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Abstract: Mancozeb, an antifungal typically used for the growth of fruits, has the characteristic of
non-internal absorption, and has a risk of binding to the waxy components of fruits. This work
investigated the interaction of pesticide molecules with the waxy layer on the grape surface and their
effects on pesticide residues in grapes. The study observed significant changes in the compositions
of the waxy layer on the grape surface after soaking in a mancozeb standard solution. The six
substances—oleanolic acid, ursolic acid, lupeol, octacosanol, hexacosanal, and γ-sitosterol—with
discernible content differences were chosen for molecular docking. Docking results were further
visualized by an independent gradient model based on Hirshfeld partition (IGMH). Hydrogen bonds
and van der Waals forces were found between mancozeb and the six waxy components. Moreover, the
negative matrix effects caused by the presence or absence of wax for the determination of mancozeb
were different through the QuEChERS-HPLC-MS method. Compared with the residue of mancozeb
in grapes (5.97 mg/kg), the deposition of mancozeb in grapes after dewaxing was significantly lower
(1.12 mg/kg), which further supports that mancozeb may interact with the wax layer compositions.
This work not only provides insights into the study of the interaction between pesticides and small
molecules but also provides theoretical guidelines for the investigation of the removal of pesticide
residues on the surface of fruits.

Keywords: mancozeb; wax of the grapes; pesticide combination; molecular docking; IGMH

1. Introduction

The grapes have a long history of cultivation and are grown in a wide range of areas.
Its fruit can be used as fresh or preserved fruit and also to make wine. At the same time, due
to its rich phenolic substances, it is also used as an essential raw material for extracting plant
antioxidants [1]. Therefore, grapes are regarded as an important economic crop worldwide.
The surface of grapes is often covered with a layer of “hoarfrost”-like substances, which is
the waxy surface layer of grapes, mainly including long-chain aldehydes, primary alcohols,
alkyl esters, alkanes, and triterpenoids [2]. The pentacyclic triterpenoids, such as oleanolic
acid and its ursolic isomer acid, have anti-cancer, anti-inflammatory, anti-diabetic, and
anti-multiple sclerosis effects [3]. Lupeol, one of the tetracyclic triterpenoids, also has
significant anti-inflammatory and anti-cancer effects [4]. In addition to health benefits,
these triterpenoids are also involved in the structure of the waxy layer [5]. A previous
study has shown a molecular model of the spatial arrangement of oleanolic acid and
the major aliphatic compound n-hexadecanol to explain the organization of the grape
cuticle. Oleanolic acid can form dimers through hydrogen bonding interactions between
the hydroxyl group of one molecule and the carboxyl group of a second molecule. The
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remaining functional groups may interact with complementary groups of other molecules,
including fatty alcohols, to form three-dimensional arrangements [5]. Due to the covering
of these waxy components, the surface of the grapes presents a hydrophobic feature which
can protect the internal water of the grapes from loss [6]. It also reduces the infestation
of some pests and diseases [7] and enhances the mechanical strength of grape peel [8].
However, some studies have proposed that the waxy layer structure on the surface of fruits
may provide a way for hydrophobic pesticides to penetrate plant tissues [9,10].

Mancozeb, as an ethylenebis(dithiocarbamate)s (EBDCs) pesticide, is a coordination
compound of manganese ethylene dithiocarbamate and zinc ions [11]. It has a bactericidal
effect by inhibiting the oxidation of pyruvic acid in bacteria, and the manganese and zinc
elements it contains significantly strengthen fruits [12]. Due to its high efficiency and low
toxicity [13], mancozeb is often used to control various diseases, such as anthracnose and
early fruit blight. Among the fungicides with one application frequency in a growing season,
33.78% of the growers choose mancozeb, ranking first [14]. Mancozeb is insoluble in water
and most organic solvents and easily remains on the surface of fruits. It is unstable when
exposed to light, heat, and humidity, and quickly degrades into ethylene thiourea (ETU)
and other products. ETU poses a risk to human health. It can be teratogenic, carcinogenic,
or mutagenic, and long-term exposure may lead to the risk of thyroid cancer [15–19].

At present, different kinds of literature have paid attention to the effect of epidermal
wax on the removal or degradation of pesticides. Most of them think that the components
in the wax layer have chemical or physical interactions with the pesticides, which affects
the degradation effect of pesticides. Several studies have shown that epidermal wax affects
the photodegradation of pesticides [20–25]. When the types of epidermal waxes contacted
by pesticides differ, the types and contents of photodegradation products are also quite
different. In addition, the presence of a waxy layer affects the efficiency of pesticide
removal from the surface of fruits. For smooth lettuce containing more surface wax, the
mancozeb appears to be more easily removed, which the authors explained was because
it readily migrates from its waxy surface to water [26]. Long-chain esters and alkanes
that accumulate in apple leaves during the growing season also cause a rapid decrease
in pesticide residues from foliar sprays of mancozeb [27]. These seem to indicate that the
presence of wax is less likely to produce pesticide residues. However, some experiments
yield the opposite results. For example, the concentration of azoxystrobin in washed apples
was lower in samples with wax removed than in samples without wax extracted from the
cuticle [9]. Pesticide residues on citrus and waxed apples are primarily concentrated in
the epidermal wax [28,29], which is thought to be because those pesticides may dry on the
surface or bind to the wax outside the peel and then adhere to the peel, thus remaining non-
removable in the wash treatment [30]. However, the interaction between mancozeb and
waxy layer components has not been studied in-depth, and there is a lack of explanation at
the molecular level.

Intermolecular interactions are thought to be a possible cause of pesticide enrichment
in waxes. Molecular docking is a bioinformatics-based theoretical modelling technique
that examines the interactions of molecules (such as ligands and receptors) and makes
computer-based predictions about their binding affinities and modes [31]. Several studies
have cited the AutoDock semi-flexible docking software, which consists of two components:
AutoGrid and AutoDock. AutoDock is primarily utilized as a search tool to identify the
ideal conformation and score, while AutoGrid is used to calculate the energy level contained
in the lattice. However, it cannot intuitively display the range and magnitude of weak
intermolecular interactions, so it needs to be combined with another visualization method.
Multiwfn [32] is a wave function analysis software developed by Lu Tian et al. Multiwfn
users have widely used the independent gradient model (IGM) to display weak interactions
between molecules [33] graphically, and the independent gradient model based on the
Hirshfeld partition (IGMH) is the latest upgraded version of IGM. As a result, the isosurface
created by the IGMH approach has replaced the IGM method as the suggested visualization
technique for weak intermolecular interactions.
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This study was performed on summer black grapes with a thick wax layer. First,
the changes in wax components before and after soaking pesticides were analyzed by
GC-MS. Following that, the interactions between pesticide molecules and wax components
were simulated through the molecular docking method and then visualized with Multiwfn.
Finally, the residue of mancozeb in grapes before and after dewaxing was determined by the
QuEChERS-HPLC-MS method to verify the association of mancozeb and wax components.
The work provides theoretical guidance for removing pesticides on the surface of fruits.

2. Results and Discussion
2.1. Effect of Solvent Extraction on the Wax Layer

Epidermal wax of plants is made up of a complex mixture of diverse substances—
mostly aliphatic acid, alkane, aliphatic alcohol, aldehyde, ketone, and ester. Furthermore,
different plant species’ epidermal wax components may vary [33]. The solvent is a crucial
factor affecting the extraction effect of grape wax. The result of solvent extraction is often
related to the wax composition of the grape epidermis, following the principle of similar
phase solubility. When extracting, a solvent with high wax yield and good volatility should
be selected, which is convenient for the later collection of wax in the solvent. Based on this,
dichloromethane and chloroform were selected as extraction solvents to study the effect
of wax extraction under different solvent ratios. The experimental results are shown in
Figure 1.

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 3 of 17 
 

 

method. Multiwfn [32] is a wave function analysis software developed by Lu Tian et al. 
Multiwfn users have widely used the independent gradient model (IGM) to display weak 
interactions between molecules [33] graphically, and the independent gradient model 
based on the Hirshfeld partition (IGMH) is the latest upgraded version of IGM. As a result, 
the isosurface created by the IGMH approach has replaced the IGM method as the sug-
gested visualization technique for weak intermolecular interactions. 

This study was performed on summer black grapes with a thick wax layer. First, the 
changes in wax components before and after soaking pesticides were analyzed by GC-
MS. Following that, the interactions between pesticide molecules and wax components 
were simulated through the molecular docking method and then visualized with Multi-
wfn. Finally, the residue of mancozeb in grapes before and after dewaxing was deter-
mined by the QuEChERS-HPLC-MS method to verify the association of mancozeb and 
wax components. The work provides theoretical guidance for removing pesticides on the 
surface of fruits. 

2. Results and Discussion 
2.1. Effect of Solvent Extraction on the Wax Layer 

Epidermal wax of plants is made up of a complex mixture of diverse substances—
mostly aliphatic acid, alkane, aliphatic alcohol, aldehyde, ketone, and ester. Furthermore, 
different plant species’ epidermal wax components may vary [33]. The solvent is a crucial 
factor affecting the extraction effect of grape wax. The result of solvent extraction is often 
related to the wax composition of the grape epidermis, following the principle of similar 
phase solubility. When extracting, a solvent with high wax yield and good volatility 
should be selected, which is convenient for the later collection of wax in the solvent. Based 
on this, dichloromethane and chloroform were selected as extraction solvents to study the 
effect of wax extraction under different solvent ratios. The experimental results are shown 
in Figure 1. 

 
Figure 1. The extraction amount of grape wax under different solvents. 

Solvents of intermediate polarity should maximize the solubility of all wax constitu-
ents, including the highly hydrophobic hydrocarbons and the much more polar com-
pounds containing (many) functional groups [34]. Figure 1 shows a significant correlation 
between the proportion of chloroform and the extraction amount (p < 0.05). The higher the 
content of chloroform, the greater the extraction amount, which is consistent with previ-
ous research findings [35]. These experiments have shown that the waxy layer on the sur-
face of grapes has the best extraction effect under the condition of pure chloroform. The 

Figure 1. The extraction amount of grape wax under different solvents. a and b represent significant
differences between the data, and the differences between the data corresponding to different letters
are significant (p < 0.05).

Solvents of intermediate polarity should maximize the solubility of all wax con-
stituents, including the highly hydrophobic hydrocarbons and the much more polar com-
pounds containing (many) functional groups [34]. Figure 1 shows a significant correlation
between the proportion of chloroform and the extraction amount (p < 0.05). The higher the
content of chloroform, the greater the extraction amount, which is consistent with previous
research findings [35]. These experiments have shown that the waxy layer on the surface of
grapes has the best extraction effect under the condition of pure chloroform. The epidermal
wax of fresh and pesticide grapes was extracted using chloroform as the extraction solvent.
This process was done ten times, and the statistics of the wax content are displayed in
Table S1. There was no significant difference in the content of the waxy layer extracted from
fresh and pesticide grapes. The results indicated that soaking pesticides would neither
prevent chloroform from extracting the waxy layer on the surface nor improve the yield of
the waxy layer.

The surface morphology of grapes before and after dewaxing is shown in Figure 2.
Combined with the grape epidermis electron microscope results in Figure 3, the waxy
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layer structure on the surface of grapes is like platelets with irregular edges protruding
vertically from the surface. The morphology of plant surface waxes is often related to
its main components. For example, the waxy structure of primary alcohols is generally
lobed or serrated; nonacosan-10-ol tubules or β-diketone tubules make waxes form tubular
structures, etc. [36]. The main components of grape wax are primary alcohols, aldehydes,
ketones, and triterpenoids with a particular chain length [37,38], corresponding to their
sheet-like waxy layer structure, which is the same as the previous research result [7,39,40].
The surface wax of grapes was largely removed with chloroform. The lack of a clear
difference between the morphology of surface wax before and after the grapes were soaked
in pesticides suggests that simply soaking in the pesticides was insufficient to alter the
wax layer’s composition. However, several studies have also demonstrated that applying
pesticides to plants throughout their growth stage might change the wax layer’s makeup
and build-up [41,42].
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2.2. Waxy Layer Composition Analysis

GC-MS analysis was conducted on grape wax-control and pesticide wax-mancozeb.
The composition of grape wax is very complex, and direct detection can detect most long-
chain alkanes, some alkanes, and a small portion of alkanes; Some components, such as
oleanolic acid and ursolic acid, can only be detected after derivatization through BSTFA,
because BSTFA reagent can convert compounds containing hydroxyl into corresponding
trimethylsilyl derivatives, improving their volatility and thermal stability. In terms of com-
position, a total of 318 grape wax-control components were detected before derivatization,
and 77 were detected after derivatization; 274 types of wax-mancozeb were detected before
derivatization, and 60 types were detected after derivatization. Therefore, considering that
the original grape wax content was 100%, the types of components detected in pesticide
grape wax are only 84.5% of the original grape wax. The statistics of the relative content of
components in the two types of wax are shown in Figure 4.
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Overall, triterpenoids are the main components in the epidermal wax-control of Vitis
vinifera ‘Summer Black’ grapes, accounting for 37.15% of the original grape wax. They
are followed by various long-chain alkanes (22.61%), alkyl aldehydes (18.69%), alkanols
(8.13%), alkyl esters (5.36%), phenols (4.00%), and sterols (1.50%). In the wax-mancozeb,
while there are fewer types of detected components, the relative amounts of the above types
of substances also decrease. The decrease in sterols was the highest at 30.13%, followed
by a decrease of 28.74% in alkanols, 28.10% in aldehydes, and 21.05% in triterpenoids.
Perhaps a portion of the wax components that are easily soluble in water were washed
away due to being soaked in pesticides, resulting in fewer types of detected components
than the original grape wax. It is also possible that the presence of pesticides affects some
structures of wax components, making them more difficult to detect, resulting in a decrease
in relative content.

The gas chromatograms of wax-control and wax-mancozeb for component detection
are shown in Figure 5. In Figure 5A, only the wax-mancozeb group could detect pesticide
fragments, namely [ethylenebis-(dithiocarbamate)]-manganese (C4H6MnN2S4). For the
original wax components, most of them were seen in the wax-control group, such as
lupeol (C30H50O), octacosanol (C28H58O), hexadecanoal (C26H52O), γ-sitosterol (C29H50O),
and other substances. Oleanolic acid (C30H48O3) and ursolic acid (C30H48O3) need to be
derivatized to be detected, and they are shown in Figure 5B. The peak area they noticed
in the wax-mancozeb group was smaller than in the wax-control group, which may be
due to the interaction of mancozeb with these substances, making the substances less
captured by the TOF detector [43]. However, there are also cases where the peak value of
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the wax-mancozeb group is higher. For example, compared with the wax-control group, the
detection response of undecane (C11H24) in the wax-mancozeb is increased, possibly due to
the pesticide’s positive matrix effect. Another example is 2,2′-methylenebis(4-methyl-6-tert-
butylphenol) (C23H32O2), ethyl tetracosanoate (C26H52O2), heptadecanoic acid ethyl ester
(C19H38O2), and other substances. However, these substances are initially present in tiny
amounts, and the difference between the two groups may be due to systematic errors in the
instrumental analysis. More information for the above substances is provided in Table S2.
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2.3. Molecular Docking Simulation and IGMH Analysis between Mancozeb and
Waxy Components

The substance molecules with high content in the wax layer and significant differences
in the range (oleanolic acid, ursolic acid, lupeol, octacosanol, hexacosanal, and γ-sitosterol)
between the pesticide group and the control group were selected for molecular docking
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simulation in Autodock. The hydrogen bonds formed by docking are shown in green
dotted lines in Figure 6.
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The docking results of oleanolic acid, ursolic acid, lupeol, octacosanol, hexadecanol,
and γ-sitosterol and mancozeb in Autodock showed that the H on the imino group and the
sulfhydryl group of the pesticide molecule can form a hydrogen bond between the O of
the alcoholic hydroxyl group and the carboxyl hydroxyl group in the six wax components,
and their minimum binding energies are −5.96 kcal/mol, −5.87 kcal/mol, −3.30 kcal/mol,
−3.67 kcal/mol, −3.82 kcal/mol, and −2.22 kcal/mol. Generally, the docking results can
be considered feasible when the lowest binding energy is less than −1.2 kcal/mol. The
results indicate that the presence of the waxy layer binds to the pesticide molecules by
forming hydrogen bonds. More detailed information on the docking results is given in
Table S3.

In addition to forming hydrogen bonds, the weak intermolecular interaction force was
visually simulated using the primary function 20 neutron function 11 in Multiwfn3.8 and
optimized with VMD. The results are shown in Figure 7. IGMH analysis provides a graphi-
cal representation of intermolecular interaction regions [44]. The typical interpretations of
the colouring method of mapped function sign(λ2)ρ in IGM and IGMH maps are shown
in Figure 7G. The blue area represents the strong attraction dominated by electrostatics,
corresponding to the part where hydrogen bonds can be formed in molecular docking. The
green area represents the weak attraction mainly caused by the van der Waals force, and
the red area corresponds to the steric hindrance effect [43]. In the IGMH approach, where ρ

is the electron density, λ2 is the second-largest eigenvalue of the electron density Hessian
matrix, sign() means to take a sign, projects the sign(λ2)ρ function on the isosurfaces of δg,
δginter, and δgintra through distinct colours to display the interaction type and strength. The
δg function represents the intermolecular difference between electron density gradients
with and without interference [45,46]. It can be seen from the results that there are some
areas where the edge of the blue isosurface is surrounded by the green isosurface, indicat-
ing that there are hydrogen bonds in these areas, which is consistent with the molecular
docking results. At the same time, most of the rest are green isosurfaces, indicating that the
interaction force between pesticide molecules and these waxy components in the region is
dominated by the van der Waals force.
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Figure 7. Isosurface of weak intermolecular interaction between mancozeb and waxy components
by IGMH method. (A) Oleanolic acid, (B) ursolic acid, (C) lupeol, (D) octacosanol, (E) hexacosanal,
and (F) γ-sitosterol (C-cyan, H-white, O-red, N-blue, S-yellow, δginter isosurface value = 0.005 a.u.).
(G) A common interpretation of the coloring method of mapped function sign(λ2)ρ in IGM and
IGMH maps.

The steric hindrance between molecules cannot be seen in the 3D isosurface map
alone, so in the post-processing menu of the IGMH analysis, select the “−1//Draw scatter
plot” option and then select the corresponding sub-options to draw a scatter plot between
sign(λ2)ρ and different forms of δg to examine the interactions in the system. Here we
mainly discuss the interaction between sign(λ2)ρ and δginter. For clarity, the correspondence
between the peak of δginter in the isosurface plot and the peak in the scatter plot is indicated
by arrows, as shown in Figure 8. The figure also shows that interaction regions with larger
ρ generally have more significant ordinate δginter maxima in that region. We see dense
points in the area where sign(λ2)ρ is significantly greater than 0 in the figure, so it can be
said that there is a steric hindrance in the system [47]. For example, in Figure 8A, there
is a peak at the position of sign(λ2)ρ at about −0.04. Since the electron density at this
position is not very large but not very close to 0, many blue points near the horizontal axis
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indicate its existence. Therefore, it can be preliminarily judged that the strong attraction
should be the hydrogen bond between the mancozeb molecule and the oleanolic acid
molecule; the scatter plot with sign(λ2)ρ around −0.01~0.01 is green, indicating that this
area corresponds to the intermolecular force of is the van der Waals forces; when the
sign(λ2)ρ is more significant than 0.02, the colour of the scatter plot changes from olive
green to red, indicating that there is a steric hindrance in this region [46]. According to this
analysis method, the van der Waals force is the primary interaction between the six wax
constituent molecules and the mancozeb molecules. At the same time, hydrogen bonding
and steric hindrance effects coexist.
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2.4. Comparison of Mancozeb Content in Grapes

Method linear: The standard sample solution was created by derivatizing 1 mL of the
mancozeb common solution in a 50 mL centrifuge tube. Nitrogen was used to blast a 1 mL
standard sample until nearly dry. 1 mL of the two derived grape blank solutions was added
for each matrix standard sample solution. Under the predetermined chromatographic
conditions, the samples were injected, and the concentration of mancozeb was used as
the abscissa. The area of the associated peak was used as the ordinate. Mass spectrum
information of mancozeb is provided in Figure S2. A standard curve for matrix-free, a
standard curve for waxy matrix, and a standard curve for wax-free matrix were prepared,
as shown in Figure 9. Matrix effects refer to the fact that the co-eluted substances change
the ionization efficiency of the components to be tested during chromatographic separation,
resulting in the inhibition or enhancement of the signal [48]. Electrospray ionization
efficiency is easily affected by the sample matrix. When the influence of the matrix effect
is significant, the sensitivity of the method will be reduced, and the accuracy of the way
will be affected. The addition of grape matrix showed a negative matrix effect on pesticide
detection, and the presence of wax was one of the factors affecting the magnitude of the
negative matrix effect. Therefore, the matrix-matched standard solution was used for
calibration to eliminate the influence of matrix effects. When using the standard curve
to quantify pesticide residues, whether the sample contains wax should be calculated
according to different standard angles to ensure the accuracy of the results.
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There have been relevant studies on the matrix effect of fruit wax layer components in
detecting pesticides, such as oleanolic acid and ursolic acid in apples, which are related to
detecting nine pesticides in apples by GC-MS [44]. There was a significant correlation with
adverse matrix effects. The likely reason is that during sample injection, specific constituent
molecules in the waxy layer can accumulate in the inlet liner and create active sites capable
of reacting with the pesticide, thereby reducing the amount of pesticide reaching the mass
detector. The propensity of each insecticide to interact with active molecules in the waxy
layer may lead to matrix effects of various strengths [43]. A similar situation may exist in
the detection of HPLC-MS.

Differences in mancozeb residues in two grape samples: Soaking in chloroform can
remove the waxy layer on the surface of grapes. In contrast, mancozeb is insoluble in water
(6.2 mg/L at 20 ◦C and KOW = 21.38) and most organic solvents [26]. A comparison of
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mancozeb content in grapes before and after dewaxing can indirectly show the interaction
between the wax layer and mancozeb.

The blank piece was spiked and recovered with pesticide standard solution. The
recovery rate (as shown in Table S4) of the sample with the additional amount of 1, 2, and
10 mg/kg were 93.5~105%, 89.2~105%, and 90.2~106% (n = 6), and the relative standard
deviations (RSD) were 4.98%, 7.00%, and 7.08%, which met the requirements. Table S5
showed that the residue of mancozeb in the grapes (K, 5.97 ± 0.47 mg/kg) after soaking
with pesticides was higher than that in the grapes after the wax layer was removed (Y,
1.12 ± 0.09 mg/kg), indicating that mancozeb was present with the surface wax of the
grapes. The data of the two groups of samples were tested by the independent sample t-test,
which satisfied the homogeneity of variance within the group, and the significance between
the groups was p < 0.05. It can be considered that there is a significant difference between
the two groups of grape samples. It can be used as evidence for the speculation that there is
an interaction between the wax component and the pesticide molecule through hydrogen
bonding, van der Waals force, and other interaction forces, so that the mancozeb, which is
insoluble in chloroform, is removed from the grape surface along with the waxy layer.

3. Materials and Methods
3.1. Grape Materials, Chemicals, and Standards

Mature Vitis vinifera ‘Summer Black’ berries were hand-harvested from a local organic
vineyard in Honghe, Yunnan Province, China. Berries of each bunch were separated from
stems using scissors. Berries without rot or physical damage were selected for further
experiments. The average weight per grape berry was about 10 ± 0.5 g.

Mancozeb standard (purity 70.0%) was purchased from Dr. Ehrenstorfer GmbH Co.,
Ltd. (Augsburg, Germany). Primary secondary amine sorbent (PSA) was obtained from
Agela Technologies Co., Ltd. (Tianjin, China). L-cysteine hydrochloride (purity ≥ 98%)
was acquired from J&K Scientific Co., Ltd. (Shanghai, China). Ethylenediaminetetraacetic
acid disodium salt (EDTA disodium salt, purity ≥ 99%) was obtained from Innochem
Technology Co., Ltd. (Beijing, China). The ultrapure water was used in the experiment,
and it was prepared using a Milli-Q water system (Millipore, Billerica, MA, USA). The rest
of the solvents and reagents were of analytical grade.

3.2. Electron Microscopy of Grape Peel

We referenced Casado et al.’s method [49] for sample preparation and made improve-
ments. At the equator of the grapefruit, we used a blade to trim the waxy peel to about
2 mm × 2 mm × 1 mm, and fixed the peel in 2.5% glutaraldehyde. The samples were dried
with a critical point dryer (Autosamdri-815A, Tousimis, Rockville, MD, USA) and attached
by a conductive tape to a sampling table. A gold particle was coated with Hitachi MC1000
and examined with a Hitachi SU8020 field emission scanning electron microscope.

3.3. Wax Content Determination

The grapes were rinsed and then dried. Scissors were used to separate the grapes
from the fruit stems, leaving behind stems that were about 2 mm in diameter. The grapes
in the experimental group received CHCl3 treatment to dissolve the epidermal wax layer,
while those in the control group were left untreated. The grapes in the two groups were
immersed in a standard solution of 10 mg/L mancozeb produced in ultrapure water for
3 h before being removed and allowed to dry naturally.

The analysis method was improved according to the way mentioned [50]. The beaker
was washed, dried, and weighed after cooling, and the beaker weight was recorded as
m1 (g). While the processed grapes were put in the beaker, the grape weight was noted
as M (g). Next, the CHCl3 was poured by a material–liquid ratio of 1:2.5 (g: mL), and the
grapes were extracted using ultrasonic treatment with a power of 250 W for the 30 s at
20 ◦C. The above operation was repeated once, and the remaining liquid was combined
and placed in a fume hood to air dry overnight. The weight of the beaker after air drying
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was weighed and recorded as m2 (g). The wax content was calculated according to the
following Equation (1):

Wax content =
(m2 −m1)

M
× 106 (mg/kg) (1)

3.4. Wax Analysis

A solution containing 2 mL of CHCl3 and 20 mg of wax was vortexed for 1 min
to dissolve the wax and was then passed through a 0.22 µm membrane. The filtrate
was identified for aliphatic substances detection by GC-MS. The hydroxyl-containing
compounds in grapevine wax were derivatized by the method mentioned by Arand et al.
to convert them to the corresponding trimethylsilyl derivatives [7].

Wax analysis was performed on a GC-MS instrument with electron ionization and TOF
detector (Pegasus BT, Laboratory Equipment Corporation, Joseph, MI, USA). Separation
was carried out on a DB-5MS analytical fused silica capillary column (30 m × 0.25 mm
i.d. × 0.25 µm film thickness, Agilent Technologies, Santa Clara, CA, USA). The injection
volume was 2 µL. The inlet, MS transfer line, and ion source temperature were set at 250,
300, and 230 ◦C, respectively. The initial temperature was 50 ◦C for 0.5 min, and was
ramped at 15 ◦C/min to 280 ◦C for 30 min. The electron energy was 70 eV. The flow rate
was 1.0 mL/min of He (99.999%). The qualitative report of the mass spectrum of grape wax
was preliminarily determined by being compared with the standard substance library of
the instrument, and then the manual screening was carried out.

3.5. Simulation Analysis of the Combination of Pesticides and Waxes

Mancozeb (CID: 13307026) as a guest molecule and host molecules oleanolic acid
(CID: 10494), ursolic acid (CID: 64945), lupeol (CID: 259846), octacosanol (CID: 68406), hex-
adecanol (CID: 3084462), and γ-sitosterol (CID: 457801) were obtained from the National
Centre for Biotechnology Information (https://pubchem.ncbi.nlm.nih.gov/substance ac-
cessed on 5 January 2023) in sdf. format. All of these structures are shown in Figure S1.
MM2-optimized structures were performed by ChemBio3D Ultra 20.0 (CambridgeSoft
Waltham, MA, USA), and the optimized host–guest molecular systems were used for the
following molecular docking calculations.

Molecular docking calculations were performed using the AutoDock 4.2 (http://
autodock.scripps.edu/ accessed on 15 January 2023) software package. Non-polar hydro-
gen atoms from acceptor and guest molecules appeared, with added Gasteiger charges.
The prediction of bound conformation by free energy was based on empirical force fields
and Lamarck Genetic Algorithm (LGA) [51]. The number of genetic algorithms was 100,
and other docking parameters were set to default values. The docking log file (dlg.) was
analyzed by the AutoDock Tool (version 1.5.6). The binding mode with the lowest free
energy was selected as the primary compulsory mode.

Multiwfn 3.8 and Visual Molecular Dynamics (VMD) [52] were used to visualize the
weak intermolecular interactions of AutoDock results, the primary molecular structure
visualization software in this study.

3.6. Detection of Pesticide Residues in Grapes

Two kinds of grape samples were prepared for the experiment.
The original grapes were submerged for 3 h in a standard solution of 10 mg/L man-

cozeb made with ultrapure water before being removed and were allowed to dry naturally.
K should stand in for this group.

Remove the surface wax layer from the dried grapes in 1. Y is used to represent
this group.

Detection of Mancozeb: The analysis method was modified from that described by
López-Fernández et al. by changing the centrifugal condition and dispersing purifying
agent [53]. Under the need to add antioxidant L-cysteine, mancozeb was substituted with
EDTA disodium salt to produce sodium substitution, which then underwent methylation

https://pubchem.ncbi.nlm.nih.gov/substance
http://autodock.scripps.edu/
http://autodock.scripps.edu/
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with dimethyl sulfate to obtain methyl ethylidene-1,2-dithiocarbamate (EBDC-dimethyl),
a methylation derivative. The samples were cleaned up by the QuEChERS procedure
and detected by the HPLC-MS method. The ion pair m/z 241/193 was selected as the
quantitative ion pair.

Analysis of samples was carried out with an AB Sciex QTRAP5500 HPLC-MS system
(Applied Biosystems Inc., Carlsbad, CA, USA) equipped with triple quadrupole mass
spectrometry (Q-TRAP-MS) with electrospray ionization (ESI). The analytical column was
an Agilent EC-C18 column (200.0 mm × 100 mm, 2.7 µm). The gradient elution mobile
phase consisted of acetonitrile (eluent A) and 0.1% formic acid solution (eluent B). The
optimized linear gradient system was as follows: 0–0.5 min, 5% A; 0.5–4 min to 95% A;
4–6 min, 95% A; 6–6.1 min to 5% A; 6.1–8 min, 5% A. The injection volume was 2 µL and
the flow rate was 300 µL/min. Analytes were detected using ESI interface in positive-ion
mode (temperature 325 ◦C), nebulizer pressure 40 psi, drying gas N2: 9 L/min, capillary
voltage: +4000 V. Instrument, control, and data integration were performed using Analyst®

Software Version 1.6.2.

3.7. Data Analysis and Processing

We used Origin 2022b software to draw the graph; the result is expressed as
mean ± standard deviation from three repeated tests. IBM SPSS 25.0 software was used
to conduct an independent sample T-test and One-Way ANOVA significance analysis
on the data for the significance of differences. The results of p < 0.05 were regarded as
statistically significant.

4. Conclusions

This work investigated the interaction of pesticide molecules with the waxy layer
on the grape surface and their effects on pesticide residues in grapes. The exposure to
mancozeb altered the components of the waxy layer of grapes, including triterpenoids
(e.g., oleanolic acid, ursolic acid, and lupeol), sterol (e.g., γ-sitosterol), long-chain alkyl
alcohols (e.g., octacosanol), and long-chain alkyl aldehydes (e.g., hexacosanal). Molecular
simulation studies revealed that the six waxy components (oleanolic acid, ursolic acid,
lupeol, octacosanol, hexacosanal, and γ-sitosterol) interacted with mancozeb via hydrogen
bonding and van der Waals forces. The corresponding binding energies were −5.96, −5.87,
−3.30, −3.67, −3.82, and −2.22 kcal/mol, respectively. This intermolecular interaction
would make mancozeb easier to deposit on the surface of grapes. We also determined
the residues of mancozeb in grapes by the QuEChERS-HPLC-MS method. Significant
differences in the content of mancozeb in grapes were observed before and after dewaxing,
further suggesting that the intermolecular interaction resulted in more pesticide residues
in grapes.
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