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Abstract: Epididymitis is an epididymal inflammation that may lead to male infertility. Dendritic
cells (DCs) and myeloid differentiation primary response gene 88 (Myd88) were associated with
epididymitis in rodents. However, the functions of Myd88 on epididymal DCs remain unclear.
This study investigated the role of Myd88 in DCs for epididymitis. The Myd88 signaling pathway,
phenotypes of DC subsets, and cytokines were investigated in lipopolysaccharide (LPS)-induced
epididymitis in mice. CRISPR-Cas9 was used to knockout Myd88 in bone-marrow-derived dendritic
cells (BMDCs) and immortalized mouse epididymal (DC2) cell line. In the vivo experiments, levels
of the proinflammatory cytokines IL-1α, IL-6, IL-17A, TNF-α, IL-1β, MCP-1, and GM-CSF, mRNA for
MyD88 related genes, and the percentages of monocyte-derived DCs (Mo-DCs) were significantly
elevated in mice with epididymitis. In the vitro experiments, LPS significantly promoted the apoptosis
of BMDCs. In addition, the concentration of inflammatory cytokines in BMDCs and DC2s were
increased in the LPS group, while decreasing after the knockout of Myd88. These findings indicate
that Myd88 on DCs is involved in the inflammation of epididymitis in mice, which may be a potential
target for better strategies regarding the treatment of immunological male infertility.

Keywords: epididymitis; Myd88; CRISPR-Cas9; dendritic cells; male infertility

1. Introduction

Epididymitis involves the inflammation of the epididymis, which is caused by both
infectious and non-infectious factors [1]. Epididymitis in boys under 14 years of age
may be associated with the reflux of urine into the ejaculatory ducts, or a part of a post-
infectious syndrome. Epididymitis in sexually active males is mainly caused by chlamydia
trachomatis and Neisseria gonorrhoeae, while infected urine retrograde flowing in the
ejaculatory duct caused by prostatic hypertrophy is the most common cause in epididymitis
in men over 35 years old [2]. Epididymitis generally presents as a gradual onset of posterior
testicular pain, usually unilateral [3]. Additionally, epididymitis may cause chronic scrotal
pain, and even subsequent fertility problems [4]. Epididymitis, the most common site
of intrascrotal inflammation, is an important cause of male infertility compared with the
prostate or seminal vesicles [5]. Since male infertility has become a significant public health
issue, it is vital to understand the underlying mechanism of epididymitis [6].

A variety of immune cells have been proven to exist in the epididymis of rodents
and humans, including DCs, macrophages (MΦ), T cells, and B cells [7–11]. DCs are a

Int. J. Mol. Sci. 2023, 24, 7838. https://doi.org/10.3390/ijms24097838 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms24097838
https://doi.org/10.3390/ijms24097838
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0002-5350-892X
https://doi.org/10.3390/ijms24097838
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms24097838?type=check_update&version=1


Int. J. Mol. Sci. 2023, 24, 7838 2 of 15

heterogeneous population of antigen-presenting cells that are crucial regulators of the im-
mune response and of immunological tolerance in numerous organs composed of several
subsets. Common dendritic cell progenitors (CDPs) derived from hematopoietic stem
cells of bone marrow further differentiate into two major families: pre-plasmacytoid DCs
(pDCs) and pre-classical DCs (cDCs) [12]. Pre-pDCs differentiate into pDC and circulate
in the blood to repopulate pDCs in lymphoid or peripheral tissues. Most studies on the
matter have revealed that pDCs mainly mediate in virus-based infections and product type
I interferon [13–15]. Pre-cDCs can differentiate into two subsets: Batf3-dependent DCs
(cDC1) and IRF4-dependent DCs (cDC2), which are the main resident DCs in non-draining
lymphoid organs. cDC1, including resident CD8+ DCs and CD103+ DCs, are cells that
share a common molecular marker, such as XCR1 and Toll-like receptor 3 (TLR3). cDC2s
are described as CD8−CD11b+ DCs and migratory CD11b+ DCs. cDC2s are specialized for
inducing CD4+ T cell-mediated immunity [16]. Moreover, a population named monocyte-
derived DCs (Mo-DCs) is derived from monocytes during pathogen or sterile-induced
inflammation [17]. These cells express classical DCs markers such as CD11c and MHC II.
They can also play the role of antigen-presenting cells and induce an adapted immune
response under inflammatory conditions. Therefore, they are also named “inflammatory
DCs” [18,19]. Our previous study demonstrated that CD11c+IL-23+ inflammatory DCs
were significantly elevated and promoted Th17 cell development in human chronic epi-
didymitis [20]. However, the functions of DC subsets and the molecular pathways involved
in the pathogenesis of epididymal infections, particularly in the onset of acute epididymitis,
remain largely unexplored.

Lipopolysaccharide-induced epididymitis is a well-established mouse model of epi-
didymitis used for investigating the pathogenic mechanism involved in the role of the
Toll-like receptor 4 (TLR4) as the outer membrane of Gram-negative bacteria such as E. coli
and the agonist of TLR4 [21]. Two pathways are involved in the TLR4-mediated response to
LPS: the MYD88-dependent and MYD88-independent pathways [22]. Myd88 is widely ex-
pressed in most immune cells, and it acts as a central node of the inflammatory response [23].
It is an essential precondition for many inflammatory signaling pathways and is involved
in the signal transduction of Toll-like and IL-1 receptor family members [24]. Myd88 is also
required for pattern recognition and Th-cell polarization by DCs [25]. While the deletion of
Myd88 expression could suppress the inflammatory response, Myd88 has become a novel
therapeutic target for many diseases related to inflammation, such as chronic obstructive
pulmonary disease (COPD) and atherosclerosis [26,27]. Our previous study found that
the tissue damage and inflammatory reactions were rescued in Myd88−/− uropathogenic
E. coli (UPEC) epididymitis in mice compared to wild-type mice [28]. Whether the effect
of Myd88 knockout in DCs can relieve the inflammation is unclear. Furthermore, Myd88
signaling pathway can be activated by environmental pollution, which has been proved
to have harmful effects on semen quality [29–31]. A previous study has shown that the
presence of specific volatile organic compounds can impact the sperm parameters, such as
sperm morphology, sperm motility, and sperm count [31]. Another study has found that
the sperm concentration and count of humans are negatively correlated with the degree
of exposure to particulate matter [30]. Thus, Myd88 signaling pathway appears to play a
significant role in male fertility in the industrialized world.

In recent years, the technology of clustered regularly interspaced short palindromic
repeats (CRISPR)/CRISPR associated protein 9 (Cas9) transfections has become a popular
method for gene editing in mammalian cells [32,33]. CRISPR-Cas9 technology can perform
gene editing by targeting specific genomic loci through defined guide RNA (gRNA) se-
quences [34]. This method has successfully edited the genome of various cells, including
primary cells and cell lines in mice or humans [35]. In this study, we explored the role
of Myd88 in LPS-induced epididymitis and BMDCs through CRISPR-Cas9 technology.
Our results show that the expression of MYD88 signaling is significantly enhanced in
LPS-induced mouse epididymitis. Myd88-KO in BMDCs leads to decreased inflammatory
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factors, indicating a potential role of the MYD88 signaling pathway in DCs involved in the
pathogenesis of epididymitis.

2. Results
2.1. Increased Level of MYD88 Signaling Pathway in LPS-Induced Mouse Epididymitis

In this study, we induced a mouse model of epididymitis via the biliary injection of
LPS through the vas deferens close to the cauda epididymis [36]. The same volume of
PBS was injected into another group as a control. There were no significant differences
of histopathological changes in the LPS and PBS groups at 24 h compared with the WT
group (Figure 1A). However, there was considerable inflammation in the cauda epididymis,
which was characterized by the infiltration of leukocytes, and interstitial edema after seven
days of LPS injection (Figure 1A). After 24 h of the treatment, the expression level of proin-
flammatory cytokines in the cauda epididymis, such as IL-1α, IL-6, IL-17A, and TNF-α
in the LPS group, was significantly increased compared with the WT group and the PBS
group (p < 0.05, Figure 1B). The other inflammatory cytokines in the cauda at 24 h after the
treatment are shown in Figure S3. Seven days after the LPS injection, some inflammatory
cytokines could only be detected, in which IL-1α was significantly higher in the LPS group
(p < 0.05, Figure S4). As LPS can activate both the MYD88-dependent and independent
signaling pathways, we also examined the relative expressions of classical genes in the
MYD88 signaling pathway in the caput/corpus/caudal area. In the cauda, the expression
of Myd88, interleukin-1 receptor-associated kinase 4 (IRAK4), and the inhibitor of nuclear
factor kappa-B kinase subunit beta (IKKB) in the LPS group, significantly increased com-
pared with the PBS group, according to real-time PCR (p < 0.05, Figure 1C). The relative
mRNA expressions of TIR-domain-containing adapter-inducing interferon-β (TRIF) and
interferon regulatory factor 3 (IRF3) were also significantly increased in the cauda (p < 0.05,
Figure S5A). In the corpus, only Myd88 and TRIF were significantly increased (p < 0.05,
Figure S5B). In the caput, the relative mRNA expressions of Myd88, IRAK4, IKKβ, TRIF,
and IRF were significantly increased in the LPS group compared with the PBS group
(p < 0.05, Figure S5C).

2.2. The Inflammatory Infiltrate Was Characterized by the Recruitment of Mo-DCs in
LPS-Induced-Epididymitis

The gating strategy of epididymal immune cells in flow cytometry is shown in Figure 2A.
After 24 h, the frequencies of Mo-DCs significantly increased in the LPS group compared
with the WT group, and similar results were found in the PBS group. However, there was no
significant difference in cDC1 and cDC2 (Figure 2B). Furthermore, we also investigated the
changes in total leukocytes and subsets, including T cells, neutrophils, and macrophages,
24 h after the treatment. The frequency of leukocytes and neutrophils in the sham and LPS
groups increased compared to that in the WT group (Figure 2C). There was no difference in
the frequency of leukocytes and macrophages in the LPS and PBS groups. The frequency of
neutrophils in the LPS group increased by more than 50 percent over the sham group. In
addition, there was a greater reduction in T cells in the LPS group than in the sham group
(Figure 2C). Moreover, we also analyzed the variations of these immune cells at day 7 and
day 28 after the LPS injection (Figure S6). The total number of leukocytes decreased from
day 1 to day 28. The percentage of total DCs, cDC1, cDC2, and T cells, increased gradually
from day 1 to day 28, and macrophages increased from day 1 to day 7 but decreased from
day 7 to day 28. The percentage of neutrophils and Mo-DCs decreased gradually from
day 1 to day 28 (Figure S6).

2.3. LPS-Induced Secretion of Proinflammatory Cytokines and Apoptosis in Mouse
Bone-Marrow-Derived Dendritic Cells (BMDCs)

To explore the effect of LPS on the secretion of inflammatory cytokines of DCs in
this study, mouse BMDCs were stimulated with different concentrations of LPS for 24 h.
The cells were collected for apoptosis analysis via flow cytometry, and supernatants were
collected for inflammatory cytokine examination with ELISA. LPS enhanced the apoptosis
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rate of BMDCs in a dose-dependent manner (Figure 3A). With increasing LPS concentration,
the apoptosis frequency of BMDCs increased as well. The apoptosis frequencies were
similar at 0.1, 1, and 10 µg/mL (Figure 3A). More than 25% of BMDCs underwent apoptosis
under the stimulation of 200 µg/mL LPS. Despite the LPS-induced apoptosis of BMDCs,
the concentrations of inflammatory cytokines, including IL-1α, IL-6, IL-17A, and TNF-α
significantly increased after LPS stimulation; the concentration of IL-6 was over the highest
limit, even under the stimulation of 0.1 µg/mL LPS (Figure 3B). Other inflammatory
cytokines that could be detected (IL-12p70 and MCP-1) also increased after LPS stimulation
(Figure S7A).
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Figure 1. Increased levels of the MYD88 signaling pathway in LPS-induced mouse cauda epididymitis.
The cauda epididymides were collected from 10–12-week-old C57BL/6J mice, with or without LPS
treatment. (A) Histopathological analysis of the cauda epididymis in LPS-induced mouse cauda
epididymitis. Representative micrographs of hematoxylin-eosin (HE)-stained epididymal sections
from untreated control (WT), sham-treated controls (PBS), and LPS-induced mice, 24 h and 7 days
after treatment, respectively (WT, n = 4; PBS and LPS, n = 6; scale bar = 50 µm). (B) Comparison of
proinflammatory cytokines IL-1α, IL-6, IL-17A, and TNF-α among three groups at 24 h after LPS
treatment. Results are expressed as mean ± SD and analyzed by one-way ANOVA (WT: n = 4,
PBS and LPS: n = 6; * p < 0.05, *** p < 0.001, **** p < 0.0001). (C) Myd88, IRAK4, and IKKβ mRNA
expressions were measured in PBS and LPS groups at 24 h after the treatment. Relative mRNA
levels in cauda epididymides were analyzed using quantitative RT-PCR. Data are represented as
mean ± SD of three independent experiments and analyzed with independent t-test. (PBS and LPS
group: n = 6; * p < 0.05, **** p < 0.0001).
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cell subsets, cDC1, cDC2, and Mo-DCs among three groups. (C) The frequencies of CD45+ leukocytes,
CD3+ T cells, Ly6G+CD3− neutrophils, and CD11b+F4/80+ macrophages were analyzed in WT, sham-
treated controls, and LPS-induced mice 24 h after treatment via flow cytometry. Data are expressed
as mean ± SD and analyzed by one-way ANOVA (n = 5), ** p < 0.01, *** p < 0.001, **** p < 0.0001.
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Figure 3. LPS-induced secretion of proinflammatory cytokines and apoptosis of mouse bone-marrow-
derived dendritic cells (BMDCs). (A) Representative flow cytometry plots and statistics of early
and late apoptotic cells (Annexin V+) of BMDCs gating from CD45+CD11c+ under LPS stimulation
(0, 0.1, 1, 10, 100, 200 µg/mL; n = 3). (B) The concentrations of IL-1α, IL-6, IL-17A, and TNF-α in
the supernatants at 24 h with 0, 0.1, 1, 10, 100, and 200 µg/mL LPS stimulation (n = 3). Results of
IL-1α, IL-17A, and TNF-α are expressed as mean ± SD. The lowest concentration of IL-6 after LPS
stimulation was over the upper limit of the kit (15,000 pg/mL). * The error bar of IL-1α is too small
to plot.

2.4. CRISPR-Cas9-Mediated Myd88 Knockout in BMDCs Alleviated the Production of
Inflammatory Cytokines

To investigate the effect of Myd88 on the secretion of BMDC cytokines, CRISPR-Cas9
was performed to knockout Myd88 in BMDCs. The mice Myd88 gene contains five exons
on chromosome 9. The guide RNA1 (gRNA1) and guide RNA2 (gRNA2) were designed
downstream of the start codon of Myd88 in exon 1 separately (Figure 4A). After 24 h of
stimulation with LPS (1 µg/mL), the supernatant was collected to detect the concentration
of inflammatory cytokines by flow cytometry. The concentrations of IL-1α, IL-6, IL-17A,
and TNF-α in the Myd88 KO group were significantly suppressed compared with those of
the control group (p < 0.05, Figure 4B). The expressions of IL-21p70 and MCP-1 were also
significantly decreased in the Myd88 KO group (p < 0.05, Figure S7B).

2.5. CRISPR-Cas9 Knockout Myd88 in DC2s Reduced the Production of Inflammatory Cytokines

As mentioned before, the epididymal epithelial cells play an important role in male
fertility by supporting sperm motility, maturation, and viability, and also exert an essential
role in inflammation induced by LPS 36,37. Therefore, the effect of MYD88 on cytokines
secreted by epididymal epithelial cells was investigated, and Myd88 gene knockout in
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mouse epididymal DC2s was performed in this study. After 48 h of transfection, single cells
with GFP gene expression were sorted into a V bottom 96-well plate by flow cytometry.
Western blots and PCR were performed to confirm the knockout of the Myd88 gene on
the monoclonal strain. The expression of Myd88 decreased according to the PCR results
(Figure 5A). Meanwhile, the results of Western blots also confirmed the knockout efficiency
(Figure 5B). After 24 h of LPS stimulation, the secretions of IL-6, GM-CSF, and MCP-1
were substantially lower in the KO clone compared with those in the control. (p < 0.05,
Figure 5C).
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for 24 h before DNA/protein sample collection (KO: knockout, Con: control). (A) PCR test to
confirm the Myd88 expression in Myd88-KO DC2s and control. (B) Western blot of MYD88 in DC2s.
(C): Comparison of the concentrations of IL-6, GM-CSF, and MCP-1 secreted by Myd88-KO DC2s and
control with different concentrations of LPS stimulation (0–100 µg/mL) for 24 h. Data are expressed
as mean ±SD, and statistics were analyzed by independent t-test (n = 6).

3. Discussion

Immunological factors in male infertility induced by epididymitis have been found
to be an essential factor that cannot be ignored [37,38]. In this study, we used a mouse
epididymitis model through the injection of LPS through the vas deferens close to the
cauda epididymis. We demonstrated for the first time that (i) LPS induced the recruitment
of Mo-DCs and secretion of inflammatory cytokines; (ii) the percentages of resident DCs,
macrophages, and T cells significantly decreased in this mouse epididymitis model at 24 h;
and (iii) knockout Myd88 on DCs prevented the release of inflammatory cytokines, which
may be helpful for the treatment of epididymitis in the future.

Although there were no significant histopathological changes, the inflammatory cy-
tokines IL-1α, IL-6, IL-17A, and TNF-α and the MYD88 signaling pathway significantly
increased compared with the PBS group at 24 h after injection (Figure 1). In addition, the
higher levels of the inflammatory cytokines in the LPS group confirmed the successful
establishment of the epididymitis model. LPS has been proven to activate the TLR4-MYD88
dependent/independent signaling pathways [39]. We examined the relative mRNA expres-
sion of genes involved in the MYD88 signaling pathway and TRIF signaling pathway in
the cauda/corpus/caput region of the epididymis. The expression levels of MYD88-related
genes increased not only in the cauda region but also in the corpus and caput epididymis,
which revealed that the LPS dose used was sufficient to induce inflammation of the whole
epididymal segment through MYD88. In our earlier study, we used UPEC to construct the
mice model of epididymitis and detected the expression of Myd88. There was no significant
increase in Myd88 expression in UPEC-infected epididymitis. We found milder tissue dam-
age, much less fibrosis, and inflammatory response in Myd88−/− UPEC epididymitis [28].
On the other hand, LPS could be applied to different epididymal regions to study the
region-specific inflammatory response [40]. These may explain the different results of the
two epididymitis models. It may also relate to the times we detected the expressions of
genes, as we detected them at different time points.

Resident DCs play the role of guarders when epididymis is encountered with LPS.
Most resident DCs stay immature before they face the pathogens. External antigens
rapidly stimulate the maturation of DCs, and then the cytokines (IL-1, IL-6, IL-23, etc.) are
released [41–43]. We found the frequency of total epididymal DCs sharply decreased at 24 h
after LPS injection and recovered gradually over time, but it remained lower until 28 days
later. Interestingly, the proportion of cDC1 and cDC2 showed no significant difference
between the LPS group and the PBS group. Meanwhile, the frequency of Mo-DCs increased
sharply at 24 h post-infection, and gradually decreased from day 1 to day 28 (Figure S6).
These results implied that DCs including resident DCs and Mo-DCs had been suffering from
exhaustion, especially Mo-DC, derived from blood monocytes. The changes in resident
DCs and Mo-DCs suggest that the Mo-DCs may play a more critical role in the response to
stimulation with LPS and induce a subsequent immune response.

On the contrary, the frequency of CD3+ T cells kept increasing from day 1 to day 28
(Figure S6). The frequency of CD3+ T cells was lower in the LPS group at 24 h post-infection,
but higher at 28 days post-infection. These results revealed that the T cells received the anti-
genic signals presented by DCs and were set to work, which has been widely proven [44].
Since the frequency of DCs decreased gradually in the course, the functions of DCs have
been investigated, as APCs secreted cytokines to stimulate the differentiation of helper T
cells. Sestina Falcone et al. found that LPS at a high concentration can induce the apoptosis
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of human immature DCs; they performed the test with 0–1000 µg/mL LPS in vitro, and
the frequency of apoptotic cells increased sharply at a concentration of 10 µg/mL LPS [45].
Another study also showed a similar result in DC2.4 cells in vitro [46]. Then, we used
different concentrations of LPS (0.1 µg/mL to 200 µg/mL) to stimulate the BMDCs in vitro.
Our results showed that the apoptosis of BMDCs could be found even at low concentrations
of LPS (0.1 µg/mL), and the proportion of apoptotic BMDCs increased with enhanced LPS
concentration. Interestingly, the concentration of inflammatory cytokines in supernatants
increased under stimulation with LPS (Figure 3). The results of in vitro experiments likely
explained the phenomenon in vivo of mouse epididymitis; that is, LPS-induced DCs secrete
increased levels of proinflammatory cytokines and prompt them to undergo apoptosis.

As mentioned before, our previous study showed reduced inflammation in Myd88−/−

UPEC epididymitis [28]. However, systemic Myd88 knockout cannot explain the regional
response to infection and molecular mechanisms in the pathogenesis of epididymitis.
Previous studies have suggested that Myd88 played a significant role in the maturation
of DCs, although it was not essential for functional DCs maturation [47,48]. Additionally,
MYD88 signaling was also significant for DCs to produce proinflammatory cytokines,
mediate neutrophil infiltration, and protect against infection [49,50]. On the other hand,
MYD88 could regulate the antigen presentation of DCs, and then influence the activation
of T cells and B cells [51]. Innate immune activation and T cell polarization required
pathogen identification in DCs by MYD88 signaling [22]. Therefore, Myd88 knockout in
DCs may attenuate the function of inducing T cell differentiation, and it may influence
the inflammatory status. To explore whether the knockout of Myd88 on DCs could relieve
the inflammation, we designed gRNAs that targeted exon 1 of Myd88. As the number of
DCs sorted from the epididymis of mice model were too small to perform the experiment,
BMDCs were selected for the in vitro experiments. Our results demonstrated the reduced
secretion of inflammatory cytokines in BMDCs after the knockout of Myd88, which is
consistent with findings of previous research [52,53]. The next step was to verify this
effect through a specific knockout of Myd88 on DCs or monocytes in vivo. Moreover,
we conducted the knockout of Myd88 on DC2s to explore the role of epithelial cells in
inflammation. Only three kinds of inflammatory cytokines (IL-6, GM-CSF, MCP-1) could
be detected in the supernatants after stimulation with LPS on DC2s. All of these cytokines
were reduced after the knockout Myd88 on DC2s. The results showed that the epithelial cells
are also partly involved in the inflammatory response induced by LPS in the epididymis
of mice.

There are some limitations in this study. In vivo, we did not show the expression of
Myd88 in epididymal DCs because of some technical problems. The number of epididymal
DCs per mouse in the LPS group was too low to conduct RNA isolation. Even if we had
pooled six mice together to sort epididymal DCs and then used the RNAprep Pure Micro
Kit (TIANGEN, Beijing, China, Cat. No. 4992859) to extract total RNA, we still could not
obtain enough RNA for qPCR experiments. Furthermore, we did not perform the effect
of Myd88-conditional KO in DCs in vivo. Although our previous study has demonstrated
the reduction of inflammation in Myd88−/− mice, the effect of gene-editing targets on
epididymal DCs is still unclear. Further studies would be needed for verification.

In summary, we found that the MYD88 signaling pathway could modulate the secre-
tion of inflammatory cytokines in DCs, which has an essential role in the pathogenesis
of epididymitis. Applying the CRISPR/Cas9-mediated Myd88 knockout on BMDCs can
decrease the concentration of inflammatory cytokines. These findings may help to pro-
vide new insights into the underlying mechanism and treatment of epididymitis and
male infertility.

4. Materials and Methods
4.1. Animals

All animal experiments were approved by the Institutional Review Board (IRB) of
the University of Hong Kong-Shenzhen Hospital (HKUSZH2020014). C57BL/6J mice
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(10–12 weeks old) were purchased from Guangdong Vital River Laboratory Animal Tech-
nology Co., Ltd. The mice were bred under a controlled 12/12 h light/dark cycle and
temperature (22–24 ◦C), with food and water at liberty.

4.2. Experimental Design

The C57 mice were anesthetized by the inhalation of isoflurane, and then processed
by retrograde injection of 5 µL of sterile solution containing 25 µg of LPS or phosphate-
buffered saline (PBS), via the vas deferens, into the epididymis [33]. The LPS dose was
equivalent to 25,000 (25 µg) endotoxin units (EU), according to the manufacturer’s manual
(E. coli O111: B4, Sigma, Fukushima, Japan). The mice were euthanized at 1 day and 7 days
after LPS injection. The mice were divided into three groups: the LPS group, the PBS group,
and the wild-type group (WT, untreated control).

4.3. Histopathological Evaluation

Mice epididymal tissues were fixed in Bouin’s solution for 24 h. Sections were stained
with hematoxylin/eosin, and then analyzed for histopathological changes using an Olym-
pus Slideview VS2000 microscope (Olympus Corporation, Tokyo, Japan).

4.4. Quantitative Real-Time RT–PCR

Total RNA from mice caput/cauda/corpus epididymis were extracted using the total
RNA solation kit (Vazyme, China, Cat. No. RC112-01). cDNA was synthesized from total
RNA using the all-in-one RT SuperMix kit (Vazyme, Nanjing, China, Cat. No. R333-01).
cDNA was amplified using the Taq Pro Universal SYBR qPCR Master Mix kit (Vazyme,
Nanjing, China, Cat. No. Q712-02), with the primers shown in Supplementary Materials
Table S1. The amplification was performed in an ABI PRISM 7500 Real-Time PCR system
(Applied Biosystems, Merritt, Norwalk, CT, USA). The relative fold change of all target
genes was normalized to GAPDH by calculating 2-∆Ct.

4.5. Epididymal Immune Cell Suspension Isolation

After sacrificing the mice, all of the epididymal tissues were separated, and the adipose
tissue was carefully removed. The bilateral epididymides of each mouse were placed into a
1.5 mL conical tube containing 1 mL of RPMI 1640 medium with 5% fetal bovine serum (FBS,
ThermoFisher, Waltham, MA, USA, Cat. No. 10091148), and then mechanically dissociated
by cutting with microscopic scissors. The epididymal tissue was washed twice with cold
PBS to remove as much sperm as possible, and then placed in a 15 mL conical tube with
4 mL of RPMI 1640 medium containing collagenase IV (1 mg/mL, ThermoFisher, Waltham,
MA, USA, Cat. No. 17104019), DNase I (0.1 mg/mL, Merck, Lebanon, NJ, USA, Cat. No.
11284932001), and 20% FBS. The tube was shaken in a 45-degree position at 220 rpm and
37 ◦C for 40 min. At the end of incubation, 8 mL of RPMI 1640 medium containing 10%
FBS was added to stop the digestion. The digested suspensions were filtered through
a 40 µm cell strainer before centrifugation at 400× g for 6 min at 4 ◦C. The cells were
resuspended in 5 mL of 40% percoll (Merck, Lebanon, NJ, USA, Cat. No. GE17-0891-01),
followed by density gradient centrifugation (500× g for 25 min at 20 ◦C, acc/dec: 3/2). The
mononuclear cell layer was isolated, collected in a new tube, and rinsed with 0.9% NaCl.
The cells were prepared for flow cytometer staining.

4.6. Flow Cytometry Analysis of Epididymal Immune Cells

For the epididymal immune cells, the cell suspension was incubated with CD16/32
(Biolegend, San Diego, CA, USA, Cat. No. 101302) to block Fc receptors, and initially stained
for viability using Zombie Aqua (Biolegend, San Diego, CA, USA, Cat. No. 423101) at 4 ◦C
for 15 min. After washing once with PBS, the cells were then stained using fluorochrome-
conjugated monoclonal antibodies, as supplied in Table S2. The cells were washed with
PBS again, and then resuspended in FACS buffer and examined with a FACS analyzer
(Beckman Coulter CytoFLEX™, Brea, CA, USA).
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4.7. Cell Culture

As previously described, bone marrow cells were separated from the femur and tibia
of 10-week-old male C57BL/6J mice [34,35]. Briefly, the femurs and tibias were flushed
with a 1 mL sterile syringe containing 1 mL of RPMI 1640 medium (5% FBS). The cell
suspension was filtered with a 70 µm filter and centrifuged (500× g for 5 min). The cells
were then lysed with 1 mL (per mouse) of red blood cell lysate (Solarbio, Beijing, China,
Cat. No. R1010) on ice for 3 min, and this was stopped by adding 10 mL of PBS. The cells
were washed once with PBS and resuspended with complete medium after centrifugation
(500× g for 5 min). The cells were re-suspended at 1 × 106 per mL of complete medium
(10% FBS, 100 U/mL penicillin/streptomycin and 1 mM sodium pyruvate in RPMI 1640
medium) containing 20 ng/mLGM-CSF and 15 ng/mL IL-4 after being washed once with
PBS. On day 2 and day 4, 3/4 of the medium was removed and supplied with an equal
volume of fresh complete medium. On day 6, suspension cells were collected and adherent
cells were loosened for an additional two days of culture. On day 8, LPS was added to
stimulate immature BMDCs. On day 9, the cells or supernatant were collected for detection.
The generation of BMDCs was confirmed via morphology and flow cytometry analysis
(Supplementary Materials Figure S1).

As the epididymal epithelium plays an important role in male fertility by support-
ing sperm motility, maturation, and viability, the immortalized mouse epididymal (DC2)
cell line was performed as the control. The DC2s were kindly provided by Dr. Winnie
Shum from ShanghaiTech University, China. The cells were cultured in IMDM (Ther-
moFisher, Waltham, MA, USA, Cat. No. 12440053) containing 10% FBS, 100 U/mL
penicillin/streptomycin, 1 mM sodium pyruvate, and 1 nM dihydrotestosterone (Sell-
eck, Houston, TX, USA, Cat. No. S4757). LPS was added to stimulate DC2 for 24 h, and the
cells or supernatant were collected for detection.

4.8. Detection of BMDCs Apoptosis

BMDCs were collected after 24 h stimulation with LPS and then stained at 4 ◦C for
30 min with surface markers and Fixable Viability Stain (BD, Franklin Lakes, NJ, USA,
Cat. No. 564406). After being washed once with PBS, the BMDCs were then stained with
Annexin V (Biolegend, San Diego, CA, USA, Cat. No. 640912) at room temperature for
15 min and were washed once with Annexin V binding buffer. Finally, the BMDCs were
resuspended in 200 µL of FACS buffer and examined with a FACS analyzer (Beckman
Coulter CytoFLEX™, Brea, CA, USA).

4.9. CRISPR-Cas9 Interference of Myd88

The plasmids containing the single-guide RNA target on Myd88 and EGFP gRNA were
designed and synthesized by Syngentech (Beijing, China). The BMDCs (day 5 of culture)
and DC2s were transfected with control gRNA (g0) or target gRNA (g1 or g2) using a
transfection reagent (Polyplus Transfection, Illkirch, France, Cat. No. 101000046), according
to the manufacturer’s instructions. For BMDCs, the cells were cultured and collected as
described above. For DC2s, after 24 h of transfection, the medium was removed, and fresh
medium was supplied to enhance the frequency of live cells. After 48 h of transfection, the
DC2s were collected and stained with Zombie Aqua to define live/dead cells for single-cell
sorting. Single cells with Zombie Aqua-negative and GFP-positive were sorted into a
96-well plate, and then cultured for about 15 days. The cells were transferred into a 6-well
plate after single-cell clones were observed. The efficiency of the knockout was confirmed
via PCR and Western blot. The gating strategy for cell sorting is shown in Supplementary
Materials Figure S2A.

4.10. Bead-Assisted Multiplex Cytokine Profiling

The total protein isolated from mouse epididymal cauda, supernatant of BMDCs, and
DC2s after LPS stimulation for 24 h was prepared for inflammatory cytokine examination.
A mouse inflammation panel (13-plex) was performed to detect the concentrations of
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cytokines using a bead-assisted multiplex cytokine profiling kit (Biolegend, San Diego,
CA, USA, Cat. No. 740446). Briefly, tissues or supernatant concentrations of interleukin-
1α (IL-1α), interleukin-23 (IL-23), interferon-γ (IFNγ), tumor necrosis factor-α (TNF-α),
monocyte chemoattractant protein-1 (MCP-1), interleukin-12p70 (IL-12p70), interleukin-1β
(IL-1β), interleukin-10 (IL-10), interleukin-6 (IL-6), interleukin-27 (IL-27), interleukin-17A
(IL-17A), interferon-β (IFN-β), and granulocyte-macrophage colony-stimulating factor
(GM-CSF) were simultaneously detected following the manufacturer’s instructions. The
samples were read on a flow cytometer (Beckman Coulter CytoFLEX™, Brea, CA, USA)
and the data were analyzed through an online tool supplied by Biolegend (legendplex.
qognit.com (accessed on 20 December 2021)).

4.11. Western Blot

The DC2s were collected and lysed using lysis buffer (Beyotime Biotechnology com-
pany, Shanghai, China, Cat. No. P0013) with a protease inhibitor cocktail (Beyotime
Biotechnology company, Shanghai, China, Cat. No. P1006) at 4 ◦C for 10 min. Equal
amounts of protein (20 µg) were loaded onto 10% precast gels (GenScript, Nanjing, China,
Cat. No. M00666), and then transferred onto nitrocellulose membranes. The membranes
were blocked with block buffer (Beyotime, Shanghai, China, Cat. No. P0239) for 30 min, and
then incubated overnight at 4 ◦C with primary antibodies anti-Myd88 (1:500, Arigo, Taiwan,
China, Cat. No. ARG41275) and anti-beta tubulin antibody (1:1000, Abcam, Cambridge,
UK, Cat. No. ab6046). Relevant horseradish peroxidase-conjugated secondary antibodies
were applied for 1 h after washing three times in PBST. The expressions of proteins were
observed using the Molecular Imager ChemiDoc XRS+ system (Bio-Rad, Hercules, CA,
USA). The image was cropped for presentation, and the full-length image is supplied in
Figure S2B.

4.12. PCR

The total DNA of DC2s was extracted using a genomic DNA extraction kit (Accurate
biotechnology, Danyang, China, Cat. No. AG21009) according to the manufacturer’s
instructions. A total of 400 ng of DNA were amplified using the 2X Accurate Taq Master
Mix kit (Accurate biotechnology, Danyang, China, Cat. No. AG11009) with the following
PCR conditions: 94 ◦C for 30 s followed by 40 cycles (98 ◦C for 10 s, 55 ◦C for 30 s, and 72 ◦C
for 1 min), and then 72 ◦C for 2 min. The products were subjected to gel electrophoresis,
and then the bands were photographed under the Molecular Imager ChemiDoc XRS+
system (Bio-Rad, Hercules, CA, USA).

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ijms24097838/s1.
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