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Abstract: This study investigates the genotoxicity and cytotoxicity of C17-sphinganine analog my-
cotoxin (C17-SAMT) using in vitro assays. C17-SAMT was previously identified as the cause of
unusual toxicity in cultured mussels from the Bizerte Lagoon in northern Tunisia. While a previous
in vivo genotoxicity study was inconclusive, in vitro results demonstrated that C17-SAMT induced
an increase in micronucleus formation in human lymphoblastoid TK6 cells at concentrations of
0.87 µM and 1.74 µM. In addition, multiparametric cytotoxicity assays were performed in the human
hepatoma HepaRG cell line, which showed that C17-SAMT induced mitochondrial dysfunction,
decreased cellular ATP levels, and altered the expression of various proteins, including superox-
ide dismutase SOD2, heme oxygenase HO-1, and NF-κB. These results suggest that C17-SAMT is
mutagenic in vitro and can induce mitochondrial dysfunction in HepaRG cells. However, the exact
mode of action of this toxin requires further investigation. Overall, this study highlights the potential
toxicity of C17-SAMT and the need for further research to better understand its effects.

Keywords: marine toxins; C17-SAMT; in vitro; micronucleus assay; oxidative stress; mitochondrial
dysfunction; γH2AX; pH3 phospho S10

1. Introduction

The total number of fungal species on earth is not clear, but estimated values range
between 1.5 and 5 million [1]. In adequate environmental conditions, some fungi produce
secondary metabolites and mycotoxins [2] that can be found throughout the food chain [3].
So far, around 400 mycotoxins have been identified, originating primarily from filamentous
fungi including Alternaria, Aspergillus, Fusarium, Penicillium, etc., [4,5]. Transported along
the food chain, mycotoxins cause irreversible damage in humans and animals. Indeed, my-
cotoxins have been shown to affect multiple organs and tissues including the liver, kidney,
and immune and nervous systems [4,6]. The severity of health effects depends on multiple
factors following exposure to the toxin, including environmental circumstances, mixture
with other contaminants, and individual health problems, such as immunodeficiencies [4].
The substantial risk to human and animal health has, therefore, attracted international
concern [7].

While data on fungi and mycotoxins are rather well-established in terrestrial ecosys-
tems, much less is known about fungi and mycotoxins present in the marine environ-
ment [1]. Fungi have been found and identified in every compartment of the marine
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ecosystem and at different depth levels [8–13]. In fact, over 1000 fungal species have been
exclusively identified in marine ecosystems, with the first record appearing in the 19th
century [1]. However, data regarding the toxins produced by marine fungi and their po-
tential toxicity are scarce. Nevertheless, available studies have shown that farmed bivalve
mollusks can accumulate mycotoxins, such as gliotoxin produced by Aspergillus fumigatus
that was found in blue mussels (Mytulis edulis) [14]. In the same context, metabolites
originating from Trichoderma sp. have contaminated sediments and mussels in shellfish
farming areas [15]. Recently, aflatoxins (AFs), ochratoxins (OTAs), deoxynvalenol (DON),
and zearalenone (ZEN) [16], well-known for their contamination of terrestrial ecosystems
and for their hazardous effects to humans and animals, have been also detected in seafood.

In 2013, Marrouchi et al. [17] identified a novel marine mycotoxin that was associated
with recurrent and atypical toxicity events in farmed mussels (M. galloprovincialis) from
the Bizerte lagoon in North Tunisia. Preliminary studies with mussel extracts reported
severe toxicity symptoms including jumping, dyspnea, flaccid paralysis, and death within
a few minutes in the mouse bioassay. To identify the compound responsible for the
observed toxicity, a bio-guided chromatographic separation followed by mass spectrometry
detection was performed. These analyses confirmed the presence of a 17-carbon short-
chain analog to sphinganine, the C17-Sphinganine Analog MycoToxin (C17-SAMT), with
a molecular mass of 287.289 Da. Following treatment of mice with the purified toxin
through intracerebroventricular, intraperitoneal, and oral routes, LD50 values of 150, 750,
and 900 µg/kg b.w were observed, respectively [17]. Recently, an in vivo genotoxicity
study showed that C17-SAMT induced equivocal results of DNA damage in the liver with
the comet assay, whereas the bone marrow micronucleus assay was negative but without
evidence of bone marrow exposure [18].

In order to clarify the genotoxic potential of C17-SAMT, we performed a micronucleus
assay on human lymphoblastoid TK6 cells, as recommended by the OCDE guideline
No. 487 [19]. The liver is a target of xenobiotic toxicity, and is the principal site for
their metabolism [20,21]. The HepaRG cell line represents an interesting metabolically
competent in vitro model to investigate the hepatotoxicity of xenobiotic compounds [22].
Differentiated HepaRG cells show similar characteristics to primary human hepatocytes
in terms of liver functionality, including the expression of transporters and the inducible
expression of metabolic enzymes. To investigate its mechanism of action, we also assessed
several toxicity endpoints including γH2AX, pH3 phospho S10, phospho ATM S1981
levels, and mitochondrial membrane potential in the human hepatoma HepaRG cell line.
Additionally, we evaluated oxidative stress and pro-inflammatory response.

2. Results
2.1. In Vitro Micronucleus Test in TK6 Cells

Following a 24 h exposure, C17-SAMT significantly increased MN formation in TK6
cells. As presented in Figure 1, concentration-dependent increases in MN frequency
were observed in both experiments at concentrations from 0.218 µM, with MN frequency
reaching 35‰ cells at the highest concentration of C17-SAMT tested. MN induction was
observed for at least one non-cytotoxic concentration of C17-SAMT (less than a 60% relative
increase in cell count RICC). The positive control MMS (10 µM) increased the frequency of
micronucleated cells in the two experiments (39.42 and 43.96‰, respectively).

2.2. Multiparametric Cytotoxicity Assays in HepaRG Cells
2.2.1. DNA Damage

• γ-H2AX and phospho-H3

We observed a concentration-dependent increase in both γH2AX and pH3 markers in
proliferating HepaRG cells following a 24 h exposure to C17-SAMT, and most remarkably
at C17-SAMT concentrations of 0.87 µM and 1.74 µM (Figure 2a). In both experiments, pH3
levels increased significantly only at the highest concentration (1.74 µM). Positive controls,
1 µM etoposide, and 30 ng/mL colchicine increased levels of γH2AX and pH3, respectively.
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No significant decrease in cell count was observed following treatment with C17-SAMT.
These results are in accordance with our findings in the MTT test (Figure S1).
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Figure 1. Micronucleus test with C17-SAMT in TK6 cells following a 24 h treatment ((A) exp. 1, and
(B) exp. 2). Graphs represent the frequency of micronucleated TK6 cells. The cytotoxicity is indicated
by RICC and relative population doubling (RPD). * p < 0.05 and **** p < 0.0001.
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Figure 2. (a) γH2AX and phospho-H3 levels in proliferative HepaRG cells exposed to C17-SAMT for
24 h. (A) Experiment 1 and (B) experiment 2. All results are expressed as fold change compared to the
negative controls. Two independent experiments are presented. * p < 0.05; *** p < 0.001; **** p < 0.0001.
(b) γH2AX and phospho-H3 levels in differentiated HepaRG cells exposed to C17-SAMT for 48 h.
(A) Experiment 1 and (B) experiment 2. All results are expressed as fold change compared to the
negative controls. Two independent experiments are presented. * p < 0.05; ** p < 0.01; *** p < 0.001.

Following a 48 h treatment in differentiated HepaRG cells, C17-SAMT did not induce
γH2AX or pH3 (Figure 2b). As expected, etoposide induced more than a 3-fold increase
in γH2AX (experiment 1, Figure 2b). Colchicine induced a 2- to −3-fold increase in pH3
(Figure 2b). All results are expressed as fold change compared to the negative controls.
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Two independent experiments are presented in each case (proliferating and differentiating
HepaRG cells).

• Ataxia telangiectasia mutated (phospho ATM S1981)

The DNA damage response in differentiated HepaRG cells following a 24 h treatment
with C17-SAMT was also evaluated with the quantification of levels of phospho ATM S1981
(Figure 3a,b). Interestingly, a statistically significant decrease in phospho ATM S1981 was
observed at 1.74 µM. The positive control, amiodarone at 100 µM, increased the levels of
phospho ATM S1981 (2.93 ± 1.19) (Figure 3a). The experiment was performed three times,
each with three technical replicates.

2.2.2. Mitochondrial Membrane Potential (∆Ψm)

• TMRE labeling

A significant decrease in mitochondrial membrane potential was observed in differen-
tiated HepaRG cells treated with 1.74 µM C17-SAMT (Figure 4a,b). The rapid decrease in
∆Ψm was apparent after 1 h of treatment and became statistically significant following 2 h
of treatment. The positive control, amiodarone, induced a statistically significant decrease
in TMRE labeling after a 4 h exposure (* p < 0.05) compared to the untreated cells.

• ATP levels

Considering the considerable decrease in ∆Ψm, we then investigated the effect of the
toxin on cellular ATP levels in differentiated HepaRG cells treated with C17-SAMT from 1 h
to 24 h. Relative ATP levels were evaluated using the CellTiter-Glo® (Promega, Wisconsin,
USA) luminescent cell viability assay kit. A decrease in ATP levels was observed at 0.87 µM
and 1.74 µM (Figure 5). Decreases were observed following a 1 h and 2 h exposure and
were statistically significant after 4 h and 24 h. A significant decrease in ATP levels was
observed at all time points in cells treated with amiodarone.
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Figure 3. (a) Phospho ATM S1981 levels in differentiated HepaRG cells following a 24 h treatment
with C17-SAMT. Amiodarone is used as a positive control at 100 µM. The presented results are
the combination of three independent experiments with three technical replicates. ** p < 0.01.
(b) Representative images representing phospho ATM immunostaining in differentiated HepaRG
cells exposed to C17-SAMT for 24 h.

2.2.3. Inflammatory Response

• NF-κB translocation

Interestingly, significant decreases in NF-κB levels were observed at all time points
following treatment of HepaRG cells with C17-SAMT, both in the cytoplasm and in the
nuclei (Figure 6a,b), suggesting an overall reduction in total cellular NF-κB levels. Figure 6b
illustrates the effect of the toxin on the total levels of NF-κB in HepaRG cells, with a drastic
decrease in immunostaining intensity at 1.74 µM.
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Figure 4. (a) Mitochondrial transmembrane potential in differentiated HepaRG cells after 1, 2, 4, and
24 h treatments with C17-SAMT. Amiodarone (100 µM) was used as a positive control. * p < 0.05;
** p < 0.01; *** p < 0.001; **** p < 0.0001. (b) Representative images of TMRE intensity in differentiated
HepaRG cells following different exposure times to C17-SAMT.
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Figure 5. Relative ATP levels in differentiated HepaRG cells after exposure to C17-SAMT from 1 h to
24 h. Amiodarone 100 µM was used as a positive control. * p < 0.5, *** p < 0.001, **** p < 0.0001.

The nucleus/cytoplasm ratio of NF-κB labeling shows a slight increase in fold change
at 0.87 µM and 1.74 µM after 24 h (Figure 6c), although this was not statistically significant.
However, significant translocation was observed at 0.435 µM after 4 h of exposure to the
toxin (* p < 0.05).

• IL-8 levels

IL-8 levels were measured by an enzyme-linked immunosorbent assay (ELISA). Treat-
ment of differentiated HepaRG cells with 0.218 and 0.435 µM C17-SAMT induced significant
increases in IL-8 secretion (Figure 7) compared to untreated cells. In parallel with the de-
crease in the NF-κB levels in both cytoplasm and nuclei (Figure 6), IL-8 levels significantly
decreased at 0.87 µM and 1.74 µM of the toxin (p < 0.0001 and p < 0.001, respectively)
compared to the negative control. The positive control TNFα (100 ng/mL) induced a
significant increase in IL-8 compared to the negative control.
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Figure 6. (a) NF-κB fold change in the cytoplasm (A) and nuclei (B) of HepaRG cells after exposure
to C17-SAMT for 1 to 24 h. * p < 0.05; ** p < 0.01. (b) Representative images of NF-κB immunos-
taining intensity in HepaRG cells after 24 h of exposure to C17-SAMT. (c) NF-κB translocation
(nucleus/cytoplasm ratio) in differentiated HepaRG cells following treatment with C17-SAMT for
1 h to 24 h. (*) p < 0.05.
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2.2.4. Oxidative Stress

• Superoxide dismutase (SOD2)

A statistically significant 8-fold increase in SOD2 levels was observed following a 24 h
treatment of differentiated HepaRG cells with 1.74 µM C17-SAMT (Figure 8).

• Heme oxygenase-1

Treatment of differentiated HepaRG cells for 24 h with C17-SAMT induced a slight
increase in HO-1 expression at 0.218 µM and 0.435 µM, although this increase was not
statistically significant (Figure 9). Interestingly, we observed a significant decrease in HO-1
levels at 1.74 µM.
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3. Discussion

The aim of this study was to investigate the in vitro cytotoxic and genotoxic potential
of C17-SAMT in human cell lines. A battery of in vitro tests, including the micronucleus
assay in the human lymphoblastoid TK6 cell line and multiparametric cytotoxicity assays
in the human hepatic HepaRG cell line, was carried out to elucidate the genotoxic and
cytotoxic mechanisms of C17-SAMT.

The genotoxic potential of C17-SAMT was investigated using the micronucleus assay
in TK6 cells (OECD guideline No. 487 [19]) and the quantification of γH2AX, pH3 S10, and
phospho ATM S1981 immunostaining in HepaRG cells.
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After a 24 h exposure to C17-SAMT, MN frequency significantly increased in TK6 cells
at concentrations starting from 0.218 µM. If cell population doubling (PD) is more than
2.0 cell cycles by the end of the treatment period, RPD values tend to decrease compared
to RICC values due to log transformation, therefore underestimating cytotoxicity [23,24].
In our study, as RPD values for negative controls varied between 2.2 and 2.3 for the
24 h treatment, RICC would be the best parameter for cytotoxicity estimation. In OECD
guideline No. 487, genotoxicity reported at concentrations inducing cytotoxicity higher than
55 ± 5% could be related to collateral events. Therefore, higher concentrations (0.87 and
1.74 µM) of C17-SAMT associated with high cytotoxicity (above the 60% threshold) were not
taken into account for mutagenicity interpretation. In our study, MN induction in TK6 cells
was observed for at least two consecutive concentrations of C17-SAMT without reaching
the cytotoxicity threshold and, therefore, supporting the genotoxicity of C17-SAMT. A
similar conclusion was obtained on mutagenicity with the sphinganine analog mycotoxin
fumonisin FB1 in rabbit kidney RK13 cells [25], HepG2 cells [26], and human peripheral
blood cells [27].

Aneugenic agents mainly target non-DNA components, which can lead to dysfunction
or reduced functionality during cell division. Therefore, chromosome segregation may be
impaired, resulting in improper separation [28,29]. In contrast, clastogenic compounds
cause breaks in DNA, and the resulting damage is detected through the biomarker γH2AX,
which is produced by the phosphorylation of histone H2AX. While γH2AX phosphory-
lation is a marker of DNA double-strand breaks [30], studies have shown that aneugenic
compounds cause phosphorylation of histone H3 that shows chromatin condensation
during mitosis [31–33]. In our study, C17-SAMT did not induce DNA double-strand breaks
in differentiated HepaRG cells following a 48 h exposure to the toxin. In contrast, in
proliferative HepaRG cells, a slight increase in levels of γH2AX and phosphoH3 S10 was
observed, without any decrease in cell viability. Concerning the genotoxic mode of action of
C17-SAMT, our results support the aneugenic properties of the compound without ruling
out clastogenicity, as described in various publications using γH2AX and phosphoH3
biomarkers [29,34]. The significant decrease in phospho ATM S1981 levels in differentiated
HepaRG cells following treatment with C17-SAMT was unexpected. Typically, a decrease in
phospho ATM S1981 levels is not observed, making it a very rare occurrence. Interestingly,
it was shown that ATM plays a key role in DNA damage response initiation since the am-
plification of ATM signaling has been hypothesized to occur via a cyclic process, wherein
ATM initiates the phosphorylation of H2AX, which subsequently recruits MDC1, leading
to further stabilization of ATM at the chromatin region adjacent to the double-strand break
(DSB). This results in the expansion of H2AX phosphorylation over megabases of DNA
that flank the DSB [35], and ATM-deficient cells have been shown to exhibit disrupted mi-
tochondrial function and reduced ATP production [36], which correlates with the findings
of this study.

We observed evidence of DNA damage in proliferating TK6 cells and proliferating
HepaRG cells, but not differentiated HepaRG cells. Alternaria mycotoxins (alternariol AOH
and alternariol methyl ether AME), other analogs of the sphinganine group, induced DNA
double-strand breaks when tested on liver HepG2 cells [37], proliferative human colon
adenocarcinoma cell line HT29, and A431vulva carcinoma cells [38], as well as on murine
RAW264.7 macrophages [39]. This suggests that the genotoxic effects of sphinganine
analogs are induced primarily in proliferating cells.

C17-SAMT induced a decrease in the levels of NF-κB in the cytoplasm of HepaRG
cells after a 24 h exposure. The transcription factor NF-kB is mainly found in the cytosol as
an inactive complex with a subclass of inhibitory proteins known as inhibitors of NF-kB
(IkB) [40–42]. Following a pro-inflammatory stimulus, IkB proteins are quickly phospho-
rylated and degraded through the proteasomal pathway. The free NF-κB subsequently
translocates to the nucleus, where it interacts with kB-binding sites in the promoter regions
of target genes to activate transcription [42,43]. In our study, in addition to a significant
decrease in cytoplasmic NF-κB levels, C17-SAMT treatment resulted in significant decreases
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in the levels of NF-κB detected in the nucleus. The cause of this decrease in total cellular
levels of NF-κB is not clear; however, we suggest that the toxin induces protein degra-
dation. Recently, it was shown that NF-κB degradation can be triggered by interactions
with Pneumococcus [44]. In fact, disruption of NF-κB signaling could be due to multiple
factors, including the inhibition of subunit phosphorylation, a necessary step for NF-κB
translocation [45], or through proteasomal degradation caused by the COMMD1 and 2 pro-
teins (following a possible interaction with the toxin or its metabolites) [44,46,47]. The
inflammatory response was also evaluated by measuring IL-8 cytokine secretion after a 24 h
exposure to the toxin. Our results showed that C17-SAMT induced a statistically significant
increase in IL-8 secretion at concentrations of 0.218 and 0.435 µM, followed by a nearly
complete suppression. The decrease in total cellular NF-κB levels could, therefore, affect
the transcription of cytokines responsible for the pro-inflammatory response. These results
are similar to those found in Alternaria toxins, a family of sphinganine analogs, following
treatment in the non-cancerous colon epithelial cell line HCEC-1CT [48]. It was shown that
these toxins suppress the elevation of cytokine mRNA level relative to the inflammatory
response and, therefore, the IL-8 secretion in a concentration-dependent manner starting at
1 µM AOH [48]. The shift between immunomodulatory and immunosuppressive potential
is a characteristic of some mycotoxins depending on the tested concentration, the exposure
time, and the cell type [49]. Aflatoxin B1 (AFB1), OTA, DON, T-2 toxin (T-2), FB1, and
ZEA at low doses can induce an inflammatory response in vivo, but high concentrations
can induce immunosuppression. Extended exposure in contrast to short-term mycotoxin
exposure is immunosuppressive as well [49].

In addition, this work aimed to elucidate cellular mechanisms of toxicity of the toxin in
differentiated HepaRG cells. Key parameters investigated in this study were mitochondrial
dysfunction and oxidative stress. We investigated the effects of C17-SAMT on mitochon-
drial ATP synthesis, which involves oxidative phosphorylation requiring a transfer of
protons across the inner membrane of the mitochondrion leading to a net negative charge
known as the mitochondrial transmembrane potential (∆Ψm) [50]. Electron leakage is a
collateral event to maintain the level of ∆Ψm at around −180 mV, generating in conse-
quence ROS. In this work, our results showed a decrease in ∆Ψm labeling in HepaRG cells
after exposure to increasing concentrations of C17-SAMT for 1, 2, 4, and 24 h. Disrupted
mitochondrial activity is associated with a reduction in ATP levels after 4 h and 24 h and
an elevation of mitochondrial stress markers. At the same time, levels of the mitochondrial
antioxidant SOD2 enzyme significantly increased while HO-1 significantly decreased. Alto-
gether, C17-SAMT leads to a disruption in mitochondrial membrane potential associated
with a decrease in ATP production. This may lead to an over-production of ROS resulting
in oxidative stress. This process induced a dramatic increase in the expression of SOD2 in
differentiated HepaRG cells. In addition to its role in heme degradation, HO-1 is known
to be a stress-response protein and is induced by several oxidative factors such as heavy
metals, endotoxin, heat shock, inflammatory cytokines, and prostaglandins [51]. As well,
HO-1 deficiency has been associated with fatal diseases, tissue injuries, and oxidative
stress [52]. Damage associated with HO-1 deficiency was observed in specific organs or cell
types, including the kidney and liver, since these organs are exposed to multiple stressors
regarding their role in detoxification [52]. Our results suggest that the mitochondrion is the
primary target of this toxin.

The effect on the mitochondrial membrane potential has been documented for different
types of mycotoxins including FB1, which was found to inhibit mitochondrial complex I
in rat primary astrocytes and human neuroblastoma (SH-SY5Y) cells at 0.5, 5, and 50 µM,
resulting in a decreased mitochondrial and cellular respiration and a depolarization of the
mitochondrial membrane [53]. In human hepatic HepG2 cells, a 24 h exposure to 200 µM of
FB1 generated oxidative stress, including elevated ROS and SOD2 levels and depolarization
of the mitochondria [54]. Fumonisin b2 (FB2), a structural analog of FB1, reduced ATP
production, increased the mitochondrial stress marker HSP60, and suppressed upregulation
of mitochondrial stress response proteins SIRT3 and LONP1 in human embryonic kidney
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HEK293 cells at 5–500 µM. Furthermore, alternariol (AOH), which is another sphinganine
analog mycotoxin, was found to be responsible for strong oxidative stress by generating
ROS, causing lipid peroxidation, and increasing SOD activity at 3.125 to 100 µM after a 24,
48, and 72 h treatment in human colon adenocarcinoma (Caco-2) cells [55].

The current study shows clear evidence that C17-SAMT impairs mitochondrial func-
tion, which was associated with an increase in SOD2 expression. This toxin also had
significant effects on the pro-inflammatory response in differentiated HepaRG cells. In
proliferating cells, a slight induction of DNA double-strand breaks was observed, as well
as an induction of MN formation in TK6 cells, with a strong cytotoxic effect at the highest
concentration. In a previous study [18], we have shown that C17-SAMT induced primary
DNA damage in the liver of mice treated at a dose of 300 µg/kg b.w/day (three oral
administrations in 45 h), which was associated with an elevated number of hepatocytes in
mitosis and was an indicator of a regeneration process. The results from both the in vivo
and the current in vitro studies are strongly correlated, and further investigation is clearly
necessary in order to elucidate the precise molecular mechanisms associated with the
toxicity of C17-SAMT; in particular, the effects of this toxin on mitochondrial function.

4. Materials and Methods
4.1. Chemicals and Reagents
4.1.1. Shellfish Sampling

Farming areas in the Bizerte Lagoon are controlled by the “Commissariat Régional
au Développement Agricole de Bizerte” (CRDA, Bizerte, Tunisia). Samples of mussels
(Mytilus galloprovinacialis) were collected over several months from different farming areas
in the Bizerte Lagoon. Samples were kept at 4 ◦C until analyzed.

4.1.2. Chemicals and Reagents

C17-SAMT was purified from the contaminated mussel extract (M. galloprovincialis)
using a bio-guided approach. As described previously by Marrouchi et al. [17], HPLC
purification coupled with mouse bioassays was carried out to obtain the purified toxin.
Briefly, an Agilent 1100 series analyzer with a Hypersil ODS-2 column (C18, 4.6 m, 250 mm,
5 m, ThermoScientific, Illkirch, France) was used to calculate the toxin concentration.
D-erythrosphinganine (C17-SPA) from Avanti Polar Lipids (Alabaster, AL, USA) and
a certified C17-SPA (10 mg/mL) solution were used to calibrate, and peak areas were
measured to calculate peak intensities. The purified fraction of the toxin was kept at−20 ◦C
until it was analyzed.

Primary and secondary antibodies for HCA experiments were provided by Abcam
(Cambridge, UK). Primary antibodies included rabbit polyclonal anti-histone H3 phospho
S10 (ab5176), mouse monoclonal anti-γH2AX (ab26350), mouse monoclonal anti-phospho
ATM S1981 (ab19304), rabbit polyclonal anti-NFκB (ab16502), and rabbit polyclonal anti-
HO1 (ab13243). Secondary antibodies used were goat anti-rabbit IgG H&L, Alexa Fluor®

488 (ab96891) and goat anti-mouse IgG H&L, Alexa Fluor® 647 (ab96876). A rabbit poly-
clonal anti-SOD2 antibody (PA5-30604) was provided by Invitrogen (Invitrogen™, Illkirch,
France).

4.1.3. Cell Culture

• TK6 cells

The human TK6 lymphoblastoid cell line (ECACC, lot n◦17E062) was maintained as a
suspension culture in Glutamax™ RPMI 1640 medium supplemented with 10% fetal calf
serum (FCS), 100 IU/mL penicillin, and 100 µg/mL streptomycin.

• HepaRG cells

HepaRG cells were cultured, as previously described [56], with slight modifications.
Cells were grown in William’s E medium supplemented with 10% fetal calf serum (FCS),
100 U/mL penicillin, 100 µg/mL streptomycin, 2 mM glutamine, 5 µg/mL insulin, and
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50 µM hydrocortisone hemisuccinate. HepaRG cells (passages 13–19) were seeded at a
density of 26,000 cells/cm2 in 96-well plates.

Non-differentiated HepaRG cells were treated 24 h after plating.
Differentiated HepaRG cells were obtained after 4 weeks of culture (2 weeks with

complete medium alone followed by 2 weeks with the addition of 1.7% DMSO).

4.1.4. Micronucleus Assay in TK6 Cells

The micronucleus assay was performed following the recommendations of OECD
guideline No. 487 [19], as previously described [57]. TK6 cells (2 × 105 cells/mL, 12-well
plates) were exposed to C17-SAMT for 24 h in a 5% FCS culture medium. Following the 24 h
treatment, cells were collected with no recovery period. Methyl methane sulfonate (MMS)
(Sigma-Aldrich, St. Quentin-Fallavier, France) at 10 µg/mL was used as a positive control.
Cells were collected by centrifugation at 136× g for 5 min and counted using Trypan blue
exclusion for cytotoxicity examination. The relative increase in cell count (RICC) and
relative population doubling (RPD) were calculated according to OECD Guideline No.
487. Before fixation with an ethanol acetic acid solution (ratio 3:1 (v/v)) for 10 min at
room temperature, cells were submitted to a hypotonic shock for 4 min using an RPMI
medium and distilled water (ratio 1:1 (v/v)). Cells were centrifuged again, resuspended in
the fixative solution, spread on glass slides, and stained with acridine orange (67 µg/mL
in PBS). Finally, micronuclei were scored in 2000 mononucleated cells per experiment
(2 independent experiments in duplicates) under a fluorescence microscope (Leica DMR,
Wetzlar, Germany).

4.1.5. High Content Analysis

Following treatment of HepaRG cells, cells were fixed with 4% formaldehyde for
15 min at room temperature. Plates were then washed twice with PBS and permeabilized
with PBS 0.2% Triton X-100 for 10 min at room temperature. Cells were then incubated for
30 min in a blocking solution (PBS 1% BSA and 0.05% Tween-20) before the addition of
primary antibodies. Primary antibodies, anti-PH3, and anti-γH2AX were diluted 1:2000 in
a blocking solution. The anti-ATM and anti-NFκB antibodies were diluted at 1:1000, and
the rabbit polyclonal anti-HO1 and anti-SOD2 antibodies were diluted at 1:500. Plates
were incubated with primary antibodies overnight at 4 ◦C and then washed twice with
PBS/0.05% Tween-20. Plates were incubated with secondary antibodies diluted at 1:2000 in
PBS/1% BSA/0.05% Tween-20 for 1 h at room temperature. Nuclei were stained with
DAPI (1 µg/mL in PBS/0.05% Tween-20) (Sigma-Aldrich, Saint-Louis, MO, USA, D9542)
for automated cell identification using an Arrayscan VTi (ThermoScientific, Waltham, MA,
USA). Plates were then washed with PBS, and 100 µL PBS was added to each well.

Images from eight fields (20×magnification) per well were analyzed for quantification
of fluorescence at 650 nm and 488 nm (three independent experiments in duplicates).

Immunofluorescence of γH2AX, H3 phospho S10, and phospho ATM S1981 markers
were quantified in the nucleus using the Target Activation module of the BioApplication
software (ThermoScientific, Waltham, MA, USA). SOD2 and HO-1 levels were quantified
in the cytoplasm of HepaRG cells, and nuclear and cytoplasmic levels of NF-κB were
quantified using the Compartmental Analysis Bioapplication. Data were expressed as fold
changes with respect to the negative control for scoring.

4.1.6. Mitochondrial Activity

• Mitochondrial transmembrane potential: TMRE

After exposure to purified C17-SAMT, differentiated HepaRG cells were incubated for
30 min with 50 nM TMRE (Sigma-Aldrich, Saint-Louis, MO, USA, #87917) and 3 µg/mL
Hoechst (Invitrogen™, Illkirch, France, #43570). Before screening the plates, cells were
washed with PBS, and a serum-free medium was added to each well immediately prior
to quantification.
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• ATP levels

A CellTiter-Glo® (Promega, WI, USA) luminescent cell viability assay kit was used to
determine the levels of ATP in HepaRG cells after toxin exposure. Following treatment,
the plate was left at room temperature for 30 min, and 100 µL of a CellTiter-Glo reagent
was added to each well. Following a 10 min incubation with agitation, luminescence was
measured with a Fluostar Optima® plate reader (BMG Labtech, Elancourt France). Relative
ATP levels were then calculated compared to the negative control.

Relative ATP Level [%] = [Luminescence [sample]/Luminescence [control]] × 100

4.1.7. IL-8 Enzyme-Linked Immunosorbent Assay (ELISA)

The secretion of IL-8 in differentiated HepaRG cells following exposure to C17-SAMT
for 24 h was measured by ELISA.

Briefly, plates (Maxisorp NUNC44240) were coated with the capture antibodies (AC
IR Human IL8 Mab, M801, ThermoFisher, Grigny, France) at 4 ◦C overnight and then
washed 3 times with 100 µL/well PBS-0.05% Tween-20 buffer. Coated plates were blocked
with 100 µL of a Super Block Buffer blocking solution (Thermofisher, 37515) for 1 h at
room temperature. After washing three times, 90 µL of the diluted medium was added
to each well and incubated at RT for 90 min with continuous agitation, followed by three
washing steps. Wells were then incubated with 50 µL of the diluted secondary biotinylated
antibodies (IL-8 Biotinylated, ThermoFisher, M802) for 1 h, followed by three washes with
PBS-Tween. For spectrophotometric detection, wells were incubated with 100 µL of a
streptavidin peroxidase solution (ThermoFisher, ref21132). Following washes, plates were
incubated with 100 µL/well 3,3′,5,5′-Tetramethylbenzidine TMB (ThermoFisher, 34028) for
45 min at RT. The reaction was terminated by the addition of 50 µL/well 1 M H2SO4. The
absorbance at 405 nm was quantified using a Fluostar Optima® plate reader (BMG Labtech,
Elancourt, France).

4.1.8. Statistical Analysis

The statistical analyses in this study were conducted using GraphPad PRISM 5 soft-
ware (GraphPad Software Inc., San Diego, CA, USA). Multiparametric cytotoxicity assays in
HepaRG cells were analyzed for fold changes relative to negative controls using a one-way
ANOVA, followed by a Dunnett post-hoc test. To compare the proportion of micronucleated
cells in treated and negative control cultures, a chi-square test with Yates’ like correction
was employed for TK6 cells. The data were considered significantly different at p < 0.05 in
all tests.

5. Conclusions

In conclusion, our study demonstrates that C17-SAMT is capable of inducing chro-
mosome or genome mutation by increasing the MN formation in TK6 cells. Moreover, it
exerts genotoxic effects in proliferative HepaRG cells, increasing the levels of γH2AX and
phospho-H3 S10 and decreasing the levels of phospho ATM S1981. Treatment of differenti-
ated HepaRG cells with C17-SAMT induced mitochondrial dysfunction associated with
increases in markers of oxidative stress and decreases in cellular ATP levels. Moreover,
C17-SAMT exhibits both immunomodulatory and immunosuppressive effects at low and
high concentrations, respectively. Further studies are, therefore, needed to understand the
metabolic and molecular pathways involved in toxicity.
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