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Abstract: Angiogenesis is the process of new blood vessels growing from existing vasculature.
Visualizing them as a three-dimensional (3D) model is a challenging, yet relevant, task as it would
be of great help to researchers, pathologists, and medical doctors. A branching analysis on the 3D
model would further facilitate research and diagnostic purposes. In this paper, a pipeline of vision
algorithms is elaborated to visualize and analyze blood vessels in 3D from formalin-fixed paraffin-
embedded (FFPE) granulation tissue sections with two different staining methods. First, a U-net
neural network is used to segment blood vessels from the tissues. Second, image registration is used
to align the consecutive images. Coarse registration using an image-intensity optimization technique,
followed by finetuning using a neural network based on Spatial Transformers, results in an excellent
alignment of images. Lastly, the corresponding segmented masks depicting the blood vessels are
aligned and interpolated using the results of the image registration, resulting in a visualized 3D
model. Additionally, a skeletonization algorithm is used to analyze the branching characteristics
of the 3D vascular model. In summary, computer vision and deep learning is used to reconstruct,
visualize and analyze a 3D vascular model from a set of parallel tissue samples. Our technique opens
innovative perspectives in the pathophysiological understanding of vascular morphogenesis under
different pathophysiological conditions and its potential diagnostic role.

Keywords: angiogenesis; 3D visualization; neural networks; image registration and segmentation;
artificial intelligence; digital pathology; biobanking

1. Introduction

Angiogenesis represents the formation of new blood vessels from existing vasculature,
involving the migration, growth and differentiation of endothelial cells, which line the
inner surface of blood vessels. The process plays an integral part in the proliferative stage of
wound healing, forming new blood vessels from pre-existing ones by invading the wound
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clot and organizing into a microvascular network throughout the granulation tissue [1].
Angiogenesis is also a crucial prerequisite for invasive tumor growth and metastasis and
constitutes an important point of control with respect to cancer progression [2]. Conse-
quently, it is one of the eight hallmarks of cancer [3]. The detailed processes of forming
three-dimensional (3D) vascular networks during morphogenesis are not yet fully under-
stood in detail, even with the help of powerful hybrid mathematical and computational
models [4]. To enhance the research in angiogenesis, it is essential to focus on innovative
ideas to improve the research into angiogenesis. Specifically, this includes the need for the
3D visualization and analysis of a vascular network.

Recent studies have demonstrated that it is possible to reconstruct objects as a 3D
model using a set of parallel consecutive images through image registration and segmenta-
tion [5,6]. For medical research, neurons were reconstructed in 3D to study the relationship
between cell morphology and function [7]. A human Schlemm’s canal was visualized in
3D to provide diagnostic information in the eye [8]. Furthermore, with the availability of
3D data points, several other applications are possible in the medical domain. For example,
a quantitative characterization of the vascular network was studied with the help of skele-
tonization on 3D photoacoustic images [9]. Skeletonization on a 3D model also aids in path
finding in the virtual endoscopy and analysis of 3D pathological sample images [10].

The challenge of this paper is the concept of image registration to align images and
image segmentation to isolate blood vessels to build and reconstruct a 3D model. To
understand the specifics of the overall pipeline, the region of interest (ROI) to be visualized
is selected by a pathologist. The first step involves using an image segmentation algorithm
to segment the blood vessels as relevant objects in the specified ROI. The next step is to
ensure the strict alignment of consecutive images using image registration. The correspond-
ing segmented masks are aligned using the results of the registration algorithm and are
interpolated to reconstruct and visualize a 3D model. For analysis, a skeleton model is
derived from the 3D reconstructed model, with which the branching of blood vessels could
be analyzed. The next section elaborates on the relevant state-of-the-art algorithms used
and the basis for choosing them.

The aim of the present report is to demonstrate a pipeline of computer vision and
deep-learning-based algorithms to accurately visualize blood vessels in 3D from a set of
consecutive tissue samples.

2. Results

After training the tissue samples with 70% of the patched Ground-Truth (GT) data
via the U-net segmentation network [11] to a validation dice score of greater than 90%,
dice score accuracies of 92.1% and 91.7% were observed on the H&E-stained tissues and
CD31-stained tissues, respectively (Figure 1). The dice score accuracy using the U-net
segmentation algorithm is compared to the traditional block-based Otsu method (Table 1).

Table 1. Image segmentation results.

Sample Block-Based Otsu [12]
(Dice Score %)

U-Net Based Network [11]
(Dice Score %)

H&E 67.5 92.1

CD31 56.1 91.7



Int. J. Mol. Sci. 2023, 24, 7714 3 of 14

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 3 of 14 
 

 

Table 1. Image segmentation results. 

Sample Block-Based Otsu [12]~~~ 
(Dice Score %) 

U-Net Based Network [11]~~~ 
(Dice Score %) 

H&E 67.5 92.1 
CD31 56.1 91.7 

 
Figure 1. Segmentation results. 1. Image, 2. GT, 3. U-net predicted mask. The x axis applies to the 
respective column. The values are specified in pixels (magnification: 20× for H&E and 40× for CD31). 

After coarse image registration applying Thevenaz’s algorithm [13], the SSIM score 
for the H&E sample was improved from 29.2% to 46.3%, and for the CD31 images, from 
9.1% to 14.9%. A significant leap was seen in the mutual dice scores for the corresponding 
binary GT masks of the H&E samples and CD31 samples, from 3.8% to 31.8% and 0% to 
14.3% (Table 2), respectively. Finetuning the registration algorithm using the STN-based 
registration network [14] further increased the SSIM score to 57.0% for H&E and 25.6% 
for CD31. Also, the mutual dice score on the corresponding GT masks improved to 32.4% 
for H&E and 18.2% for CD31. The mutual dice metrics on the predicted masks recipro-
cated the results for both the H&E (Table 3) and CD31 samples (Table 4). A visual overview 
of the images and their corresponding masks before and after image registration gives us 
an idea of the extent of the achieved image registration (Figure 2). 

Table 2. Coarse-to-fine image registration. 

Image Registration 
H&E Sample CD31 Sample 

Original Thevenaz’s Algorithm [13] STN [14] Original Thevenaz’s Algorithm [13] STN [14] 
SSIM % 29.2 46.3 57.0 9.1 14.9 25.6 

Dice % (GT) 3.8 31.8 32.4 0.0 14.3 16.5 
Dice % (U-net) 3.4 34.0 34.9 0.0 16.0 18.2 

  

Figure 1. Segmentation results. 1. Image, 2. GT, 3. U-net predicted mask. The x axis applies to
the respective column. The values are specified in pixels (magnification: 20× for H&E and 40×
for CD31).

After coarse image registration applying Thevenaz’s algorithm [13], the SSIM score
for the H&E sample was improved from 29.2% to 46.3%, and for the CD31 images, from
9.1% to 14.9%. A significant leap was seen in the mutual dice scores for the corresponding
binary GT masks of the H&E samples and CD31 samples, from 3.8% to 31.8% and 0% to
14.3% (Table 2), respectively. Finetuning the registration algorithm using the STN-based
registration network [14] further increased the SSIM score to 57.0% for H&E and 25.6% for
CD31. Also, the mutual dice score on the corresponding GT masks improved to 32.4% for
H&E and 18.2% for CD31. The mutual dice metrics on the predicted masks reciprocated
the results for both the H&E (Table 3) and CD31 samples (Table 4). A visual overview of
the images and their corresponding masks before and after image registration gives us an
idea of the extent of the achieved image registration (Figure 2).

Table 2. Coarse-to-fine image registration.

Image Registration
H&E Sample CD31 Sample

Original Thevenaz’s Algorithm [13] STN [14] Original Thevenaz’s Algorithm [13] STN [14]

SSIM % 29.2 46.3 57.0 9.1 14.9 25.6
Dice % (GT) 3.8 31.8 32.4 0.0 14.3 16.5

Dice % (U-net) 3.4 34.0 34.9 0.0 16.0 18.2
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Table 3. Pair-wise image registration for H&E sample.

H&E Sample
Before Registration After Registration

SSIM % Dice % (GT) Dice % (U-Net) SSIM % Dice % (GT) Dice % (U-Net)

pair 0, 1 26.0 38.2 38.0 43.4 77.6 80.7
pair 1, 2 28.3 43.3 43.0 45.8 76.4 80.5
pair 2, 3 28.3 43.8 44.0 44.9 79.3 81.4
pair 3, 4 29.5 40.0 40.6 47.9 78.6 81.7
pair 4, 5 33.0 32.5 31.3 50.5 76.3 80.3
pair 5, 6 32.0 33.5 31.3 48.6 76.8 79.8
pair 6, 7 27.6 39.9 39.5 43.3 74.0 75.6

Full Sequence
(Avg SSIM % or Mutual Dice %) 29.2 3.8 3.4 57.0 32.4 34.9

Table 4. Pair-wise image registration for CD31 sample.

CD31 Sample
Before Registration After Registration

SSIM % Dice %(GT) Dice % (U-Net) SSIM % Dice % (GT) Dice % (U-Net)

pair 0, 1 8.5 25.5 24.8 34.2 80.8 83.5
pair 1, 2 11.4 55.8 55.7 24.2 79.9 81.1
pair 2, 3 11.4 9.7 9.0 20.2 69.7 73.6
pair 3, 4 8.9 9.1 8.0 20.4 71.8 74.9
pair 4, 5 8.6 28.4 28.0 24.7 69.9 70.0
pair 5, 6 8.0 8.8 7.9 24.9 75.8 77.3
pair 6, 7 8.3 38.6 39.0 26.5 74.8 78.3
pair 7, 8 8.1 9.5 12.3 31.4 76.8 78.2
pair 8, 9 8.5 3.4 4.5 24.2 67.5 69.1

Full Sequence
(Avg SSIM % or Mutual Dice %) 9.1 0.0 0.0 25.6 16.5 18.2

The finely registered binary masks, both the GT and the predicted vessels, were
interpolated to the tissue dimensions using bilinear interpolation [15], and a 3D model
was reconstructed (Figure 3). A video of the reconstructed 3D models is available in
the Supplementary Material. The resulting 3D models were skeletonized using Lee’s
skeletonization algorithm [16]. Subsequently, it was possible to identify and evaluate the
branching statistics. It was also possible to find the length of the main branch from the
skeletonized 3D model (Figure 4).
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Figure 4. Analyzing branch statistics of the 3D models. (a) 3D model, (b) Skeletonized model
highlighting the main branch for each individual blood vessel, (c) 3D models of individual blood
vessels, (d) 3D skeletonized model of individual blood vessels, (e) Main branch length (mm).
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3. Discussion

Image registration and segmentation are the two most significant steps of this pipeline,
followed by image interpolation and skeletonization algorithms. Several approaches
in semi-supervised image segmentation, including the well-known U-net segmentation
algorithm [11], are reported in the literature, which produce excellent results for the task
of image segmentation [17]. In contrast, unsupervised image registration is an extremely
challenging task to accomplish, with much more scope for research. The two techniques
used in our work are known to be among the most reliable algorithms for coarse-to-fine
image registration [18,19], resulting in excellent 3D models.

The reliability of image segmentation can be easily estimated using dice score ac-
curacies, which provide a measure of the amount of overlap between the automatically
predicted annotations and the GT annotations. The observed dice scores of 92.1% and
91.7% on the two samples show the excellent reliability of the deep-learning-based U-net
segmentation network. Moreover, comparing it to the results of a simple block-based Otsu
approach shows a difference of 25–35% in the dice score accuracy (Table 1), which reinforces
the dominance of deep learning algorithms for image segmentation. The reliability of an
image registration algorithm is difficult to estimate as image registration is an unsuper-
vised algorithm, and it is not feasible to manually register images. However, the proposed
analysis, using similarity scores (SSIM) and the mutual dice score, provides a reasonable
justification to show the reliability of the image registration algorithms on the given set of
images. This can evidently be seen by visually viewing the images before and after the
registration for the two samples, where inconsistencies in the rotation and translation were
corrected (Table 2 and Figure 1). The increase in the SSIM using coarse and fine registration
showed that the given set of misaligned images were aligned (Table 2). Interestingly, the
corresponding dice score accuracies for the consecutive images provided even stronger
evidence of image alignment. The dice score accuracies for the consecutive image pairs
increased from ~30% for the unregistered images to ~80% after registration (Tables 3 and 4).
Considering that the consecutive images need to be as close to each other as possible, the
high dice scores provide strong grounds to suggest excellent registration results. Moreover,
the mutual dice score, which indicates the amount of overlap across the complete set of
images, increased from ~0% for the misaligned images to a significant value (~35% for the
H&E samples and ~18% for the CD31 samples). Thus, we provided strong evidence that
the given set of images are reliably aligned, making the corresponding masks suitable for
3D visualization. Therefore, the aligned images provided a meaningful 3D model of the
blood vessels.

The main purpose of this work is to introduce a reliable pipeline to reconstruct a
3D model of blood vessels from a set of parallel slides of granulation tissue samples by
employing algorithms based on computer vision and deep learning. Reconstructing vessels
manually in 3D is very tedious and requires a lot of time and manual labor. An automatic
approach would help pathologists to improve the research and diagnostic potency of
structural defects in the vascular network or during angiogenesis, respectively.

The successful reconstruction of a 3D model from two independent tissue samples
with completely different staining techniques (H&E and CD31) implies that the type of
staining has no effect on the reconstruction. Similarly, the type of tissue plays no role if it is
possible to obtain parallel slides of the tissue. As an example, one could use this pipeline to
reconstruct blood vessels from endomyocardial tissue from several heart diseases [20,21]. In
this context, the ability to reuse heart tissues from biobanks [22] for 3D reconstruction could
be a future research approach. Furthermore, our pipeline could also be used for the 3D
reconstruction of tumor vessels in cancer patients to better understand the morphogenesis
of the vasculature in invasive tumor masses.

The 3D model of blood vessels could also be used for various applications in ana-
lyzing wound healing or wound healing deficiency, respectively. In addition, this model
could be used to verify mathematical models describing the geometry of blood vessels in
angiogenesis [4].
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A branching analysis of the 3D model was possible by post-processing the 3D model
using the skeletonization algorithm devised by Lee [16]. The skeletal 3D model was
analyzed using the Skan library [23], which focuses on finding individual branches of a
skeletal model. As a result, a visualization model of individual blood vessels was achieved,
and the length of the branches could be estimated for the individual blood vessels in the
3D model (Figure 2).

There are limitations to this approach. Firstly, obtaining these stained images involves
tissue destructive histological methods. Secondly, the tissues need to be carefully stained
for a reliable 3D reconstruction. This could otherwise lead to false results as the algorithm
could converge to a local minimum. This challenge can be overcome through manual
intervention, by choosing selected regions to run the algorithms. Lastly, the mutual dice
score relies on the assumption that the blood vessels follow a continuous flow structure.
For a large number of consecutive samples, the blood vessels could gradually flow out of
the considered frame. For such cases, it could be better to consider the mutual dice score
for overlapped batches of consecutive images for reliable registration.

For future research, the use of Generative Adversarial Networks (GANs) [24] could be
investigated for even better registration results [25]. In contrast, a stable convergence is
difficult and time consuming, even with the availability of high computational hardware,
along with the risk of the introduction of undesirable artifacts using GANs. The currently
used bilinear interpolation gives reasonable accuracy to visualize the model. Nonetheless,
research in deep learning approaches to performing interpolation would further improve
the visualization, resulting in an even better 3D model. Another area to focus on is the use
of vision-based approaches in radiomics. There has already been some progress in using
artificial intelligence in radiomics, which is a novel approach for solving precision methods
using non-invasive, low-cost and fast multimodal medical images [26]. The application of
the random forests algorithm was studied to predict the prognostic factors of breast cancer
by integrating tumor heterogeneity and angiogenesis properties on MRI [27]. Low-field
nuclear magnetic resonance (NMR) relaxometry, with the aid of machine learning, could
rapidly and accurately detect objects [28]. The speed of such algorithms has been improved,
as well using low-field NMR relaxometry [29]. Although the results obtained by algorithms
on non-invasive, low-cost images would not be as reliable as images obtained through
invasive methods, it would be interesting to understand the available data from radiomics
and to analyze the applications of vision-based algorithms in the future.

4. Materials and Methods
4.1. Tissue Preparation and Data Acquisition

Our experiments were performed on two samples of human granulation tissue. The
first sample was a set of eight consecutively sliced tissue sections of H&E-stained granula-
tion tissue. The second one was a set of ten consecutive tissue sections of a CD31-stained
granulation tissue. The thickness of the sections was 4 µm for the H&E and 3 µm for the
CD31 samples. For both staining methods, the fresh tissue was first fixed in 5% formalin
and then embedded in paraffin. The formalin-fixed paraffin-embedded (FFPE) tissue blocks
were cut into consecutive sections and mounted onto glass slides. For the H&E staining, the
tissue was deparaffinized, rehydrated and then stained in Mayer’s hematoxylin and eosin.
The immunohistochemical staining of CD31 was performed with the help of a BenchMark
Ultra autostainer (Ventana Medical Systems, Oro Valley, AZ, USA) employing a mouse
anti-CD31 antibody (1:40; clone JC70A; Dako, Glostrup, Denmark). After staining both
the H&E and CD31, the slides were covered with glass cover slips and were scanned as
whole slide images (WSI) via the PreciPoint M8 slide scanner (PreciPoint GmbH, Freising,
Germany) with a 20× objective (Olympus UPlan FLN 20×, Olympus, Tokyo, Japan). The
resolution observed at maximum zoom was 0.28 µm per pixel.
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4.2. Region of Interest (ROI) Selection

The acquired whole slide images were stored in Omero [30], an image server that
can be used to view images and store annotations. A particular relevant ROI, where the
vessels need to be visualized as a 3D model, was chosen in each consecutive image for
the given samples. The chosen ROIs were around 0.5 × 0.4 mm for the H&E samples
and 1.3 × 1.2 mm for the CD31 samples. The blood vessels inside the ROI were manually
annotated by a medical expert. The manual annotations are referred to as Ground-Truth
data (GT). The GT annotations were used to generate a GT mask for semi-supervised
segmentation algorithms. They were also used to compare the statistics of the reconstructed
3D model of the GT data and the algorithm-predicted data. Additionally, several metrics
to validate the algorithm performance were evaluated using the GT annotations. Con-
sequently, two datasets were generated, which acted as the inputs to the pipeline of the
algorithms for the 3D visualization and analysis.

4.3. Image Segmentation

Image segmentation is an approach used to partition an image into multiple image
segments. The popular traditional approaches, such as Otsu’s method [12], k-Means clus-
tering [31] and the watershed algorithm [32], involve the design of complex hand-crafted
features. Although these approaches are unsupervised and computationally efficient, the
design of specific hand-crafted features requires extensive pre-processing, and the resulting
accuracy of the segmented models is relatively low [33].

On the contrary, recent advances in deep learning have provided a framework to
segment images with extremely high accuracy [34]. With advances in improving deep
learning architecture using residual layers [35] and inception layers [36], there has been sig-
nificant progress in improving deep-learning-based segmentation models [17]. A popular
architecture extensively used for medical research is the U-net architecture [11], which uses
deconvolution layers and skip-connections to improve the segmentation accuracy [37].

Therefore, a U-net-based segmentation network was chosen to perform image seg-
mentation on blood vessels for our research. The GT data were used for training the
semi-supervised algorithm. The dataset was converted into a patched dataset with a patch
size of 224× 224 pixels. For training, the patched dataset was split into 70% training dataset
and 30% validation dataset. The network was then trained using an AdamW optimizer [38]
with a OneCycleLR scheduler [39] by minimizing the cross-entropy loss. The trained model
could then be used to segment blood vessels for the given dataset.

4.4. Image Registration

Image registration is a process in which different images are transformed into the same
coordinate system by matching the image contents [40]. A broad category of transformation
models includes linear transformations involving rotation, scaling, translation, and shear
and non-linear transformations comprising elastic, nonrigid or deformable transforma-
tions [41,42]. Image registration is extensively used in medical research for several imaging
techniques, such as X-ray, CT scans and MRI [43]. Factors such as non-linear geometric
distortions, noisy image data and computational complexity contribute to the fact that
image registration is one of the most challenging tasks in computer vision [44].

A variety of classical algorithms, which are based on hand-crafted features for image
registration, can be used to perform image registration. They are broadly classified into
feature-based methods and area-based methods [18]. Feature-based methods extract salient
features, such as edges or corners, to align images with the presumption that they stay at
fixed positions during the whole experiment [44]. Area-based methods use metrics such as
cross-correlation to match image intensities, without performing any structural analysis [32].
An area-based method by Thevenaz et al., which maximizes mutual information using
the Marquardt-Levenberg method, has gained tremendous popularity in classical image
registration for biomedical research, especially due to its computation-efficient hierarchical
search strategy applying a pyramidal approach [13].
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Due to its popularity, this paper uses Thevenaz’s algorithm to coarsely register the
given dataset. To align the images and remove inconsistencies caused by translation,
scale, rotation or shear, Thevenaz’s algorithm [13] was used. The mutual information
was minimized between consecutive image pairs to result in a set of affine matrices. The
images need to be transformed using the resulting affine matrices through homogeneous
transformations. One might need to pre-process the choice of the rectangular sections
of the image pair to ensure a reliable coarse alignment and avoid converging to a local
minimum. After using the coarse registration approach, images are aligned to a single
coordinate system.

4.5. Image Registration Finetuning

In the last few years, deep learning has significantly contributed to more accurate
image registration using unsupervised transformation estimation methods, especially to
predict a deformable transformation model [19]. In particular, Kuang et al. [45] demon-
strated excellent results on public datasets using a convolutional neural network (CNN)-
and a Spatial Transformer Network (STN)-inspired framework [14] for deformable image
registration. This was achieved with the help of a normalized Cross-Correlation (NCC) loss
function. Yan et al. [46] showed that a Generative Adversarial Networks (GANs)-based [24]
network could estimate rigid transformations. Although GANs are effective in image
registration, they are very unstable and prone to synthetic data.

Consequently, to solve non-linear and geometric distortions, an unsupervised deep-
learning-based image registration network with a U-net architecture [11] using STNs [14]
was used to finetune the coarsely registered images. Pairs of consecutive images were
passed as inputs through a neural network for deformable registration via a voxelmorph
framework [47]. Flow vectors, which describe the flow of each pixel in the moving image,
were predicted using the trained spatial transformers for better registration. To train
the network, an AdamW optimizer with a OneCycleLR scheduler was used for smart
convergence. A bidirectional loss function based on NCC loss [47], which encourages
accurate forward and backward flow vectors, was minimized. A gradient loss was also
defined to control the values of the flow vector. After training, the relevant forward flow
vectors could be predicted and applied to the coarsely registered stack of images and its
corresponding masks, resulting in a finely registered dataset.

4.6. Interpolation and 3D Visualization

Image segmentation predicts blood vessels as binary masks. Image registration results
in affine matrices and flow vectors to transform and align the given set of unaligned images.
The corresponding binary masks can also be aligned using this information, resulting in a
sequence of aligned binary masks, which gives us a set of 3D points of blood vessels.

Interpolation is a method to estimate or find new data points based on a range of
discrete sets of known data points [48]. A Nearest-Neighbor interpolation [49] introduces
significant distortion in the model. A bilinear interpolation [15] gives a better approximation
of the 3D model, but the image contours become fuzzy and the high frequency components
are faded. A bicubic interpolation [50] would require large amounts of calculation [51].

As a compromise, a bilinear interpolation is chosen for interpolation in our pipeline.
The set of 3D points is interpolated, corresponding to the original dimensions of the tissue
using bilinear interpolation [15], resulting in the final 3D model. A 3D model is obtained
for both the manually annotated (GT) masks and the predicted masks. As a postprocessing
step, small irrelevant objects in the 3D models are filtered out. The final models can be
visualized and rendered using visualization libraries such as K3D [52] or 3D Slicer [53].

4.7. Skeletonization and Analysis

Skeletonization reduces binary objects to a one-pixel-wide representation. This pro-
vides a compact representation of the image by reducing the dimensionality to a skeleton
and is useful for analyzing the topology and structure of the object. Several skeletonization
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approaches exist in the literature [54]. Blum and Nagel [55] established the foundation
of skeletonization using a Blum’s Grassfire transformation to find a medial axis. After
several adaptations, Lee et al. [16] proposed a popular digital approach to simulate Blum’s
algorithm by applying a constrained iterative erosion process.

To visualize the structure and flow of blood vessels, a 3D skeletal model of the 3D
blood vessel model was obtained using Lee’s skeletonization algorithm [16] from the scikit-
image library [56]. With the help of Skan [23], a python library for skeletal analysis, the
branch statistics of the skeletal model, was computed. This included the length of the main
branch and the number of sub-branches for each blood vessel, along with their lengths. It
was also possible to reconstruct a branched skeletal 3D model for visualization.

4.8. Metrics

The results of the image registration were analyzed using a Structural Similarity Index
Measure (SSIM) [57], which helps to predict the perceived quality of two images. SSIM
considers image degradation as a perceived change in the structural information, along
with other properties of an image, such as luminance and contrast. An SSIM value of 0
indicates no structural similarity and a value of 1 is only reachable for two identical images.
The SSIM value was determined across pairs of images, as well as for the complete sample
before and after registration.

The image segmentation was evaluated by calculating the Sorensen-dice coefficient [58,59]
or dice score on the segmented vessels. The dice score can be interpreted as a measure
to estimate the overlap between binary masks. The GT vessels can be compared to the
predicted vessels using this dice score. A dice score of 100 (in percentage) means that
the predicted mask perfectly overlaps with the target mask. Mathematically, it can be
formulated as:

Dice(X, Y)(%) =
2× (X∩ Y)

X∪ Y
× 100 (1)

where X and Y are the two masks to be compared.
The dice score can also be used to evaluate the metrics after image registration. It can

be computed across two consecutive binary masks after registration. Similarly, the dice
score can also be evaluated across the complete sequence, using the following expression:

Dice(X1, X2, . . . , Xn)(%) =
n× (X1∩ X2∩ . . . ∩ Xn)

X1∪ X2∪ . . . ∪ Xn
× 100 (2)

where X1, X2, . . . , Xn are the binary masks for each image in an image stack. A measure of
overlap between the vessels was estimated between the parallel images in an image stack.

5. Conclusions

In conclusion, a pipeline of vision-based algorithms, mainly comprising image regis-
tration and segmentation, is proposed to visualize and analyze blood vessels as a 3D model.
The branching of vasculature could be analyzed using a skeletonization algorithm on the
resulting 3D model. Computer vision and deep learning have huge potential to accelerate
research in medicine. At present, there is a huge gap between the current developments
and the potential of vision-based algorithms. In future studies, we will bridge this gap to
accelerate the research in angiogenesis through the use of a 3D model of blood vessels.

Supplementary Materials: The following supporting information can be downloaded at: https://
figshare.com/collections/Data_Angeogenesis_3D_Reconstruction/6339176 (accessed on 20 April 2023).

Author Contributions: Conceptualization: V.R., C.B., S.S. (Samuel Sossala), C.B.W.; methodology:
V.R., P.A., A.T., J.D.; software: V.R., A.A., H.B.; validation: T.N., C.B., S.S. (Samuel Sossalla), V.H.S.;
formal analysis: V.R., R.S., A.A.; investigation: V.R.; resources, R.S., F.G.; data curation: R.S., L.W.;
writing—original draft preparation: V.R., L.W., H.B.; writing—review & editing: T.N., A.A., H.B., F.G.,
L.W., S.S. (Stephan Schreml), J.D., V.H.S., A.M., P.A., A.T., M.R., C.B.; visualization: V.R., A.A., H.B.,

https://figshare.com/collections/Data_Angeogenesis_3D_Reconstruction/6339176
https://figshare.com/collections/Data_Angeogenesis_3D_Reconstruction/6339176


Int. J. Mol. Sci. 2023, 24, 7714 12 of 14

L.W.; supervision: C.B.; project administration: T.N., L.W., M.K., O.T., M.R.; funding acquisition: C.B.,
T.N., M.K., O.T., M.R. All authors have read and agreed to the published version of the manuscript.

Funding: This project was generously funded by the European Union, Ziel ETZ 2014–2020 (Ref.:
Interreg 352).

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki and approved by the Institutional Review Board of the University of Regensburg (22-
2930-104 (12 May 2022) and 22-2931_1-101 (10 November 2022)).

Informed Consent Statement: Not Applicable.

Data Availability Statement: The data presented in this study are openly available in the Supple-
mentary Materials.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

Abbreviations
3D: three dimensional, FFPE: formalin-fixed paraffin embedded, H&E: hematoxylin & eosin,

CNN: convolutional neural network, STN: Spatial Transformer Network, GAN: Generative Adver-
sarial Networks, GT: Ground-Truth, SSIM: Structural Similarity Index Measure, NCC: normalized
Cross-Correlation, NMR: nuclear magnetic resonance, ROI: Region of Interest.

References
1. Honnegowda, T.M.; Kumar, P.; Udupa, E.G.; Kumar, S.; Kumar, U.; Rao, P. Role of angiogenesis and angiogenic factors in acute

and chronic wound healing. Plast. Aesthetic Res. 2015, 2, 239–242. [CrossRef]
2. Folkman, J. Role of angiogenesis in tumor growth and metastasis. Semin. Oncol. 2002, 29, 15–18. [CrossRef]
3. Hanahan, D. Hallmarks of Cancer: New Dimensions. Cancer Discov. 2022, 12, 31–46. [CrossRef]
4. Guerra, A.; Belinha, J.; Jorge, R.N. Modelling skin wound healing angiogenesis: A review. J. Theor. Biol. 2018, 459, 1–17. [CrossRef]
5. Pollefeys, M.; Koch, R.; Vergauwen, M.; Van Gool, L. Automated reconstruction of 3D scenes from sequences of images. ISPRS J.

Photogramm. Remote Sens. 2001, 55, 251–267. [CrossRef]
6. Gallo, A.; Muzzupappa, M.; Bruno, F. 3D reconstruction of small sized objects from a sequence of multi-focused images. J. Cult.

Herit. 2014, 15, 173–182. [CrossRef]
7. Carlbom, I.; Terzopoulos, D.; Harris, K.M. Computer-assisted registration, segmentation, and 3D reconstruction from images of

neuronal tissue sections. IEEE Trans. Med. Imaging 1994, 13, 351–362. [CrossRef]
8. Tom, M.; Ramakrishnan, V.; van Oterendorp, C.; Deserno, T. Automated Detection of Schlemm’s Canal in Spectral-Domain

Optical Coherence Tomography. In Medical Imaging 2015: Computer-Aided Diagnosis; SPIE: Bellingham, WA, USA, 2015.
9. Meiburger, K.M.; Nam, S.Y.; Chung, E.; Suggs, L.J.; Emelianov, S.Y.; Molinari, F. Skeletonization algorithm-based blood vessel

quantification using in vivo 3D photoacoustic imaging. Phys. Med. Biol. 2016, 61, 7994–8009. [CrossRef] [PubMed]
10. Toriwaki, J.-i.; Mori, K. Distance transformation and skeletonization of 3D pictures and their applications to medical images. In

Digital and Image Geometry: Advanced Lectures; Springer: Berlin/Heidelberg, Germany, 2002; pp. 412–429.
11. Swedlow, J. Open Microscopy Environment: OME Is a Consortium of Universities, Research Labs, Industry and Developers

Producing Open-Source Software and Format Standards for Microscopy Data. 2020. Available online: https://discovery.dundee.
ac.uk/en/publications/open-microscopy-environment-ome-is-a-consortium-of-universities-r (accessed on 20 April 2023).

12. Otsu, N. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [CrossRef]
13. Li, Y.; Wu, H. A Clustering Method Based on K-Means Algorithm. Phys. Procedia 2012, 25, 1104–1109. [CrossRef]
14. Pratt, W.K. Introduction to Digital Image Processing; CRC Press: Boca Raton, FL, USA, 2013.
15. Zaitoun, N.M.; Aqel, M.J. Survey on image segmentation techniques. Procedia Comput. Sci. 2015, 65, 797–806. [CrossRef]
16. O’Mahony, N.; Campbell, S.; Carvalho, A.; Harapanahalli, S.; Hernandez, G.V.; Krpalkova, L.; Riordan, D.; Walsh, J. Deep learning

vs. traditional computer vision. In Proceedings of the Advances in Computer Vision: Proceedings of the 2019 Computer Vision
Conference (CVC), Las Vegas, NV, USA, 2–3 May 2019; Volume 11, pp. 128–144.

17. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

18. Szegedy, C.; Ioffe, S.; Vanhoucke, V.; Alemi, A. Inception-v4, inception-resnet and the impact of residual connections on learning.
In Proceedings of the AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017.

19. Lateef, F.; Ruichek, Y. Survey on semantic segmentation using deep learning techniques. Neurocomputing 2019, 338, 321–348.
[CrossRef]

https://doi.org/10.4103/2347-9264.165438
https://doi.org/10.1053/sonc.2002.37263
https://doi.org/10.1158/2159-8290.CD-21-1059
https://doi.org/10.1016/j.jtbi.2018.09.020
https://doi.org/10.1016/S0924-2716(00)00023-X
https://doi.org/10.1016/j.culher.2013.04.009
https://doi.org/10.1109/42.293928
https://doi.org/10.1088/0031-9155/61/22/7994
https://www.ncbi.nlm.nih.gov/pubmed/27779138
https://discovery.dundee.ac.uk/en/publications/open-microscopy-environment-ome-is-a-consortium-of-universities-r
https://discovery.dundee.ac.uk/en/publications/open-microscopy-environment-ome-is-a-consortium-of-universities-r
https://doi.org/10.1109/TSMC.1979.4310076
https://doi.org/10.1016/j.phpro.2012.03.206
https://doi.org/10.1016/j.procs.2015.09.027
https://doi.org/10.1016/j.neucom.2019.02.003


Int. J. Mol. Sci. 2023, 24, 7714 13 of 14

20. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of
the Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich,
Germany, 5–9 October 2015; pp. 234–241.

21. Hesamian, M.H.; Jia, W.; He, X.; Kennedy, P. Deep learning techniques for medical image segmentation: Achievements and
challenges. J. Digit. Imaging 2019, 32, 582–596. [CrossRef] [PubMed]

22. Loshchilov, I.; Hutter, F. Fixing Weight Decay Regularization in Adam. 2017. Available online: https://openreview.net/forum?
id=rk6qdGgCZ (accessed on 20 April 2023).

23. Smith, L.N.; Topin, N. Super-convergence: Very fast training of neural networks using large learning rates. In Proceedings of the
Artificial Intelligence and Machine Learning for Multi-Domain Operations Applications, Baltimore, MA, USA, 15–17 April 2019;
pp. 369–386.

24. Szeliski, R. Image alignment and stitching. In Handbook of Mathematical Models in Computer Vision; Springer: New York, NY, USA,
2006; pp. 273–292.

25. Sotiras, A.; Davatzikos, C.; Paragios, N. Deformable medical image registration: A survey. IEEE Trans. Med. Imaging 2013, 32,
1153–1190. [CrossRef]

26. Song, G.; Han, J.; Zhao, Y.; Wang, Z.; Du, H. A review on medical image registration as an optimization problem. Curr. Med.
Imaging 2017, 13, 274–283. [CrossRef] [PubMed]

27. Maintz, J.A.; Viergever, M.A. A survey of medical image registration. Med. Image Anal. 1998, 2, 1–36. [CrossRef]
28. Adel, E.; Elmogy, M.; Elbakry, H. Image stitching based on feature extraction techniques: A survey. Int. J. Comput. Appl. 2014, 99,

1–8. [CrossRef]
29. Zitova, B.; Flusser, J. Image registration methods: A survey. Image Vis. Comput. 2003, 21, 977–1000. [CrossRef]
30. Thevenaz, P.; Ruttimann, U.E.; Unser, M. A pyramid approach to subpixel registration based on intensity. IEEE Trans. Image

Process. 1998, 7, 27–41. [CrossRef]
31. Chen, X.; Diaz-Pinto, A.; Ravikumar, N.; Frangi, A.F. Deep learning in medical image registration. Prog. Biomed. Eng. 2021, 3,

012003. [CrossRef]
32. Kuang, D.; Schmah, T. Faim–a convnet method for unsupervised 3d medical image registration. In Proceedings of the Machine

Learning in Medical Imaging: 10th International Workshop, MLMI 2019, Held in Conjunction with MICCAI 2019, Shenzhen,
China, 13 October 2019; pp. 646–654.

33. Jaderberg, M.; Simonyan, K.; Zisserman, A. Spatial transformer networks. Adv. Neural Inf. Process. Syst. 2015, 28. [CrossRef]
34. Yan, P.; Xu, S.; Rastinehad, A.R.; Wood, B.J. Adversarial image registration with application for MR and TRUS image fusion. In

Proceedings of the Machine Learning in Medical Imaging: 9th International Workshop, MLMI 2018, Held in Conjunction with
MICCAI 2018, Granada, Spain, 16 September 2018; pp. 197–204.

35. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial
networks. Commun. ACM 2020, 63, 139–144. [CrossRef]

36. Dalca, A.; Rakic, M.; Guttag, J.; Sabuncu, M. Learning conditional deformable templates with convolutional networks. Adv.
Neural Inf. Process. Syst. 2019, 32. [CrossRef]

37. Steffensen, J. Interpolation; Courier Corporation: North Chelmsford, MA, USA, 2006.
38. Yonghong, J. Digital Image Processing, 2nd ed.; Prentice Hall Press: Hoboken, NJ, USA, 2010.
39. Wang, S.; Yang, K. An image scaling algorithm based on bilinear interpolation with VC++. Tech. Autom. Appl. 2008, 27, 44–45.
40. Feng, J.-F.; Han, H.-J. Image enlargement based on non-uniform B-spline interpolation algorithm. J. Comput. Appl. 2010, 30, 82.

[CrossRef]
41. Han, D. Comparison of commonly used image interpolation methods. In Proceedings of the Conference of the 2nd International

Conference on Computer Science and Electronics Engineering (ICCSEE 2013), Hangzhou, China, 22–23 March 2013; pp. 1556–1559.
42. Saltar, G.; Aiyer, A.; Meneveau, C. Developing Notebook-based Flow Visualization and Analysis Modules for Computational

Fluid Dynamics. In Proceedings of the APS Division of Fluid Dynamics Meeting Abstracts, Seattle, WA, USA, 23–26 November
2019; p. NP05.021.

43. Kikinis, R.; Pieper, S.D.; Vosburgh, K.G. 3D Slicer: A platform for subject-specific image analysis, visualization, and clinical
support. In Intraoperative Imaging and Image-Guided Therapy; Springer: Berlin/Heidelberg, Germany, 2013; pp. 277–289.

44. Saha, P.K.; Borgefors, G.; di Baja, G.S. A survey on skeletonization algorithms and their applications. Pattern Recognit. Lett. 2016,
76, 3–12. [CrossRef]

45. Blum, H.; Nagel, R.N. Shape description using weighted symmetric axis features. Pattern Recognit. 1978, 10, 167–180. [CrossRef]
46. Lee, T.-C.; Kashyap, R.L.; Chu, C.-N. Building skeleton models via 3-D medial surface axis thinning algorithms. CVGIP Graph.

Model. Image Process. 1994, 56, 462–478. [CrossRef]
47. Van der Walt, S.; Schönberger, J.L.; Nunez-Iglesias, J.; Boulogne, F.; Warner, J.D.; Yager, N.; Gouillart, E.; Yu, T. scikit-image: Image

processing in Python. PeerJ 2014, 2, e453. [CrossRef]
48. Nunez-Iglesias, J.; Blanch, A.J.; Looker, O.; Dixon, M.W.; Tilley, L. A new Python library to analyse skeleton images confirms

malaria parasite remodelling of the red blood cell membrane skeleton. PeerJ 2018, 6, e4312. [CrossRef]
49. Nilsson, J.; Akenine-Möller, T. Understanding ssim. arXiv 2020, arXiv:2006.13846.
50. Dice, L.R. Measures of the amount of ecologic association between species. Ecology 1945, 26, 297–302. [CrossRef]

https://doi.org/10.1007/s10278-019-00227-x
https://www.ncbi.nlm.nih.gov/pubmed/31144149
https://openreview.net/forum?id=rk6qdGgCZ
https://openreview.net/forum?id=rk6qdGgCZ
https://doi.org/10.1109/TMI.2013.2265603
https://doi.org/10.2174/1573405612666160920123955
https://www.ncbi.nlm.nih.gov/pubmed/28845149
https://doi.org/10.1016/S1361-8415(01)80026-8
https://doi.org/10.5120/17374-7818
https://doi.org/10.1016/S0262-8856(03)00137-9
https://doi.org/10.1109/83.650848
https://doi.org/10.1088/2516-1091/abd37c
https://doi.org/10.48550/arXiv.1506.02025
https://doi.org/10.1145/3422622
https://doi.org/10.48550/arXiv.1908.02738
https://doi.org/10.3724/SP.J.1087.2010.00082
https://doi.org/10.1016/j.patrec.2015.04.006
https://doi.org/10.1016/0031-3203(78)90025-0
https://doi.org/10.1006/cgip.1994.1042
https://doi.org/10.7717/peerj.453
https://doi.org/10.7717/peerj.4312
https://doi.org/10.2307/1932409


Int. J. Mol. Sci. 2023, 24, 7714 14 of 14

51. Sorensen, T.A. A method of establishing groups of equal amplitude in plant sociology based on similarity of species content and
its application to analyses of the vegetation on Danish commons. Biol. Skar. 1948, 5, 1–34.

52. Ahmed, T.; Goyal, A. Endomyocardial biopsy. In StatPearls [Internet]; StatPearls Publishing: Tampa, FL, USA, 2022.
53. AlJaroudi, W.A.; Desai, M.Y.; Tang, W.W.; Phelan, D.; Cerqueira, M.D.; Jaber, W.A. Role of imaging in the diagnosis and

management of patients with cardiac amyloidosis: State of the art review and focus on emerging nuclear techniques. J. Nucl.
Cardiol. 2014, 21, 271–283. [CrossRef] [PubMed]

54. Lal, S.; Li, A.; Allen, D.; Allen, P.D.; Bannon, P.; Cartmill, T.; Cooke, R.; Farnsworth, A.; Keogh, A.; Dos Remedios, C. Best practice
biobanking of human heart tissue. Biophys. Rev. 2015, 7, 399–406. [CrossRef] [PubMed]

55. Mahapatra, D.; Antony, B.; Sedai, S.; Garnavi, R. Deformable medical image registration using generative adversarial networks.
In Proceedings of the 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), Washington, DC, USA, 4–7
April 2018; pp. 1449–1453.

56. Arimura, H.; Soufi, M.; Kamezawa, H.; Ninomiya, K.; Yamada, M. Radiomics with artificial intelligence for precision medicine in
radiation therapy. J. Radiat. Res. 2019, 60, 150–157. [CrossRef] [PubMed]

57. Lee, J.Y.; Lee, K.-s.; Seo, B.K.; Cho, K.R.; Woo, O.H.; Song, S.E.; Kim, E.-K.; Lee, H.Y.; Kim, J.S.; Cha, J. Radiomic machine learning
for predicting prognostic biomarkers and molecular subtypes of breast cancer using tumor heterogeneity and angiogenesis
properties on MRI. Eur. Radiol. 2022, 32, 650–660. [CrossRef]

58. Peng, W.K. Clustering Nuclear Magnetic Resonance: Machine learning assistive rapid two-dimensional relaxometry mapping.
Eng. Rep. 2021, 3, e12383. [CrossRef]

59. Kickingereder, P.; Götz, M.; Muschelli, J.; Wick, A.; Neuberger, U.; Shinohara, R.T.; Sill, M.; Nowosielski, M.; Schlemmer, H.P.;
Radbruch, A.; et al. Large-scale Radiomic Profiling of Recurrent Glioblastoma Identifies an Imaging Predictor for Stratifying
Anti-Angiogenic Treatment Response. Clin. Cancer Res. 2016, 22, 5765–5771. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/s12350-013-9800-5
https://www.ncbi.nlm.nih.gov/pubmed/24347127
https://doi.org/10.1007/s12551-015-0182-6
https://www.ncbi.nlm.nih.gov/pubmed/26998172
https://doi.org/10.1093/jrr/rry077
https://www.ncbi.nlm.nih.gov/pubmed/30247662
https://doi.org/10.1007/s00330-021-08146-8
https://doi.org/10.1002/eng2.12383
https://doi.org/10.1158/1078-0432.CCR-16-0702

	Introduction 
	Results 
	Discussion 
	Materials and Methods 
	Tissue Preparation and Data Acquisition 
	Region of Interest (ROI) Selection 
	Image Segmentation 
	Image Registration 
	Image Registration Finetuning 
	Interpolation and 3D Visualization 
	Skeletonization and Analysis 
	Metrics 

	Conclusions 
	References

