated regions in both types of bladder cancer (BC10). The obtained BC10 

panel contained 427 unique genomic regions (Figure 1, Supplementary Figure S1). 
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Figure 1. Schematic overview of the establishment of NMIBC and MIBC hotspot panels. 

NMIBC10 and MIBC10 panels cover large genomic regions (10,500 bp and 36,900 bp, 

respectively), making it necessary to develop a refined list of genomic segments 

representing the most mutated regions of NMIBC and MIBC. Mutation frequency per 

sample was measured in each genomic segment separately for NMIBC and MIBC. One-

way ANOVA was performed for each segment to compare the mutation count in bladder 

cancer samples amongst all other 100 bp regions within the ranked list. A Tukey HSD test 

was used to identify all regions that captured significantly more mutations than the 

majority of lower-ranked regions. This resulted in a final hotspot panel of 4 hotspots in 

NMIBC and 13 hotspots in MIBC (Figure 1). The 4 hotspots found in the NMIBC dataset 

were also present in the MIBC hotspot panel. 
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2.2. Correlation of Mutated Genomic Regions in Bladder Cancer and Normal Urothelium 

To be�er understand the similarities between highly mutated regions in NMIBC and 

MIBC, we calculated the number of mutations captured in MIBC10 regions in both the 

NMIBC and MIBC datasets. We found a significant correlation (p < 0.0001), indicating that 

the mutation burden of individual genomic regions as measured with the MIBC10 panel 

was similar in both datasets. The same analysis using NMIBC10 regions also found a 

significant correlation (p < 0.0001) between the mutation numbers of the hotspot areas in 

the two different bladder mutations datasets (Figure 2A). These findings demonstrate that 

mutations are enriched in many common genomic regions in both NMIBC and MIBC. 

 

Figure 2. Comparison of mutation burden within bladder cancer hotspots (A) Pearson correlation 

between mutation frequency of NMIBC and MIBC within NMIBC10 and MIBC10 panels. (B) 

Pearson correlation between mutation frequency of NMIBC and MIBC combined and normal 

urothelium (NU) within BC10 regions. (C) Pearson correlation between mutation frequency of MIBC 

and low-risk NU, MIBC, and high-risk NU within MIBC10 (D) Pearson correlation between 

mutation frequency of NMIBC and low-risk NU, NMIBC, and high-risk NU within NMIBC10. (E) 
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Pearson correlation between mutation frequency of low-risk NU and high-risk NU within MIBC10 

and NMIBC10, respectively. 

We also assessed whether genomic regions frequently mutated in bladder cancer are 

also frequently mutated in normal urothelium and how the mutation burden in normal 

urothelium is associated with an individual’s risk of cancer. Previous studies have 

identified genomic hotspots in bladder cancer [15,17,18] and normal urothelium [14,16]. 

However, a robust comparison between the genomic hotspots in bladder cancer and 

normal urothelium is lacking. Furthermore, it is not known if hotspots can be used to 

identify individuals who are at a high or low risk of developing bladder cancer based on 

mutation burden in the clinically normal-appearing urothelium. To understand the 

similarities of highly mutated genomic regions in bladder cancer and clinically normal 

urothelium, mutation frequency was compared between normal urothelium samples from 

both healthy donors and bladder cancer patients vs. NMIBC and MIBC samples using 

BC10. Based on this analysis, a significant correlation (p < 0.0001) was found between the 

mutation frequency in BC10 genomic regions from normal urothelium and bladder cancer 

samples (Figure 2B). 

A previous study that compared normal urothelium from donors with a history of 

bladder cancer (high risk of bladder cancer) showed an increase in mutations per exome 

compared with those with no history of bladder cancer (low risk of bladder cancer) [9]. 

Therefore, we hypothesized that highly mutated regions in high-risk samples showed a 

higher correlation with mutated regions in bladder cancer. Two publicly available whole-

exome sequencing datasets of normal urothelium were identified to compare the mutation 

rate of hotspots in samples with low- and high-risk bladder cancer [9,10]. The low-risk 

normal urothelium cohort was comprised of 483 samples from post-mortem donors with 

no history of cancer from Lawson et al. [9]. The high-risk normal urothelium cohort 

included normal urothelium collected from individuals with bladder cancer during the 

time of cystectomy or nephroureterectomy, including 72 samples from Lawson et al. [9] 

and 161 samples from Li et al. [10]. 

To compare the mutation landscape between bladder cancer and high- or low-risk 

normal urothelium, the correlations were calculated between MIBC vs. low-risk normal 

urothelium and MIBC vs. high-risk normal urothelium within the MIBC10. A significant 

correlation was found for both comparisons; however, the correlation was more robust in 

the comparison between high-risk normal urothelium and MIBC samples (R = 0.425 vs. R 

= 0.140) (Figure 2C). In parallel, we calculated the correlation between NMIBC vs. low-

risk normal urothelium and NMIBC vs. high-risk normal urothelium within the NMIBC 

mutated regions. However, a significant correlation was only found between NMIBC and 

high-risk normal urothelium (p < 0.001) (Figure 2D). 

To determine whether the highly mutated regions in high- and low-risk urothelium 

are similar, the correlation of mutation burden between high- and low-risk normal 

urothelium within the NMIBC10 and MIBC10 genomic regions was calculated. No 

significant correlation was found within either of the genomic panels. Based on both 

panels, hotspots in KDM6A and CDKN1A were found to be higher in the low-risk normal 

urothelium, while multiple hotspots of TP53 were found to be higher in the high-risk 

normal urothelium (Figure 2E). The apparent differences in mutation distribution of 

NMIBC10 and MIBC10 regions between high- and low-risk normal urothelium highlight 

the potential for these genomic regions as markers to differentiate high- and low-risk 

samples. 
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2.3. Mutation Hotspots in MIBC and NMIBC 

Hotspots included in each hotspot panel were ranked based on the average number 

of mutations per 100 bp hotspot and compared against the remaining ranked genomic 

segments in NMIBC10 and MIBC10 (Figure 3A). A ranked list of genes was created based 

on each hotspot frequency to identify which genes were highly represented in the NMIBC 

and MIBC hotspot panels. The genes with hotspots in NMIBC were ERBB2 (1), FGFR3 (1), 

PIK3CA (1), and TP53 (1). The genes with the most hotspots in MIBC were TP53 (5), FGFR3 

(2), CDKN1A (1), CDKN2A (1), ERBB2 (1), KDM6A (1), NFE2L2 (1), and PIK3CA (Figure 

3B). To further validate the relevance of the MIBC hotspot panel, an independent whole-

exome sequencing dataset from 126 MIBC samples [10] was used to measure the mutation 

burden per sample within the hotspot panel and within an equivalent-sized panel of 

infrequently mutated genomic segments. Based on this analysis, there were significantly 

more mutations (p < 0.001) per sample within the MIBC hotspot panel (Figure 3C). These 

findings validate using the identified genomic segments as bladder cancer mutation 

hotspots. The mutation frequency per NMIBC and MIBC sample were measured for each 

hotspot in both panels. One hotspot in TP53 was found to have a 3.40-fold increase in 

average mutation burden in MIBC compared with NMIBC samples (p < 0.05) (Figure 3D). 

However, two hotspots shared between the NMIBC and MIBC hotspot panels were found 

to have a significantly higher mutation burden in NMIBC samples compared with MIBC. 

One hotspot in FGFR3 showed a 4.52-fold increase in average mutations per sample (p < 

0.001) in NMIBC (Figure 3E), while another in PIK3CA showed a 1.52-fold increase in 

average mutations per sample (p < 0.05) in NMIBC (Figure 3F). However, as artificial 

differences in mutation burden between NMIBC and MIBC samples may be observed due 

to differences in methods of next-generation sequencing experiments, we tested the 

validity of the observed mutation differences in the three hotspots. Mutation frequency 

for each hotspot was measured in samples from the NMIBC samples and an independent 

dataset of 126 MIBC samples [10]. In the TP53 hotspot, a 2.03-fold increase in average 

mutation burden in NMIBC vs. MIBC samples was observed, although this difference did 

not reach the level of statistical significance in the validation dataset (p = 0.21). However, 

a 4.21-fold increase in average mutations per sample was observed in NMIBC vs. NMIBC 

samples was shown in the FGFR3 hotspot (p < 0.001) and a 2.36-fold increase in average 

mutations per sample in NMIBC vs. MIBC samples was shown in the PIK3CA hotspot (p 

< 0.05) (Supplementary Figure S3). 
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Figure 3. Hotspots in NMIBC and MIBC. (A) Percentage of samples with a hotspot mutation for 

NMIBC and MIBC hotspot panels compared with all genomic regions included in NMIBC10 and 

MIBC10. (B) Frequency of hotspots per gene in NMIBC and MIBC hotspot panels (C) Comparison 

of mutation capture between MIBC hotspots and an equal-sized genomic panel of minimally MIBC 

mutated regions in external validation MIBC dataset. (D) TP53 hotspot in MIBC hotspot panel with 

significantly higher mutations in MIBC samples compared with NMIBC samples. (E) FGFR3 hotspot 

shared between MIBC and NMIBC hotspot panels with significantly higher mutations in NMIBC 
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samples compared with MIBC samples. (F) PIK3CA hotspot shared between MIBC and NMIBC 

hotspot panels with significantly higher mutations in NMIBC samples compared with MIBC 

samples. Wilcoxon signed-rank test (*: p < 0.05, ***: p < 0.001). 

2.4. Machine Learning Approach to Predicting Bladder Cancer Risk in Normal Urothelium 

Using Mutation Hotspots 

To facilitate using large-scale genomic studies, a machine learning approach to model 

carcinogenic risk in normal urothelium was used. For the training and testing of our 

model, the two published datasets of high- and low-risk normal urothelium were used 

[9,10]. The combined dataset was randomly split 70%/30% into training and test datasets. 

Each sample in the training dataset was labeled as high or low risk and the mutation 

burden using the MIBC hotspot panel and NMIBC hotspot panel was calculated. Several 

personal risk factors for bladder cancer, including age, sex, and smoking status, were also 

considered in the models. Many published applications of machine learning models have 

shown that the use of personal risk factors in combination with biological data can 

improve model performance. Therefore, the personal characteristics known to affect the 

risk of bladder cancer were included, in addition to mutation hotspot burden, as 

predictive features for our model. To test the effectiveness of both the personal risk and 

hotspot features, three different combinations of features were tested: MIBC Hotspot + 

Personal Risk Factors, NMIBC Hotspots + Personal Risk Factors, and Personal Risk Factors 

Only. To compare the ability of each feature combination to accurately predict the cancer 

risk type, each training dataset was fi�ed to three different types of machine learning 

classification models. Logistic regression, neural networks, and random forest are the 

most commonly used machine learning models for assessing genomics and next-

generation sequencing data [24,25]. To increase the robustness of our study, we utilized 

all three model types and compared model performance. The test dataset for each 

combination of features was then used to assess the model’s ability to classify normal 

urothelium samples based on carcinogenic risk correctly. Personal risk factors alone 

achieved the lowest AUC values for all three models, with 0.8786, 0.8429, and 0.8964 for 

logistic regression, neural network, and random forest, respectively. The combination of 

mutations in NMIBC hotspots and personal risk factors achieved AUC values of 0.8786, 

0.8643, and 0.9000. The combination of mutations in MIBC hotspots and personal risk 

factors showed the best performance for all three models, yielding AUC values of 0.8929, 

0.8643, and 0.9286. For all three combinations of features tested, the random forest model 

showed the strongest performance (Figure 4A). To compare the impact of each feature, 

the variable importance was calculated for each random forest model. All combinations 

of features showed age to have the highest importance, while the status of whether a 

patient was either a current or non-smoker was shown to have the lowest importance 

(Figure 4B). These findings suggest that the NMIBC and MIBC hotspot panels are able to 

aid the prediction of cancer risk of clinically normal urothelium. 



Int. J. Mol. Sci. 2023, 24, 7852 9 of 16 
 

 

 

Figure 4. Hotspots in bladder urothelial carcinoma as predictive markers of carcinogenic risk. (A) 

ROC curve of classification model prediction accuracy based on the test dataset for logistic 

regression, neural network, and random forest models. (B) Variable importance plot of the hotspot 

and clinical variables for cancer risk prediction in the random forest classification model. 

3. Discussion 

Cancer prevention is moving to the forefront of scientific and clinical interest in the 

field of oncology. Genomic analysis has the potential to shift our current focus on cancer 

diagnosis and treatment to a focus on cancer prevention. It is well known that cancer 

begins to develop long before the first clinical signs of disease [8,26,27]. Despite this 

knowledge, the early phases of carcinogenesis are understudied. Early identification of 

individuals at high risk of developing cancer would allow time to implement preventative 

interventions. Effective interventions may prevent individuals from ever developing 



Int. J. Mol. Sci. 2023, 24, 7852 10 of 16 
 

 

cancer and reduce the treatment burden on those individuals. In this study, mutation 

hotspots were identified in bladder cancers as valuable tools for assessing carcinogenic 

risk in the clinically normal-appearing urothelium. 

The use of next-generation sequencing has increased in recent years and has become 

a useful method for studying cancer genomics. However, high-depth sequencing is 

required to study mutations in clinically normal tissues, which is not currently 

economically feasible through whole-exome or whole-genome sequencing. Therefore, we 

have created the hotSPOT tool to identify optimal genomic targets for studying mutations 

in normal tissues. These studies demonstrate the ability of the hotSPOT tool [20] to 

identify highly mutated genomic regions among bladder cancer samples. All identified 

hotspots in NMIBC were also found to be present in MIBC, demonstrating the 

accumulation of mutation burden during cancer progression. 

TP53 was the gene with the largest number of hotspots in MIBC, and a hotspot in 

TP53 was also present in the NMIBC hotspot panel. This observation is consistent with 

previous findings that TP53 is the most frequently mutated gene with the highest number 

of mutations in MIBC. TP53 loss-of-function mutations cause genomic instability and 

serve as drivers of MIBC [15,28]. While TP53 loss-of-function mutations are known drivers 

of aggressive bladder cancer [29], mutations in TP53 have not previously been associated 

with early disease or identified as risk factors in the normal urothelium. Somatic 

mutations in tumor suppressors can be found in all epithelia and can lead to clonal 

expansion; however, the significance of identifying clonal expansion-associated mutations 

is still controversial [30]. By middle age, clonal mutations represent half of the normal 

tissue in the esophagus [31]. In our work, we found not only a higher mutation burden in 

TP53 hotspots in MIBC than in NMIBC, but that multiple hotspots of TP53 were higher in 

the high-risk normal urothelium. These findings indicate that TP53 mutations not only 

play a role in advanced bladder cancer but may serve as a marker of early carcinogenesis. 

Hotspots in CDKN1A, CDKN2A, KDM6A, NFE2L2 were unique to the MIBC hotspot 

panel. While mutations in these genes are associated with MIBC, recent studies show 

mutations in normal urothelium and NMIBC. Specifically, CDKN1A and KDM6A 

mutations are associated with MIBC [22]; however, recent analysis with a large number 

of NMIBC samples demonstrates frequent mutations in CDKN1A and KDM6A in NMIBC 

[32]. Mutations in CDKN2A are more common in MIBC [33], but have recently been 

identified in normal urothelium and tumor specimens from NMIBC patients [34] and 

deletion was associated with progression in NMIBC [35]. Mutations in NFE2L2 (Nrf2) are 

not frequently described as common in bladder cancer; however, analysis of TCGA data 

of activating mutations found in the Nrf2/pathway are common in carcinogen-exposed 

cancers (including bladder) and are associated with aggressive disease [36]. Therefore, 

more analysis is needed to identify potential mutations associated with malignancy before 

tumor initiation. 

In addition to TP53, hotspot mutations for ERBB2, FGFR3, and PIK3CA were in the 

NMIBC and MIBC panels. ERBB2 mutations are less common in NMIBC than MIBC [33]. 

FGFR3 mutations are detected in 60–70% of NMIBC cases [37], and FGFR3 is known for 

mutation hotspots and translocations [38]. Mutations in FGFR3 are associated with be�er 

prognosis and are considered highly targetable [38,39]; thus, identifying these mutations 

early could lead to prevention strategies. PIK3CA has mutated in approximately 20–30% 

of NMIBC and MIBC cases. PIK3CA mutations are associated with non-smokers, FGFR3 

mutations, and be�er outcomes in NMIBC [33,40]. Although all NMIBC hotspots were 

also found in MIBC, NMIBC mutation frequency in hotspots in FGFR3 and PIK3CA was 

found to be significantly higher than in MIBC. This observation is potentially due to the 

change in coverage of clonal mutations throughout disease progression. While genes such 

as FGFR3 and PIK3CA may have a high frequency in the early stages of bladder cancer, 

and are still detectable, they are outcompeted by cells with driver mutations associated 

with MIBC. 
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When assessing the correlation between high- and low-risk normal urothelium in the 

NMIBC10 and MIBC10, multiple hotspots in both KDM6A and CDKN1A genes showed 

higher mutation frequency in low-risk normal urothelium compared with high-risk 

normal urothelium. The high frequency of hotspot mutations in KDM6A and CDKN1A in 

low-risk normal urothelium further indicates that clonal groups of cells with specific 

mutations can provide initial growth advantage, but can be outcompeted by new, more 

aggressive clones during disease progression [41]. A further collection of normal 

urothelium mutation datasets with detailed follow-up of future cancer diagnosis will be 

necessary to validate the findings in this study and discover additional potential genomic 

markers of cancer risk. 

DNA adducts, particularly 4-aminobiphenyl (cigare�e smoke carcinogen) DNA 

adducts, are higher in the bladder cancers of smokers than in those of non-smokers [42]. 

A unique aspect of smoking is the introduction of CC > AA dinucleotide to certain cancer 

types, such as cancers of the lung and esophagus, although the induced mutations are less 

obvious in bladder cancers because DNA mutation analysis has been performed at low 

coverage [32]. Neither Lawson et al. nor Li et al. demonstrated a mutation signature 

associated with smoking [9,10]. Smoking status was not a robust predictive marker of 

either MIBC or NMIBC. However, this analysis needs further investigation as the Li et al. 

high-risk dataset did not include any current or former smokers within female patients 

[10]. However, the common use of aristolochic acid in Chinese patients resulted in a 

specific mutation pa�ern of T > A transversions in the 5′-CpTpG-3′ context [10]. 

Although our findings are compelling, some technical differences between the 

datasets must be acknowledged. MIBC samples required an average of 60% tumor cell 

nuclei for samples to pass quality standards, while NMIBC samples required only 40% 

tumor purity on histologic review. DNA was extracted from fresh frozen MIBC samples 

and from FFPE in NMIBC samples. Both studies utilized the Illumina HiSeq platform for 

DNA sequencing. Whole-exome sequencing with 2 × 76 bp paired-end reads was used for 

MIBC samples, while NMIBC samples were sequenced using the MSK-IMPACT targeted 

sequencing panel, which includes 2 × 100 bp paired-end reads [23]. Mutation calling was 

performed using the Firehose and MSK-IMPACT bioinformatics pipelines for MIBC and 

NMIBC, respectively [21,22]. Due to the variability of next-generation sequencing 

parameters and samples between the NMIBC and MIBC datasets, further analysis will be 

needed to validate this study’s findings on technically more uniform datasets. 

In addition to the technical differences in the analysis of the datasets, the low- and 

high-risk populations analyzed were different. In Lawson et al., the population was 

European, and race was not documented [9], compared with the analysis of Chinese 

patients in Li et al. [10]. As race was not included in the Lawson et al. dataset, we did not 

include it in our analysis. Future studies could examine how GSTM1 and GSTT1 

polymorphisms, which alter detoxification of certain carcinogens, alter the mutated 

genomic regions. GSTM1-null mutations affect up to 53% of all racial/ethnic groups, while 

GSTT1-null mutations affect up to 21% of Caucasian, 64% of Asian populations, and 45% 

of African populations [43,44]. 

Genomic mutations are known to arise in the earliest phases of carcinogenesis [27,30]. 

Populations of cells that harbor these mutations are sca�ered throughout tissues with no 

clinical signs of disease [8,19,26,45]. The concept of field carcinogenesis is supported by 

decades of clinical evidence [46]. Despite the long recognition of the mutation burden in 

normal tissues, our understanding of how these mutations correlate to carcinogenic 

progression is lacking. Tools to assess early mutations are needed to identify high cancer 

risk in normal-appearing tissues. Numerous studies have highlighted the efficacy of 

dietary prevention treatments in bladder cancer [47,48]. However, these methods are 

widely underutilized. Identifying patients at high risk for developing cancer allows time 

for the use of preventative interventions to potentially lessen the disease burden on these 

patients. The development of genomic tools to identify patients who will benefit most 
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from preventative therapies will help usher in a new era of individualized targeted cancer 

prevention. 

4. Materials and Methods 

4.1. Datasets 

All datasets used in this study were extracted from publicly available resources 

(Supplementary Figure S2). The bladder cancer datasets were downloaded from 

cBioPortal (h�ps://www.cbioportal.org/datasets accessed on 22 November 2022). A single 

non-muscle invasive bladder cancer dataset was available (MSK Eur Urol 2017) [21]. We 

chose the muscle-invasive bladder cancer dataset with the largest cohort of whole-exome 

sequenced samples (TCGA, Cell 2017) [22]. For the discovery of normal urothelium 

datasets, we searched the terms “bladder”, “mutation” and “normal” in PubMed. We 

screened 405 abstracts published within the last 5 years and identified the two largest 

datasets of normal urothelium [9,10]. The normal urothelium datasets were divided into 

two subsets: “high risk” and “low risk”. High-risk normal urothelium samples were 

collected from bladder cancer patients undergoing either cystectomy or 

nephroureterectomy to remove cancer specimens. Histologically normal areas of tissue 

were extracted via laser capture microdissection [9,10]. Low-risk normal urothelium 

samples were microbiopsies collected from post-mortem donors with no history of 

bladder cancer [9]. The datasets used contained both clinical patient characteristics and 

single nucleotide variant analysis by DNA-seq. A summary of the datasets, including 

sample size, sample type, and sequencing parameters, can be found in Supplementary 

Table S1. 

4.2. Development of Hotspot Panels 

We have developed an algorithm to design targeted sequencing panels based on 

genomic areas that harbor high-frequency mutations [20]. This algorithm, hotSPOT, uses 

SNV data from any sample type and discovers highly mutated areas specific to the 

inpu�ed dataset. The hotSPOT tool then considers each highly mutated area and identifies 

an optimal combination of sequencing amplicons to cover these areas. For this study, we 

developed two distinct hotspot panels for MIBC and NMIBC (Supplementary Tables S2 

and S3). Both panels were created using our software tool hotSPOT. The hotSPOT tool is 

a published RShiny web application and may be accessed at h�ps://rpccc-paraghlab-

sgrant.shinyapps.io/hotspot/. 

4.3. Analysis in R 

All computational analyses were done in R version 4.1.1 [49]. Packages utilized for 

hotSPOT panel development include hash [50], rlist [51], and R.utils [52]. Packages for 

data visualization were ggplot2 [53], ggpubr [54], ggsignif [55], and ggrepel [56]. Packages 

for the development and testing of the cancer risk prediction model were caret [57], glmnet 

[58], neuralnet [59], randomForest [60], and pROC [61]. All statistical analyses were 

conducted using R version 4.1.1 ‘stats’ package [49]. A Pearson correlation was calculated 

to assess the correlation between hotspots. Statistical significance was calculated using a 

Wilcoxon signed-rank test. 

5. Conclusions 

The rapidly expanding field of cancer prevention offers a promising new expanding 

frontier for enhancing patient outcomes. Although numerous studies have reported data 

on mutation burdens in bladder cancer and normal urothelium, the correlation between 

mutations and carcinogenic progression remains poorly understood. Prior works 

comparing high- and low-risk normal urothelium have revealed a higher overall mutation 

frequency in high-risk samples; however, definitive markers of cancer risk remain elusive. 

In this study, our computational tool hotSPOT was employed to independently analyze 
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NMIBC and MIBC datasets. Remarkably, all four hotspots identified in NMIBC were also 

present in MIBC, despite originating from distinct datasets, and we found the hotspots 

unique to MIBC as indicators of disease progression. The predictive ability of the MIBC 

hotspot burden in terms of progression is also supported by the observation that our most 

effective predictive model incorporated a combination of individual risk factors and 

mutations within MIBC hotspots. In summary, our findings illuminate novel genomic 

regions that may play a pivotal role in carcinogenic progression, demonstrating the 

potential of mutation hotspots to contribute to the development of risk assessment tools 

for healthy individuals. As our understanding of these genomic landscapes deepens, more 

effective strategies for cancer prevention and early detection may emerge. 
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