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Abstract: Neurofilament light chain (NF-L) plays critical roles in synapses that are relevant to
neuropsychiatric diseases. Despite postmortem evidence that NF-L is decreased in opiate abusers, its
role and underlying mechanisms remain largely unknown. We found that the microinjection of the
histone deacetylase (HDAC) inhibitor Trichostatin A (TSA) into the ventrolateral orbital cortex (VLO)
attenuated chronic morphine-induced behavioral sensitization. The microinjection of TSA blocked
the chronic morphine-induced decrease of NF-L. However, our chromatin immunoprecipitation
(ChIP)-qPCR results indicated that this effect was not due to the acetylation of histone H3-Lysine 9
and 14 binding to the NF-L promotor. In line with the behavioral phenotype, the microinjection of
TSA also blocked the chronic morphine-induced increase of p-ERK/p-CREB/p-NF-L. Finally, we
compared chronic and acute morphine-induced behavioral sensitization. We found that although
both chronic and acute morphine-induced behavioral sensitization were accompanied by an increase
of p-CREB/p-NF-L, TSA exhibited opposing effects on behavioral phenotype and molecular changes
at different addiction contexts. Thus, our findings revealed a novel role of NF-L in morphine-induced
behavioral sensitization, and therefore provided some correlational evidence of the involvement of
NF-L in opiate addiction.

Keywords: cAMP response element-binding protein (CREB); extracellular signal-regulated kinase
(ERK); histone deacetylases; neurofilament light subunit (NF-L); ventrolateral orbital cortex

1. Introduction

Chronic exposure to addictive drugs causes long-lasting changes in the reward-related
brain regions. Repeated exposure to drugs of abuse enhances the motor-stimulant response
to these drugs, a phenomenon termed behavioral sensitization. In rodents, behavioral
sensitization is characterized by more robust psychomotor development following the same
or smaller dose of drug challenge after repeated exposure to drugs. Behavioral sensitization
involves functionally distinct phases, such as the development phase, transfer phase and
expression phase, and specific brain regions may drive these different phases [1,2]. The ven-
trolateral orbital cortex (VLO), a major area within the orbitofrontal cortex (OFC), has been
implicated in morphine-related addictive phenotypes [3]. Bilateral VLO lesions suppress
the expression phase of morphine-induced behavioral sensitization [4], and pharmaco-
logical manipulation of histone acetylation in the VLO results in dramatic molecular and
locomotive alteration [5]. Therefore, epigenetic modulation in the VLO plays a critical role
in morphine-induced behavioral sensitization. The extracellular signal-regulated kinases
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(ERKs) consist of ERK1 and ERK2, and belong to the mitogen-activated protein kinase
(MAPK) family. These kinases function throughout the mesolimbic system and are closely
related with drug-induced synaptic plasticity. The activity of the transcription factor, cAMP
response element binding protein (CREB), is regulated by phosphorylation, and thus could
be activated to modulate gene expression through p-ERK. Previous studies proposed that
the ERK/CREB signaling pathway may contribute to drug addiction [6]. Pioneering work
in our lab has demonstrated that the microinjection of TSA into the VLO promoted acute
morphine-induced behavioral sensitization and an acute morphine-induced increase of
p-ERK [4]. Chronic morphine abuse is more prevalent, yet the role of VLO on chronic
morphine-induced behavioral sensitization remains largely unclear.

Neurofilament (NF) proteins are major components of the neuronal cytoskeleton, and
are composed of light subunit (NF-L), medium subunit (NF-M) and heavy subunit (NF-H),
according to their molecular weight. The phosphorylation of NF-L proteins is relevant to NF
polymerization, dynamic cytoskeletal structure construction and synaptic activity [7]. Due
to such essential functions, most recent studies have highlighted that increased plasma and
cerebrospinal fluid NF-L is a biomarker for neurodegenerative disorders [8,9]. Moreover,
a previous study reported a marked decrease of NF-L proteins in the frontal cortex of
chronic opiate abusers [10]. However, the biological function of NF-L in drug addiction
remains elusive.

Epigenetic regulation is a key factor in drug-induced adaptations, and the posttrans-
lational modification of histones results in the alteration of gene expression in the brain’s
reward circuitry [11]. The modification processes of N-tails of histones lysine (K) residues
are dynamically and reversibly catalyzed by histone acetyltransferases (HATs) and histone
deacetylases (HDACs), which were involved in mediating neuroadaptations to drug expo-
sure [12]. It has been reported that histone acetylation specific in the vicinity of the NF-L
promotor remarkably correlated with NF-L expression [13], and thus endows NF-L with
vulnerability to HDAC. Trichostatin A (TSA), a pan HDAC inhibitor, could upregulate
acetylated histone H3-Lysine 9 and 14 (H3K9/14ac) in the promoter region of target genes
to promote transcriptional activation [14,15].

Here, we used a chronic morphine-induced behavioral sensitization paradigm to
investigate the potential role of NF-L in morphine-induced behavioral sensitization. It is
noteworthy that the behavioral changes are associated with p-ERK/p-CREB/p-NF-L, but
not with direct acetylation at the relevant NF-L loci. These observations demonstrated a cor-
relation of p-NF-L with morphine-induced behavioral sensitization. Further, we provided
evidence for the opposing effects of TSA in acute and chronic morphine-induced behavioral
sensitization in mice. Such epigenetic regulatory mechanisms might be harnessed for the
diagnosis and treatment of opiate addiction in the clinic.

2. Results
2.1. Microinjection of TSA into the VLO Suppresses the Locomotor Activity during Expression
Phase, but Does Not Affect the Locomotor Activity during Development Phase

The procedures of chronic morphine-induced behavioral sensitization were show in
Figure 1. As shown in Figure 2A, in the development phase of chronic morphine-induced
behavioral sensitization, two-way repeated measures ANOVA showed the significant
effect of treatment (F(3, 140) = 22.26, p < 0.0001), but non-significant effects of interaction
(F(12, 140) = 1.120, p = 0.3485) and time (F(4, 140) = 1.574, p = 0.1846). On Day 5 and Day 7, mor-
phine treatment (10 mg/kg) significantly increased the total distance of rats (Veh-Mor vs.
Veh-Sal, p < 0.01; TSA-Mor vs. TSA-Sal, p < 0.01). On Day 9, the total distance travelled was
dramatically different between morphine and saline groups (Veh-Mor vs. Veh-Sal, p < 0.05;
Veh-Mor vs. TSA-Sal, p < 0.05; TSA-Mor vs. TSA-Sal, p < 0.001; TSA-Mor vs. Veh-Sal,
p < 0.0001). However, there is no significant difference in the TSA-Mor group. This trending
increase in the TSA-Mor group may reflect some incubation of behavioral sensitization. As
shown in Figure 2B, there was no significant difference between the TSA-Morphine group
and the Vehicle-Morphine group in the total distance for the whole development phase. In
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conclusion, the TSA microinjection (165 µM, 0.5 µL/side) has no significant effect during
the development phase of morphine-induced behavioral sensitization.
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Figure 1. The experimental schedule of chronic morphine-induced behavioral sensitization. Each rat
was habituated to the testing chambers without injection from Day 2 to Day 0. During development,
they received morphine (10 mg/kg, i.p.) or saline every other day, and their locomotor activity was
monitored for 240 min. After 7 days (transfer phase) drug free, all rats received morphine (5 mg/kg,
i.p.) and their locomotor activity was measured for 240 min in the expression phase on Day 17.

In the expression phase of behavioral sensitization induced by chronic morphine, the
total distance of different time points within 240 min were compared and analyzed. As
shown in Figure 2C, two-way repeated measures ANOVA revealed the significant effect
of time (F(23, 552) = 7.380, p < 0.0001) and treatment (F(3, 552) = 73.91, p < 0.0001), but not
interaction (F(69, 552) = 0.6787, p = 0.9768). Further, there was a significant difference in the
total distance travelled in 240 min among Veh-Sal, TSA-Sal, Veh-Mor and TSA-Mor groups
(F(3, 24) = 9.384, p = 0.0003). Morphine significantly increased the total distance of rats (Veh-
Mor vs. Veh-Sal, p < 0.001; Veh-Mor vs. TSA-Sal, p < 0.01). The total distance in the TSA-
Morphine group was lower than that of the Vehicle-Morphine group (p < 0.001, Figure 2D).
These results suggested that the bilateral microinjection of TSA (165 µM, 0.5 µL/side) into
the VLO significantly suppressed morphine-induced behavioral sensitization.

2.2. Chronic Morphine-Induced Behavioral Sensitization Inhibits the Expression of Total NF-L in
the VLO, While TSA Microinjection Reverses This Inhibitory Effect

The protein level of NF-L significantly altered during the expression phase of chronic
morphine-induced behavioral sensitization. As shown in Figure 3, the expression level of
NF-L was significantly different among Veh-Sal, TSA- Sal, Veh-Mor and TSA-Mor groups
(F(3, 20) = 5.877, p = 0.0048). The expression level of NF-L was dramatically decreased in
the Veh-Mor group compared with the Veh-Sal group (p < 0.05). There was no significant
difference in the expression level of NF-L between the TSA-Mor group and TSA-Sal group,
while the expression level of NF-L in the TSA-Mor group was significantly higher than that
of the Veh-Mor group (p < 0.01). These results suggested that the bilateral microinjection
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of TSA into the VLO could reverse the down-regulation of NF-L expression after chronic
morphine-induced behavioral sensitization.
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Figure 2. The effects of microinjection of TSA into the VLO on development and expression phases of
chronic morphine-induced behavioral sensitization. (A) The TSA has no effect on the total travelled
distance recorded on Day 1, Day 3, Day 5, Day 7 and Day 9 during development phase. (B) The sum
of total travelled distance recorded during development phase. (C) The TSA reversed morphine-
induced hyperlocomotion during expression phase. The travelled distance after morphine (5 mg/kg)
challenge was recorded every 10 min within 240 min. (D) The sum of total travelled distance of rats
for 240 min on Day 17. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001, compared with Veh-Sal
group; # p < 0.05, ## p < 0.01, ### p < 0.001, #### p < 0.0001, compared with TSA-Sal group; ˆ p < 0.05,
ˆˆ p < 0.01, ˆˆˆ p < 0.001, compared with Veh-Mor group. n = 6–10. Abbreviations: Mor, morphine;
Sal, saline.

2.3. The Down-Regulation of NF-L Expression after Chronic Morphine-Induced Behavioral
Sensitization Is Not Due to the Direct Acetylation of H3K9/14 at NF-L Gene

Previous studies have demonstrated that TSA, a pan HDAC inhibitor, functions by
acetylating H3K9/14ac at the promoter region of target genes [14,15]. To determine the
mechanisms of NF-L on morphine-induced behavioral sensitization, we used ChIP to
measure the enrichment H3K9/14ac at NF-L gene. As shown in Figure 3B, the % Input of
RPL30 (positive control) was greater than 1%, while the % input of IgG-negative control
was less than 0.1%. The relative enrichment abundance of the H3K9/14ac at the promoter
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region of rat NF-L was more than 10 times higher than that of IgG control. These results
verified our experimental quality control. As shown in Figure 3C, there was no significant
difference of H3K9/14ac enrichment at NF-L promoter region between morphine and saline
groups (t10 = 0.1239, p = 0.903), suggesting that the morphine-induced alteration of NF-L
was not due to the direct effect of H3K9/14ac.
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Figure 3. Microinjection of TSA into the VLO blocked chronic morphine-induced downregulation
of NF-L, and chronic morphine-induced alteration of NF-L was not due to H3K9/14ac binding to
NF-L promotor. (A) Representative Western blots (top) and summary scatterplots with histograms
(bottom) demonstrated the protein levels of NF-L in the VLO. * p < 0.05, compared with Veh-Sal
group; # p < 0.05, compared with TSA-Sal group; ˆˆ p < 0.01, compared with Veh-Mor group. n = 6.
(B) The Ct data from different IPs was calculated corresponding 2% input sample. Fold enrichment
levels were normalized with their respective control IgG values. (C) No significant difference of
enrichment of H3K9/14ac at the NF-L promoter region between morphine and saline groups. n = 6.

2.4. Chronic Morphine-Induced Behavioral Sensitization Promotes the Phosphorylation of ERK,
CREB and NF-L in the VLO, While TSA Microinjection Reverses These Effects

Mounting evidence has demonstrated that ERK and CREB are important for opiate
addiction [16,17]. There were significant differences in the protein level of p-ERK among
Veh-Sal, TSA-Sal, Veh-Mor and TSA-Mor groups (F(3, 20) = 4.824, p = 0.01) after the challenge
dose of morphine exposure on Day 17. The p-ERK expression significantly increased in the
Veh-Mor group, compared with the Veh-Sal group, while the microinjection of TSA into
the VLO significantly decreased the protein levels of p-ERK (Veh-Sal vs. TSA-Sal, p > 0.05;
Veh-Sal vs. Veh-Mor, p < 0.05; Veh-Sal vs. TSA-Mor, p > 0.05; TSA-Sal vs. Veh-Mor, p > 0.05;
TSA-Sal vs. TSA-Mor, p > 0.05; Veh-Mor vs. TSA-Mor, p < 0.05). There was no significant
difference of total ERK among these groups (Figure 4A).
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histograms (bottom) demonstrate the protein levels of p-ERK/t-ERK in the VLO. (B) Representative
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There were significant differences in the protein level of p-CREB among Veh-Sal, TSA-
Sal, Veh-Mor and TSA-Mor groups (F(3, 28) = 11.25, p < 0.0001) after the challenge dose of
morphine exposure on Day 17. The protein levels of p-CREB significantly increased in the
expression phase of morphine-induced behavioral sensitization, while the microinjection of
TSA into the VLO significantly decreased the protein levels of p-CREB (Veh-Sal vs. TSA-Sal,
p > 0.05; Veh-Sal vs. Veh-Mor, p < 0.001; Veh-Sal vs. TSA-Mor, p > 0.05; TSA-Sal vs. Veh-Mor,
p < 0.001; TSA-Sal vs. TSA-Mor, p > 0.05; Veh-Mor vs. TSA-Mor, p < 0.01). There was no
significant difference of total CREB among these groups (Figure 4B).

There were significant differences in the protein level of p-NF-L among Veh-Sal, TSA-
Sal, Veh-Mor and TSA-Mor groups (F(3, 24) = 6.919, p = 0.0016) after the challenge dose of
morphine exposure on Day 17. The protein levels of p-NF-L significantly increased in the
expression phase of morphine-induced behavioral sensitization, while the microinjection of
TSA into the VLO significantly decreased the protein levels of p-NF-L (Veh-Sal vs. TSA-Sal,
p > 0.05; Veh -Sal vs. Veh-Mor, p < 0.01; Veh-Sal vs. TSA-Mor, p > 0.05; TSA-Sal vs. Veh-Mor,
p < 0.01; TSA-Sal vs. TSA-Mor, p > 0.05; Veh-Mor vs. TSA-Mor, p < 0.05, Figure 4C).

The results of the p-ERK protein and p-CREB protein may suggest that the activation
of ERK and CREB is correlated with chronic morphine-induced behavioral sensitization.

2.5. Acute Morphine-Induced Behavioral Sensitization Promotes the Phosphorylation of CREB and
NF-L in the VLO, While TSA Microinjection Reinforces These Effects

The experimental schedule of acute morphine-induced behavioral sensitization was
shown in Figure 5 as previously reported [4]. During the development phase, rats received
a single dose of morphine (10 mg/kg). After 7 days (transfer phase) drug free, all rats
received morphine (5 mg/kg) and their locomotor activity was measured for 240 min in
the expression phase on Day 9. Our previous study has demonstrated that the microin-
jection of TSA into the VLO potentiated acute morphine-induced behavioral sensitization
and the acute morphine-induced increase of p-ERK [4]. There was no significant dif-
ference in the protein level of NF-L among Veh-Sal, TSA- Sal, Veh-Mor and TSA-Mor
groups (F(3,33) = 2.286, p = 0.0969) after the challenge dose of morphine exposure on Day 9
(Figure 5A).
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Figure 5. Microinjection of TSA into the VLO reinforced acute morphine-induced upregulation
of p-NF-L and p-CREB. (A) The experimental schedule of acute morphine-induced behavioral
sensitization. During development, they received single dose of morphine (10 mg/kg, i.p.). After
7 days (transfer phase) drug free, all rats received morphine (5 mg/kg, i.p.) and their locomotor
activity was measured for 240 min in the expression phase on Day 9. (B) Representative Western blots
(top) and summary scatterplots with histograms (bottom) demonstrate the protein levels of p-NF-L
in the VLO. Representative Western blots and summary scatterplots with histograms demonstrate
the protein levels of total NF-L in the VLO. (C) Representative Western blots (top) and summary
scatterplots with histograms (bottom) demonstrate the protein levels of p-CREB in the VLO. * p < 0.05,
** p < 0.01, **** p < 0.0001, compared with Veh-Sal group; # p < 0.05, #### p < 0.0001, compared with
TSA-Sal group; ˆ p < 0.05, compared with Veh-Mor group. n = 6–13.

As shown in Figure 5A, the expression level of phosphorylated NF-L protein (p-NF-
L) has a significant difference among Veh-Sal, TSA- Sal, Veh-Mor and TSA-Mor groups
(F(3, 25) = 16.40, p < 0.0001). The expression level of p-NF-L was significantly increased after
morphine exposure (Veh-Mor vs. Veh-Sal, p < 0.05; Veh-Mor vs. TSA-Sal, p < 0.05; TSA-Mor
vs. TSA-Sal, p < 0.0001; TSA-Mor vs. Veh-Sal, p < 0.0001). The bilateral microinjection of
TSA into the VLO further upregulated the protein level of p-NF-L (TSA-Mor vs. Veh-Mor,
p < 0.05).

As shown in Figure 5B, there was a significant difference in p-CREB protein levels
(F(3, 20) = 20.18, p < 0.0001). The expression level of p-CREB was significantly increased after
morphine exposure, and TAS treatment enhanced this effect (Veh-Mor vs. Veh-Sal, p < 0.01;
Veh-Mor vs. TSA- Sal, p < 0.05; TSA-Mor vs. TSA-Sal, p < 0.0001; TSA-Mor vs. Veh-Sal,
p < 0.0001; TSA-Mor vs. Veh-Mor, p < 0.05). There was no significant difference of total
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CREB among these groups (p > 0.05). The injection sites were historically identified and an
example was shown in Figure 6.
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These results suggested that previous exposure to acute morphine resulted in an
increase of p-CREB/p-NF-L in the VLO, and the single microinjection of TSA further
enhanced this effect.

3. Discussion

Gender differences are apparent throughout different stages of drug abuse [18]. There-
fore, only male rats were used in this study to exclude the complex reciprocal interactions
of estrous phases with the brain in female animals.

3.1. Microinjection of TSA into the VLO Significantly Decreased Rats’ Locomotion in the
Expression Phase of Morphine-Induced Chronic Behavioral Sensitization

Rats that were exposed to morphine showed an initial inhibition of locomotion activity
for approximately 60 min and then a robust increase of locomotion activity later [19].
Consistent with previous studies [20–22], the present study indicated that repeated and
intermittent morphine treatment (10 mg/kg), followed by a challenge dose of 5 mg/kg,
was able to induce the expression of behavioral sensitization in rats. While HDAC inhibitor
TSA into the VLO had no effect during the development phase, it depressed the expression
phase of morphine-induced behavioral sensitization (Figure 2).

In the context of aversive instrumental learning, previous research has shown that
the inactivation of the VLO via the GABA agonists baclofen and muscimol did not im-
pair initial learning or acquisition, but increased the expression once stimulus-outcome
associations had been well established [23]. Partly consistent with these findings, our
previous data demonstrated that the bilateral electrical lesion of the VLO has no effect on
the development phase or initial learning, but significantly suppressed the expression of
morphine-induced behavioral sensitization [4]. Collectively, the above evidence supported
that compared with the initial learning process, the VLO is more important during the
behavioral expression phase. Specific brain regions may modulate different phases of
behavioral sensitization, which could at least partly illustrate the different effects of TSA
during different phases. Moreover, TSA pre-treatment blocked the increase of p-ERK/ERK,
p-CREB/CREB ratios and p-NF-L, and these molecular changes might contribute to the
blocking effect of TSA during the expression phase. Additionally, different effects may
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be observed depending on the stimulus valance, i.e., aversive versus rewarding. The
rewarding stimulus might be preferentially endorsed by the VLO, while the inhibition of
VLO promoted aversive responses.

3.2. The Inhibitory Effect of TSA on Chronic Morphine-Induced Behavioral Sensitization Might Be
Correlated with p-ERK/p-CREB/p-NF-L Signaling Pathway, Rather Than Having a Direct
Influence on NF-L Expression

Mounting evidence suggested that histone marks, such as H3K14ac, could promote
chromatin relaxation and gene expression, which are essential for learning and memory [24].
Alcohol exposure in mice resulted in the significant genome-wide enrichment of H3K9ac
peaks at key neuronal genes [25]. Subbanna et al. also reported that the alteration of
H3K14ac in the activity-regulated cytoskeletal (Arc) gene promoter in the hippocampus
is responsible for alcohol spectrum disorders [26]. At the same time, ethanol exposure
enhanced the repressive marker, such as H3K9me2, due to the enhanced recruitment of
methyltransferase G9a, accompanied by defects in hippocampal synaptic plasticity and
the disruption of spatial memory, while the G9a inhibitor dramatically reversed these
negative effects. Collectively, these findings validated that histone modifications could
drive long-lasting adaptations to cellular function via cytoskeletal proteins, which promotes
the behavioral and psychological abnormalities underlying addiction.

A previous study reported that the TSA, which is a pan HDAC inhibitor, enhanced his-
tone H3-Lysine 9 and 14 acetylation (H3K9/14ac) at promoter regions of target genes [14,15].
As histone deacetylases are involved in chromatin compaction and mostly histone acetyla-
tion is correlated with transcriptional permission, TSA could promote transcription. The
NF-L is a well-known marker for axonal–neuronal degeneration. Most studies reported
a marked increase of NF-L in neurodegenerative diseases, but we detected a significant
downregulation of total NF-L after chronic morphine exposure and TSA reversed this effect.
Similar to the study reported by García-Sevilla [27], chronic morphine treatment decreased
the immune-density of NF-L in the cerebral cortex. These abnormalities in NF proteins
turned out to be related to opioid receptors, for the chronic morphine treatment did not
decrease NF-L in cortices of µ-, δ-, and κ-knockout mice, suggesting the involvement of
the three types of opioid receptors in this effect of morphine. We further examined the
recruitment of H3K9/14ac at NF-L promoters via the ChIP approach, but did not observe
any difference, excluding a direct causal link between histone acetylation and NF-L. Future
studies using ChIP, in combination with high-throughput PCR sequencing to identify the
direct downstream target genes, is warranted.

The ERK plays an Important role in long-term synaptic plasticity [28], and the increase
of ERK phosphorylation in the prefrontal cortex, nucleus accumbens, hippocampus and
amygdala is involved in morphine addiction in mice [29,30]. The p-EKR and p-CREB
proteins in the VLO were upregulated after morphine exposure, which derives from an
epigenetic regulation, as this effect could be blocked by repeated TSA injection. Similarly, as
a transcription factor, CREB is particularly implicated in the plasticity associated with drug
addiction. Previous study showed that ERK could conduct the transcriptional regulation
by controlling the phosphorylation of CREB via mitogen- and stress-activated protein
kinase 1 (MSK1) [31,32]. Another study also demonstrated that conditioned place aversion
(CPA) extinction training-induced chromatin modification of BDNF in the PFC is trigged
by the activation of ERK-CREB signaling pathways [13]. Therefore, ERK-CREB signaling
pathways could be epigenetically regulated.

The activation of ERK is vital for morphine-induced behavioral sensitization. In the
expression phase of morphine-induced behavioral sensitization, CREB can be phosphory-
lated by ERK, via an opioid receptor, to influence the transcription and expression of the
NF-L gene (regulated by p-CREB) [27]. Consistent with our speculation that NF-L proteins
could be phosphorylated by ERK, TSA blocked the morphine-induced increase of p-NF-L
and p-ERK.
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3.3. The TSA Has Opposing Effects on Acute versus Chronic Morphine-Induced
Behavioral Sensitization

Our previous study demonstrated that the microinjection of TSA into the VLO poten-
tiated acute morphine-induced behavioral sensitization and the increase of p-ERK [4], and
our current study further validated that TSA also elevated the acute morphine-induced
increase of p-CREB and p-NF-L (Figure 5). These findings are very interesting, as TSA
displayed opposing effects on chronic and acute morphine-induced behavioral sensitization
(Figure 7). The changes observed in the chronic morphine groups need time to accumulate,
as a single injection of morphine is not enough to induce the dramatic alteration of NF-L
(Figure 5A). The injection times, i.e., single injection of TSA versus repeated TSA injection
throughout the development phase, might partially explain the discrepancy. Moreover,
this result is reminiscent of other VLO studies, in which the microinjection of the 5-HT6
receptor agonist into the VLO aggregated acute inflammatory pain and attenuated chronic
neuropathic pain [33,34]. Different cell types, such as glutamatergic versus GABAergic
neurons, and dopamine D1 receptor–expressing (D1R) neurons versus D2R neurons, exhib-
ited different, and even opposing effects on drug-related behaviors. We speculated that
cell type–specific mechanisms may drive the different effects of TSA on chronic versus
acute morphine-induced behavioral sensitization. Furthermore, different contexts, such as
acute versus chronic morphine exposure, induced dramatically different neuroplasticity
changes. This is also the case with distinct phases of behavioral sensitization. For example,
the development phase implicates transient neuronal maladaptive alterations, while the
expression phase indicates time-dependent neuronal adaptive changes evoked by drug
re-exposure. Using optogenetic or chemogenetic strategies to manipulate specific types of
neurons, ongoing research efforts will focus on comparing and dissecting the molecular
underpinnings of acute and chronic morphine-related behaviors.
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Figure 7. A schematic graph showing that TSA displayed opposing effects on chronic and acute
morphine-induced behavioral sensitization. Microinjection of TSA into the VLO blocked chronic
morphine-induced behavioral sensitization, which is correlated with p-ERK/p-CREB/p-NF-L pathway.
However, microinjection of TSA into the VLO promoted acute morphine-induced behavioral sensitization.

One limitation of the current study is that most data in this study are correlational,
which limits our ability to explain the causal relationship. We cannot rule out other factors
such as receptor phosphorylation, receptor expression and other synaptic/circuit mech-
anisms by which behavioral sensitization may be influenced. Importantly, we did not
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investigate the direct target genes on which TSA exerted its activity. Although mount-
ing evidence has established that TSA could affect phosphorylation of ERK [35–39] and
CREB [15,40], the underlying mechanisms remain unknown. In order to further advance
our understanding, it is warranted to utilize other assays, such as ChIP-sequencing, to
identify direct target genes. Additionally, we should incorporate target gene manipulation
strategies to identify their functions.

In conclusion, the present study suggests that NF-L in the VLO is correlated with
morphine-induced behavioral sensitization. TSA regulates morphine-induced behavioral
sensitization, which is correlated with p-ERK/p-CREB/p-NF-L pathway in the VLO, rather
than by previously reported H3K9/14 binding to the NF-L promotor. In addition, acute and
chronic morphine exposure produced similar adaptations in the VLO, while TSA produced
very different adaptations. Thus, our data provided some insights for the diagnosis and
treatment of opiate addiction in the clinic.

4. Materials and Methods
4.1. Animals and Drugs

Male adult Sprague-Dawley rats (weighing 250–300 g) were purchased from the
Medical Experimental Animal Center of Xi’an Jiaotong University, Shaanxi Province, China.
Five animals were housed in each cage under a 12/12 h light-dark cycle (lights on at 07:00)
with ad libitum to food and water. The experimental protocols were approved by the
Institutional Animal Care Committee of Xi’an Jiaotong University (No. 2015491). All efforts
were made to minimize the number of rats used and their suffering in the experiments.

Morphine hydrochloride was purchased from the National Institutes for Food and
Drug Control (Beijing, China), which was dissolved in 0.9% saline and administered
intraperitoneally (i.p.) [19]. The Trichostatin A (TSA) was purchased from Sigma-Aldrich
(Sigma Chemical, St. Louis, MO, USA) and dissolved in 10% dimethylsulfoxide (DMSO,
diluted with saline) to obtain a solution of 165 µM [13,15,41]. All drugs were freshly
prepared before the experiments.

4.2. Surgery for Bilateral Intracerebral Guide Cannula Placement

Rats were anesthetized with sodium pentobarbital (50 mg/kg, i.p.), and the head was
immobilized in a stereotaxic frame. A small craniotomy was performed just above the VLO.
Stainless steel guide cannulas were stereotaxically inserted, with the tip 2.0 mm dorsal to
the bilateral VLO using the following coordinates: anterior-posterior (AP) + 3.2; medial-
lateral (ML) ± 2.0; dorsal-ventral (DV) 2.6 mm [42,43], followed by attachment to the skull
with two microscrews and dental cement. Once the rats recovered from anesthesia, they
were administered with sodium penicillin (0.2 million units/day for 3 days, i.p.) to prevent
infection. The rats were carefully nursed and fed in clean cages. After surgery, animals were
housed separately in cages and allowed 7 days to recover before behavioral procedures.

4.3. Intracerebral Microinjection

A microsyringe was inserted into the VLO, with the tip extending 2.0 mm beyond the
end of the guide cannula from the surface of brain. TSA (0.5 µL/side) was slowly infused
into the VLO bilaterally through a 1.0-µL Hamilton syringe at a constant speed over 1 min
to make sure the drugs completely diffused from the tips, and then the obturators were
reinserted into the guide cannula [4]. Equal volumes of 10% DMSO were served as the
vehicle controls.

4.4. Behavioral Sensitization

For behavioral experiments, rats were randomly assigned to each of four groups,
i.e., Vehicle-Saline (Veh-Sal), TSA-Saline (TSA-Sal), Vehicle-Morphine (Veh-Mor) and TSA-
Morphine (TSA-Mor). The locomotor activity test system consists of four testing chambers
(60 × 60 × 40 cm3, length × width × height) with a video camera above to track each
animal’s locomotion. The room was dimly lit and the whole experiments were performed
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between 8:00 am and 12:00 noon. The procedures were performed according to a previous
report with some modifications [4]. Before the experiment, each rat was habituated to the
testing chambers for 3 days from Day 2 to Day 0. From Day 1 to Day 9 (development
phase), morphine (10 mg/kg, i.p.) or saline (1 mL/kg, i.p.) was injected every other day,
5 times in total. From Day 10 to Day 16 (transfer phase), all groups were kept in their home
cages drug free for 7 days. All rats were challenged with a low dose of morphine (5 mg/kg)
on Day 17 (expression phase). Following the morphine or saline injections, horizontal
locomotor activity was monitored for 240 min, which was recorded at 10 min intervals
(Figure 1). For acute or a single dose of morphine-induced sensitization, 10 mg/kg of
morphine was injected only on Day 1, followed by 7 days of transfer, and challenged on
Day 9 (Figure 5A) [4]. The microinjection of TSA (165 µM, 0.5 µL/side) or vehicle was
slowly infused into the VLO bilaterally 30 min prior to morphine or saline. Horizontal
trajectories (reflecting locomotor activity) of the rats were recorded and analyzed off-line
by a video-tracking software (SMART, Panlab SL, Barcelona, Spain) to determine their
total travelled distance. Animals were sacrificed immediately after the 240 min locomotor
activity test for molecular experiments.

4.5. Western Blotting

After behavioral experiments, 13 rats in each group were sacrificed directly and
the whole brain was removed. Then the brain was cut into coronal sections with 1 mm
thickness and the location of microinjection was checked. The VLO tissue will be extracted
for Western blot analysis only from rats with accurate microinjection site. Protein extraction
was performed as previously described [19]. Briefly, proteins were separated on SDS-PAGE
gels and then transferred to PVDF membranes (Millipore Corporation, Bedford, MA, USA).
The membranes were blocked in 5% (w/v) skimmed milk in Tris-buffered saline (500 mM
NaCl, 20 mM Tris–HCl, pH 7.5) containing 0.05% Tween-20 for 1 h at room temperature and
then incubated with the following primary antibodies overnight at 4 ◦C: phosphorylation
(p)-NF-L at Ser55 (sc-24504, Santa Cruz Biotechnology, Santa Cruz, CA, USA), NF-L (#2837,
Cell Signaling Technology, Danvers, MA, USA) at 1:1000, p-ERK1/2 (ab201015, Abcam,
Cambridge, UK), total ERK1/2 (#9102, Cell Signaling Technology, Danvers, MA, USA)
at 1:4000, p-CREB at Ser133 (#9198, Cell Signaling Technology), total CREB (#9197, Cell
Signaling Technology, Danvers, MA, USA) at 1:1000, and β-actin (sc-47778, Santa Cruz) at
1:1000. The membranes were rinsed 3 times and then incubated with secondary antibodies:
goat anti-rabbit or anti-mouse IgG horse-radish peroxidase (HRP)-conjugated secondary
antibody (BS13278 & BS12478, Bioworld, Dublin, OH, USA) at 1: 10,000. Development
was performed with an enhanced chemiluminescence (ECL) plus a detection kit (Millipore
Corporation, Bedford, MA, USA). The band intensities were analyzed using the Quantity
One software (Bio-Rad, Hercules, CA, USA) to calculate the protein versus the loading
control (β-actin) for each protein.

4.6. Chromatin Immunoprecipitation (ChIP)-qPCR Assay

ChIP assays were performed using the Simple ChIP Plus Enzymatic Chromatin IP
Kit (#9005, Cell Signaling Technology) according to the manufacturer’s protocol with
minor modifications. Brain tissues containing VLO were collected from animals on Day 17
immediately after the behavioral test. Four samples were pooled for cross-linking.

Weigh the fresh tissue samples and place samples in a 60 mm dish and finely mince
using a clean razor blade on ice. To crosslink proteins to DNA, add 45 µL of 37% formalde-
hyde and rock for 20 min at room temperature. Stop cross-linking by adding 100 µL of
10× g and mix for 5 min at room temperature. After centrifugation, transfer tissue and
re-suspend in PBS to a Dounce homogenizer, and then disaggregate tissue pieces with
20–25 strokes to make single-cell suspension. Remove supernatants and continue with
chromatin digestion. Chromatin was digested with micrococcal nuclease (#10011, Cell
Signaling Technology) for 20 min at 37 ◦C with frequent mixing to digest DNA into a length
of approximately 150–900 bp. The clarified nuclear extracts were incubated at 4 ◦C with
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anti-acetyl H3K9/14 (#9677, Cell Signaling Technology), Histone H3 (#4620, Cell Signaling
Technology) and Normal Rabbit IgG (#2729, Cell Signaling Technology), with the latter two
as the positive and negative control, respectively. Following an overnight incubation with
antibodies, 30 µL of Protein G Magnetic Beads was added to each IP reaction and incubated
for 2 h at 4 ◦C with rotation. Bound DNA–protein complexes were eluted and crosslinks
were reversed after a series of washes. CHIP-enriched DNA was analyzed by quantitative
PCR performed in triplicate using Bio-Rad CFX 96 (Bio-Rad, USA), yielding a final sample
size of 6 data points.

PCR reactions were performed in a 10-µL system. The primers were designed to in-
clude in the vicinity of the NF-L promoter with acetylation of histones and the sequences as
follows: NF-L forward, 5′-CCCGCCTTTGCTCTTGC; NF-L reverse, 5′-GGCTGTCCTGCCA
CCTCTAT. The qPCR conditions were as follows: 95 ◦C for 30 s (initial denaturation),
40 cycles for 95 ◦C for 5 s (denaturation), 62 ◦C for 30 s (annealing) and 95 ◦C for
10 s followed by Melt Curve 65.0 to 95.0 ◦C for 5 s. The signal relative to the input
was calculated using a formula from the manufacture’s protocol as follows: Percent
input = 2% × 2(C[T]2%input sample−C[T]IP sample), where C[T] = Average threshold cycle of PCR
reaction [44]. Rat Ribosomal Protein L30 (RPL30) primer was used for positive control in
real-time PCR reaction [45–48]. Fold enrichment levels of the promotor region for NF-L
was assessed relative to the 2% input DNA followed by normalization to the respective
control IgG values.

4.7. Histology Examination

Three rats in each group were deeply anesthetized after the behavioral tests and
transcardially perfused with 0.9% saline, followed by 10% formalin. Their brains were
then removed and fixed in 10% formalin solution for 3–7 days, then stored in 30% sucrose
(pH 7.4) overnight. The brains were then cut into 40-µm thick sections using a freezing
microtome, and the slices were stained with Cresyl Violet. For animals whose injection
sites were not within the VLO, their behavioral data was excluded from data analysis. A
representative verification of VLO microinjection was shown in Figure 6.

4.8. Data Analysis

All data were shown as mean ± SEM. The statistical analyzes were performed using
Student’s t-test, one-way ANOVA and two-way ANOVA. For results with significant
interaction effects in two-way ANOVA, the simple effect test was conducted for further
analysis. For results without significant interaction effects, Bonferroni’s post-hoc test or
Student’s t-test was conducted. To determine differences between two groups, a Student’s
t-test was performed. For Western blotting, the protein levels of the control group were set
at 100% and all data were normalized to loading control. The data analyzes were performed
using IBM SPSS statistics 24. p < 0.05 was considered statistically significant.
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