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Abstract: The coronavirus disease 2019 (COVID-19) pandemic has caused the death of almost
7 million people worldwide. While vaccinations and new antiviral drugs have greatly reduced the
number of COVID-19 cases, there remains a need for additional therapeutic strategies to combat this
deadly disease. Accumulating clinical data have discovered a deficiency of circulating glutamine
in patients with COVID-19 that associates with disease severity. Glutamine is a semi-essential
amino acid that is metabolized to a plethora of metabolites that serve as central modulators of
immune and endothelial cell function. A majority of glutamine is metabolized to glutamate and
ammonia by the mitochondrial enzyme glutaminase (GLS). Notably, GLS activity is upregulated
in COVID-19, favoring the catabolism of glutamine. This disturbance in glutamine metabolism
may provoke immune and endothelial cell dysfunction that contributes to the development of
severe infection, inflammation, oxidative stress, vasospasm, and coagulopathy, which leads to
vascular occlusion, multi-organ failure, and death. Strategies that restore the plasma concentration
of glutamine, its metabolites, and/or its downstream effectors, in conjunction with antiviral drugs,
represent a promising therapeutic approach that may restore immune and endothelial cell function
and prevent the development of occlusive vascular disease in patients stricken with COVID-19.

Keywords: COVID-19; glutamine; glutaminase; ammonia; heme oxygenase-1; immune and endothelial
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1. Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiological
factor responsible for the coronavirus disease 2019 (COVID-19) pandemic. This virus is a
global public health concern that has infected more than 760 million people and claimed
over 6.8 million lives worldwide, as of March 2023 [1]. SARS-CoV-2 is an enveloped
virus containing a positive-strand RNA genome that is transmitted by the inhalation of
respiratory droplets [2]. The coronavirus enters the host through airway and alveolar
epithelial cells in the lung that express the membrane receptor angiotensin-converting
enzyme 2 (ACE2) [3]. The virus infects host cells via its surface spike protein that binds
to ACE2 through its receptor-binding domain, where it is proteolytically activated by
host proteases, allowing the fusion of the viral and host membranes. SARS-CoV-2 is then
internalized by endocytosis, and viral RNA is released for replication and translation by the
host cell machinery. Following assembly, new viral particles are released by dying infected
cells. In most cases, the destruction of lung cells by the virus initiates a local immune
response that evokes the generation of anti-viral cytokines and primes adaptive T and B
cell immune responses that resolve the infection resulting in mild flu-like symptoms such
as fever, cough, and fatigue [4–6]. However, in certain instances, a dysfunctional immune
response arises where a proinflammatory feedforward loop is created, triggering a cytokine
storm that promotes extensive pulmonary inflammation, leading to severe pneumonia
and adult respiratory distress syndrome (ARDS). Furthermore, a leak of inflammatory
cytokines into the circulation induces endothelial cell (EC) and smooth muscle cell (SMC)
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dysfunction, oxidative stress, and coagulopathy, which contributes to multiorgan failure
and high rates of mortality in COVID-19 patients. Although vaccination programs and
recently approved antivirals have drastically curtailed SARS-CoV-2 infection and disease
severity, mutant viruses are emerging under the pressure of host immunity that instigate
new waves of infection, highlighting the need for additional therapeutic strategies to fight
this deadly pandemic.

Recent reviews have described the possible efficacy of nutraceutical approaches in
reducing disease severity in patients with COVID-19, based on their ability to improve
immune function, malnutrition, and vascular disease in stricken individuals [7–10]. Among
nutrients, glutamine is a highly versatile molecule that is of vital importance in intermediary
metabolism, interorgan nitrogen exchange, ammonia detoxification, and pH homeosta-
sis [11]. In addition, glutamine is a major regulator of immune function, influencing both
myeloid and lymphoid cells [12–15]. Clinical studies indicate that glutamine supplementa-
tion improves the immune system in patients with burn injury, gastrointestinal surgical
operations, and in critically ill patients [16,17]. This is reflected by increases in lymphocyte
number and function and reductions in infectious complications, hospital stay, morbidity,
and mortality. Favorable clinical outcomes with glutamine have also been reported in pa-
tients undergoing major abdominal surgery or receiving bone marrow transplants [18–20].
Moreover, emerging work reveals that glutamine plays a fundamental role in preserving
vascular health by modulating—EC and SMC function [21,22]. Thus, a reduced availability
of glutamine may impair immune function and increase the susceptibility of humans to
infections and vascular disease. Intriguingly, metabolic analyses have identified low levels
of glutamine in COVID-19 patients, suggesting that the rewiring of glutamine metabolism
by SARS-CoV-2 may contribute to poor outcomes in these patients [23]. In this review,
we characterize alterations in circulating glutamine in COVID-19 patients and discuss
how the depletion of glutamine may contribute to immune and vascular cell dysfunction
and its associated risk of lethal pulmonary and vascular complications. Furthermore, it
investigates putative therapeutic strategies that target glutamine in COVID-19.

2. Glutamine Metabolism

Glutamine is a neutral, conditionally essential amino acid that is indispensable
during periods of rapid growth or in pathological states such as trauma, sepsis, and
infection [12–15]. It is the most abundant amino acid in the blood and is used as a nitrogen
and carbon source to synthesize amino acids, lipids, and nucleic acids. Glutamine enters
cells via multiple membrane transporters that make up the solute carrier (SLC) superfamily
(Figure 1). At least fourteen glutamine transporters have been identified at the molecular
level that belong to four distinct families: SLC1, SLC6, SLC7, and SLC38 [24–26]. These
glutamine transporters often share specificity with other neutral or cationic amino acids
and have distinct transport modes. Some glutamine transporters are obligatory exchangers,
while others function as active transporters in one direction. While most glutamine trans-
porters import glutamine, some mediate the efflux of glutamine, which is coupled to the
influx of other amino acids allowing for regulation of the intracellular pools of glutamine
and amino acids. Once transported into the cell glutamine is used for the biosynthesis
of glucosamines, nucleotides, and asparagine and may activate mammalian target of ra-
pamycin complex 1 (mTORC1) in the cytoplasm. However, a majority of glutamine is
metabolized to glutamate and ammonia (NH3) by the mitochondrial enzyme glutaminase
(GLS) [27]. There are two isoforms of GLS, GLS1 and GLS2, but GLS1 is preferentially ex-
pressed by immune and vascular cells [28–30]. Interestingly, a recent report found that GLS1
also triggers mitochondrial fusion in a non-enzymatic manner, demonstrating that this
enzyme regulates both mitochondrial metabolism and dynamics [31]. The GLS1 product
NH3 induces the expression of heme oxygenase-1 (HO-1) and stimulates autophagy, which
collectively allow cells to survive harmful stimuli, including inflammatory stress [32–34].
Furthermore, glutamate is exported from the mitochondria to the cytosol, where it is uti-
lized to generate the tripeptide (glutamate, glycine, cysteine) antioxidant glutathione (GSH)
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and various non-essential amino acids such as alanine, aspartate, proline, ornithine, serine,
cysteine, glycine, and arginine via the concerted action of several enzymes. While aspartate
is utilized to generate nucleotides, arginine is metabolized to the critical signaling gas nitric
oxide (NO) by NO synthase (NOS), see [22]. The release of NO by ECs plays a key role
in maintaining vascular homeostasis. NO regulates blood flow and pressure by blocking
arterial tone. It also exerts a potent antithrombotic effect by inhibiting platelet adhesion
and aggregation. In addition, NO prevents neointima thickening and vascular occlusion by
retarding SMC proliferation, migration, and extracellular matrix deposition. Moreover, NO
suppresses inflammation by inhibiting the expression of adhesion receptors, the synthe-
sis of proinflammatory cytokines and chemokines, and the recruitment, infiltration, and
activation of leukocytes within blood vessels. Cytosolic glutamate can also be converted
back to glutamine by glutamine synthetase (GS) at the expense of NH3- and adenosine
triphosphate (ATP) [35]. Alternatively, mitochondrial glutamate is converted into alpha-
ketoglutarate (αKG) by glutamate dehydrogenase 1 (GLUD1) or by the aminotransferase
glutamic-pyruvic transaminase 2 (GPT2) and glutamic-oxaloacetic acid transaminase 2
(GOT2). Mitochondrial αKG participates in the tricarboxylic acid (TCA) cycle, supporting
oxidative phosphorylation and the generation of electron donors (nicotinamide adenine
dinucleotide (NADH) and flavin adenine dinucleotide (FADH2)) and ATP. However, under
hypoxic conditions, αKG supports the reductive carboxylation pathway yielding citrate,
which is used for fatty acid synthesis. In addition, αKG is transported to the cytosol, where
it activates -mTORC1, promotes collagen synthesis via the activation of prolyl-4-hydroxlase,
and serves as an important cofactor for nuclear enzymes involved in the epigenetic modifi-
cation of histones and DNA. Thus, by replenishing TCA intermediates, glutamine works
as an anaplerotic substrate, a privileged role that the amino acid plays in several types of
normal and neoplastic cells.
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Figure 1. Summary of Gln transport and metabolism in immune and vascular cells. Gln is transported
into cells through several membrane transporters and modulates the entry and intracellular concentration
of other AA through its interaction with Gln transporters. Following uptake, Gln is utilized in the cytosol
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to generate nucleotides, Asn, and glucosamines and may activate mTORC1. A majority of glutamine
is converted to Glu and NH3 by GLS1 in the mitochondria. NH3 promotes cell survival by stimulating
autophagy and the induction of HO-1. Glu that is exported to the cytosol is used to generate GSH
and numerous non-essential amino acids via the action of a plethora of enzymes. The formed Arg
is metabolized to NO by NOS, while Asp is used for nucleotide synthesis. Cytosolic Glu can also
be converted back to Gln by GS. Mitochondrial glutamate is deamidated by GLUD1 or various
aminotransferases to αKG, which supplies metabolites to the TCA cycle to fuel the generation of
NADH, FADH2, and ATP. Under hypoxic conditions, αKG supports the reductive carboxylation
pathway yielding citrate, which is used for fatty acid synthesis. Gln-derived αKG also stimulates
mTORC1 activity and collagen synthesis and influences the epigenetic modification of histones and
DNA. The different colored shapes (ellipse, rhombus, pentagon, and quadrilateral) represent distinct
Gln transporters. AA, amino acids; Gln, glutamine; Asn, asparagine; Glu, glutamate; GS, glutamine
synthetase; GLS1, glutaminase-1; NH3, ammonia; HO-1, heme oxygenase-1; GSH, glutathione;
Pro, proline-; Orn, ornithine; Arg, arginine; Asp, aspartate; Ala, alanine; Ser, serine; Cys, cysteine;
Gly, glycine; NO, nitric oxide; NOS, nitric oxide synthase; GLUD1, glutamate dehydrogenase 1;
GOT1/2, glutamic-oxaloacetic acid transaminase 1/2; GPT1/2, glutamic-pyruvic transaminase
1/2; PSAT1, phosphoserine aminotransferase 1; αKG, alpha-ketoglutarate; TCA, tricarboxylic acid;
NADH, nicotinamide adenine dinucleotide; FADH2, flavin adenine dinucleotide; ATP, adenosine
triphosphate; mTORC1, mammalian target of rapamycin complex 1.

3. Role of Glutamine in Immune Cells

Glutamine plays a major role in regulating the function of immune cells. The pro-
duction of inflammatory cytokines by monocytes and macrophages is dependent on the
availability of glutamine [36,37]. High concentrations of extracellular glutamine are re-
quired for maximal cytokine synthesis and phagocytosis by macrophages [38]. Furthermore,
the optimal generation of NO by activated macrophages requires the presence of glutamine,
which provides cells with additional substrate (arginine) for NO synthesis [39]. NO pos-
sesses potent microbiocidal properties, allowing for the clearance of viruses, bacteria,
fungi, protozoa, and other foreign invaders [40]. Significantly, NO has been reported
to mitigate the replication of SARS-CoV-2, possibly by nitrosylating and inhibiting the
SARS-CoV-2 3CL cysteine protease [41]. In addition, glutamine influences the polarization
of macrophages. Macrophages exhibit distinct phenotypic properties and are canonically
classified into two functional subsets: M1 or classically activated and M2 or alternatively
activated [42]. These two states represent extremes of a spectrum of macrophage activation
states. While M1 macrophages respond to the initial phase of pathogen infection by gen-
erating cytotoxic quantities of NO, M2 macrophages are involved in the second phase of
pathogen invasion and function to alleviate inflammation by redirecting the metabolism of
arginine away from the synthesis of NO and towards the arginase-mediated production
of polyamines and proline for tissue repair. Interestingly, glutamine is required for M2
macrophage differentiation [43]. In particular, the glutaminolysis-driven formation of αKG
promotes M2 activation through metabolic and epigenetic reprogramming of M2 genes [44].
Thus, glutamine plays a crucial role in promoting M1 macrophage antiviral function by
maximizing NO synthesis through the formation of arginine, while glutamine-derived αKG
induces M2 macrophage activity to resolve inflammation and begin a healing response.

Glutamine also modulates the function of lymphocytes. Depletion of glutamine blocks
the proliferation of activated T lymphocytes and their ability to release interleukin-2 and
interferon-γ (IFNγ) [30,45]. Glutamine is also required for the growth, plasma cell differen-
tiation, and antibody production of B lymphocytes [46]. In addition, glutamine is especially
important for B cell survival in hypoxic conditions [47]. T cell activation induces a large
increase in glutamine import and a rise in GLS1 expression. Notably, silencing GLS1 expres-
sion or pharmacological inhibition of GLS1 virtually abolishes T lymphocyte proliferation
and cytokine production, highlighting the essential role of glutaminolysis in T cell activa-
tion [48,49]. Aside from regulating T lymphocyte activation, glutamine metabolism fosters
the establishment of specific CD4 T cell subsets. The absence of glutamine or deficiency in
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glutamine uptake impairs both T helper 17 (Th17) and T helper 1 (Th1) T cell specification,
and, instead, promotes the generation of regulatory T cells (Treg), which act to suppress the
immune response [50]. Glutamine-dependent αKG deficiency converts Th1 cells to Treg
cells [51] and deletes the gene GOT1, which metabolizes glutamate to αKG and converts
Th17 cells to Treg-like cells by the epigenetic remodeling of the Foxp3 promoter region [52].
However, GLS1 deficiency selectively promotes Th1 and impedes Th17 differentiation,
while not affecting Treg specification [53]. Subset-specific protein expression and different
metabolites of glutamine may impart these discrete responses. Importantly, the altered
profile of Treg cells in severe COVID-19 may arise from the low glutamine levels and the
ensuing αKG deficiency [23]. Finally, glutamine deficiency or GLS1 inhibition inhibits
clonal expansion and activation of CD8 T lymphocytes and may account for the exhaustion
and depletion of these cells in patients with COVID-19 [54].

Glutamine may also influence the differentiation of myeloid-derived suppressor cells
(MDSCs), which are elevated in COVID-19 [55]. However, experimental results are con-
tradictory. While some studies revealed that low glutamine levels inhibit the differen-
tiation of MDSCs, others found that glutamine deficiency stimulates the generation of
MDSCs [56–58]. Nevertheless, glutamine may indirectly limit the production of MDSCs by
blocking the synthesis of C-reactive protein, a potent inducer of MDSC formation [59,60].
In addition, glutamine exerts important effects on neutrophils. Glutamine protects neu-
trophils against apoptosis and impairs the chemotactic migration of neutrophils to sites of
infection [61,62]. By blocking the secretion of interleukin-8, the amino acid may likewise
prevent the release of neutrophil extracellular traps (NETosis), which combat SARS-CoV-2
infection but are linked to vessel occlusion and multiorgan damage in autopsied COVID-19
patients [63,64]. Finally, glutaminolysis is essential for the survival and growth of natural
killer T (NKT) cells. GLS1 inhibition impairs NKT cell survival, proliferation, and acti-
vation, and this is associated with a decline in mitochondrial ATP production and GSH
synthesis [65]. Thus, NKT cells adopt a glutamine-addicted phenotype to regulate their
homeostasis and function.

4. Role of Glutamine in Vascular Health

Considerable evidence indicates that glutamine contributes to vascular health [21].
Cross-sectional clinical studies found that plasma glutamine or the glutamine/glutamate
ratio is inversely related to blood pressure, hypertriglyceridemia, and insulin resistance,
while plasma glutamate concentrations are linked to adverse vascular and metabolic
indices [66–68]. In addition, a prospective study noted that the circulating glutamine/glutamate
ratio is coupled to a reduced risk of cardiovascular disease, while blood glutamate is associ-
ated with an elevated risk, especially for stroke [69]. Interestingly, a genome association
study discovered a genetic variant associated with diminished glutamine synthetase, which
may result in a glutamine insufficiency, to the development of coronary artery disease in
patients with type 2 diabetes [70]. Moreover, a large prospective study demonstrated that
dietary intake of glutamine is inversely correlated to the risk of cardiovascular mortality,
independent of other nutritional or lifestyle interventions [71]. Together, these studies
illustrate the importance of glutamine in mitigating cardiovascular disease.

The mechanism(s) underlying the protective effect of glutamine in the circulation is
not fully known. However, the ability of glutamine to directly influence the property of ECs
is significant, as the dysfunction of these cells precedes the development of atherosclerosis
and other cardiovascular disorders. Glutamine attenuates hyperglycemia-induced mito-
chondrial stress and apoptosis in human ECs [72] and preserves EC viability in response
to oxidative stress, hypertonicity, and infection [73–75]. Glutamine also attenuates the ex-
pression of adhesion receptors on the surface of ECs and limits the migration of leukocytes
across activated ECs [76–78]. In addition, glutaminolysis is required for energy production
to drive ion transport in ECs, and the interruption of this pathway causes premature senes-
cence of these cells [79,80]. Moreover, dietary supplementation of glutamine promotes
the mobilization of endothelial progenitor cells in ischemic and diabetic rodents [81,82]
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and improves endothelium-dependent vasodilation in both mice and humans [83,84]. The
latter findings are in-line with work showing that glutamine stimulates NO release from
isolated arteries, possibly by providing blood vessels with additional arginine for NO
synthesis [85]. Furthermore, the metabolism of glutamine protects ECs against the harmful
effects of reactive oxygen species through the generation of GSH [86,87].

Recent studies also indicate that glutamine is indispensable for EC function [29,87–89].
The absence of glutamine or the inhibition of GLS1 expression or activity blocks the
proliferation and migration of human ECs [87,88]. GLS1 inhibition arrests ECs in the
G0/G1 phase of the cell cycle and this is associated with a pronounced decline in αKG
and all TCA intermediates. However, exogenous supplementation of αKG replenishes
TCA intermediates and partially rescues EC function, while the combination of TCA cycle
replenishment and asparagine supplementation fully restores EC mitosis and movement.
Thus, glutamine not only provides carbon to fuel the TCA cycle, but it also delivers
nitrogen for asparagine synthesis to sustain cellular function. In addition, the selective loss
of GLS1 in ECs inhibits the sprouting of vessels in various animal models of angiogenesis,
illustrating the essential role of this enzyme in arterial expansion [86,87]. Significantly,
intracellular glutamine concentrations determine the thrombogenicity of vascular cells [89].
Exogenous administration of glutamine elevates intracellular glutamine levels in vascular
cells, and this results in diminished tissue factor expression and procoagulant activity,
suggesting that glutamine within the blood vessel wall may be a promising target for
controlling the thrombogenicity of inflamed or infected arteries. Consistent with this notion,
glutamine prevents the activation of platelets, whereas glutamate switches platelets to an
aggregatory phenotype through the activation of the alpha-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid (AMPA) receptor [90–92].

Interestingly, we discovered that glutamine-derived NH3 stimulates HO-1 gene tran-
scription in ECs via the activation of nuclear factor erythroid 2-related factor 2 [32]. HO-1 is
an important cytoprotective enzyme that metabolizes prooxidant heme into carbon monox-
ide (CO), iron, and biliverdin see [93–96]. While biliverdin and its downstream metabolite
bilirubin are potent antioxidants, CO, much like NO, elicits many beneficial effects: it
dilates blood vessels, inhibits platelet aggregation and vascular cell apoptosis, and exerts
anti-inflammatory and anti-thrombotic actions in the circulation. In this regard, we recently
reported that NH3 prevents EC death in response to inflammatory mediators via the HO-
1-mediated release of CO [32]. This is consistent with a report showing that NH3 blocks
the lethal action of tumor necrosis factor-α in renal epithelial cells, suggesting that this
gas promotes cell survival in inflammatory states [33]. Furthermore, glutamine may limit
tissue injury following ischemia-reperfusion in a HO-1-dependent manner, underscoring
the importance of the NH3-HO-1-CO signaling axis in fostering vascular health [97].

5. Vascular Disease in COVID-19

COVID-19 is accompanied by a significant risk of ischemia-related vascular disease.
Studies during the early phase of the pandemic found that the coordinated activation of
inflammatory and thrombotic responses, thrombo-inflammation, is a primary cause of mor-
bidity and mortality in patients with COVID-19 [98]. Indeed, laboratory studies detect the
presence of a procoagulant state with elevated levels of circulating D-dimer and fibrinogen,
a mild prolongation of prothrombin time in the plasma, and minimal thrombocytopenia
in many patients hospitalized with COVID-19 [99–102]. Moreover, cross-sectional studies
demonstrate that the rate of thromboembolic events such as thrombosis and pulmonary
embolism are exceedingly high in critically ill patients with COVID-19 [103–105]. Post-
mortem examinations of lung tissue in critically ill patients reveal a high frequency of
platelet-fibrin thrombi in the small arteries and capillaries, suggesting a hypercoagulable
condition that precipitates both venous and arterial thrombosis [105–109]. The elevated rate
of arterial thrombosis in COVID-19 possibly plays a role in the higher frequency of myocar-
dial infarction, ischemic stroke, and acute limb ischemia in this patient cohort [104,110–112].
Autopsy findings also indicate a high prevalence of alveolar microthrombi in patients
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with COVID-19. These occluding microthrombi extend beyond the lungs to the heart,
kidney, and liver, suggesting the widespread presence of thrombotic microangiopathy
in COVID-19 [113]. More recently, a global, multicenter database analysis confirmed the
occurrence of disseminated intravascular coagulopathy and thrombosis among critically ill
patients with COVID-19 [114].

The etiology of thrombosis in patients with COVID-19 is multifactorial involving com-
plement activation and cytokine release, coagulation abnormalities, platelet hyperactivity
and apoptosis, the formation of neutrophil extracellular traps, and endothelial dysfunc-
tion [5,113]. However, endothelial malfunction is a central feature in COVID-19 thrombotic
complications. In particular, the endothelium undergoes a prothrombotic transformation
involving the loss of the glycocalyx and cytoprotective signaling, and the generation of
thrombotic effectors to promote fibrin formation, platelet adhesion, and complement activa-
tion [115]. Clinical signs of endothelial inflammation and death in COVID-19 are common
and found in multiple organs [98,116,117]. Autopsy studies on lung specimens from SARS-
CoV-2-infected patients detected severe EC damage with evidence of apoptosis and loss
of tight junctions [118]. In addition, biomarkers of endothelial dysfunction are elevated in
patients with COVID-19. Plasma von Willebrand factor (vWF) is increased in COVID-19
patients with high concentrations associated with severe disease [119–121]. Moreover, cir-
culating levels of P-selectin, E-selectin, soluble intercellular adhesion molecule-1 (ICAM-1),
thrombomodulin, angiopoietin-2, and plasminogen activator inhibitor-1 (PAI-1) are aug-
mented in COVID-19 [98,122,123]. The release of vWF, selectins, and ICAM-1 following
EC activation binds platelets, neutrophils, and monocytes to initiate thrombosis, while the
shedding of thrombomodulin by pro-inflammatory cytokines would further promote the
procoagulant and inflammatory milieu within the vasculature of COVID-19 patients [98].
In addition, the release of PAI-1 by ECs would reduce fibrinolysis by inhibiting the tissue
plasminogen activator, thereby stimulating fibrin deposition in the microvasculature. Cir-
culating ECs, which reflect cells that are detached from the damaged blood vessel, are also
higher in critically ill patients and may contribute to the enhanced vascular permeability
in patients with COVID-19 [124]. A recent meta-analysis disclosed that several biomark-
ers of endothelial dysfunction are significantly associated with increased composite poor
outcomes in COVID-19 patients [125]. Collectively, these observations attest to the severe
endotheliopathy and coagulopathy that is present in COVID-19. Although preliminary
work implicated the virus in promoting EC dysfunction, recent studies suggest an indirect
mechanism mediated locally and systemically by excessive cytokine synthesis [116].

COVID-19 also negatively impacts vascular tone. Endothelium-dependent microvas-
cular reactivity in the skin is severely restricted in critically ill COVID-19 patients [126]. In
addition, systemic endothelium-dependent vasodilator responses are markedly decreased
in patients with severe or mild to moderate COVID-19 relative to healthy individuals, and
this is paralleled by an increase in circulating inflammatory cytokines and chemokines [127].
Moreover, endothelium-dependent vasodilation remains impaired shortly after acute
COVID-19 but improves following long-term recovery from the disease [128,129]. To-
gether, these studies suggest that NO bioavailability is compromised in COVID-19 patients.
This is consistent with reports showing a decrease in serum NO metabolites in COVID-19
patients, most likely due to the consumption of NO by reactive oxygen species [130,131]. In
addition, the degradation of the endothelial glycocalyx in COVID-19 may also contribute
to the decline in NO synthesis since it is critically involved in flow-mediated NO produc-
tion [132–134]. The reduction in endothelial NO may further aggravate ischemic injury
in COVID-19 by promoting blood vessel spasm and eliminating a key brake on platelet
activation and aggregation. Moreover, the loss of NO-mediated vasodilation is further
amplified by an angiotensin converting enzyme (ACE)/ACE2 imbalance in COVID-19
that favors angiotensin II-mediated vasoconstriction [135]. In fact, spontaneous and severe
coronary vasospasm has been reported in patients with COVID-19 [136–138].



Int. J. Mol. Sci. 2023, 24, 7593 8 of 20

6. Glutamine Deficiency in COVID-19

Metabolomic studies have consistently identified a decline in circulating levels of
glutamine in multiple patient populations with COVID-19 that is correlated with disease
severity [23,139–147]. COVID-19 patients have a significantly reduced glutamine to gluta-
mate ratio, indicating the increased utilization of glutamine. Consistent with this notion,
reductions in glutamine are accompanied by an increase in plasma GLS activity [148–150].
Furthermore, the decrease in glutamine concentration in severe COVID-19 patients is posi-
tively correlated with lactate dehydrogenase, C-reactive protein, and pCO2 and positively
correlated with pO2, disclosing formerly unknown consequences of low glutamine in se-
vere COVID-19 pathologies [151]. Moreover, meta-analysis showed that elevated glutamine
is related to a decreased risk of COVID-19 infection and severe COVID-19, whereas raised
glutamate levels are associated with increased risk of infection and serious disease [152].
Intriguingly, an advanced bioinformatic platform reported that glutamine was the top
candidate of over 26,000 FDA-approved drugs tested for reversing coronavirus associ-
ated alterations in gene expression [153]. In total, these studies underscore the potential
therapeutic importance of restoring glutamine levels in COVID-19 patients.

7. Strategies Targeting Glutamine in COVID-19

There is an emerging realization that amino acids play an essential role in preserving
immune function and vascular health [21,22,154–158]. Considerable evidence indicates
that the bioavailability of glutamine is critically depleted in COVID-19 patients, perhaps
secondary to a rise in GLS activity that directs the conversion of glutamine to glutamate
(Figure 2). The resulting decline in glutamine will compromise EC function and NO
production by limiting cellular arginine levels. The loss of glutamine also stimulates
vascular inflammation, vascular cell thrombogenicity, platelet activation and aggregation,
and reduces the viability of ECs by restricting NO synthesis and the induction of HO-1.
In addition, glutamine deficiency causes a broad dysfunction of the immune system that
worsens the gravity of COVID-19. The consumption of glutamine in COVID-19 will also
increase oxidative stress by reducing the synthesis of GSH and the expression of HO-1.
Collectively, these actions related to glutamine insufficiency will promote vasospasm,
thrombosis, and NETosis, resulting in vascular occlusion and organ failure. Crucially,
comorbidity-associated glutamine deficiency is a predisposition to severe COVID-19 [159].

Multiple approaches may be used to mitigate the loss of glutamine in COVID-19.
Dietary supplementation of glutamine has proven effective in correcting deficiencies in
circulating glutamine in cardiometabolic disease and hemolytic disorders and is now
prescribed in patients with sickle cell disease [160–162]. However, glutamine generates
ATP and precursors for the synthesis of macromolecules required for virus assembly, and
restoration of this amino acid may augment SARS-CoV-2 replication and infection. In
fact, host cell glutamine metabolism has been identified as a potential treatment against
COVID-19 [163,164]. Nevertheless, preliminary clinical studies support the use of glu-
tamine in COVID-19 patients. An initial small, retrospective, cross-sectional study found
that the oral ingestion of glutamine powder (30 g/day) with meals shortens hospital stays
and lessens the need for intensive care in patients with COVID-19 [165]. In addition, a
single-blind randomized clinical trial reported that intravenous glutamine administration
(0.4 g/kg/day) lowers the inflammatory response in COVID-19 patients admitted to the
intensive care unit but does not improve short-term mortality in this patient cohort [166].
More recently, a larger case–control study noted that the short-term meal-time consumption
of glutamine (30 g/day) reduces serum markers of inflammatory and oxidative stress
and increases appetite in hospitalized COVID-19 patients [167]. A major limitation of
current studies is that it is not known whether glutamine administration elevates glutamine
availability in COVID-19 patients. Due to the extensive metabolism of glutamine by the
splanchnic circulation, high doses of glutamine may be needed to fully restore plasma
glutamine in these patients [168]. While glutamine is usually administered using the
free form, the use of more stable dipeptide formulations, including L-glycyl-L-glutamine,
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L-arginyl-L-glutamine, and L-alanyl-L-glutamine, should be considered since they possess
a more favorable pharmacokinetic profile [168,169]. The use of L-arginyl-L-glutamine in
COVID-19 is especially appealing since deficits in both glutamine and arginine have been
detected in this disease [23,170,171]. While a plethora of studies have confirmed the safety
of dietary glutamine supplementation, care should be implemented when using this amino
acid in critically ill patients [172,173]. Clearly, larger, multi-center dose-escalation studies
employing various preparations of glutamine are needed to clarify the safety, utility, and
dosing requirements for this amino acid in patients with COVID-19. The prophylactic use
of glutamine in individuals with a high risk for poor outcomes following SARS-CoV-2
infection should also be considered.
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Figure 2. Targeting Gln in COVID-19-mediated immune and endothelial dysfunction. SARS-CoV-2
lowers circulating levels of Gln by increasing GLS activity. The resulting decline in Gln compromises
EC function and NO production by limiting cellular Arg levels. The loss of Gln also stimulates
vascular inflammation, platelet aggregation, coagulopathy, and reduces the viability of ECs by
restricting NO synthesis and the induction of HO-1. In addition, Gln deficiency causes a broad
dysfunction of the immune system that worsens the severity of infection. The consumption of Gln
in COVID-19 will also increase oxidative stress by reducing the synthesis of GSH and expression
of HO-1. Collectively, these actions will promote vasospasm, thrombosis, and NETosis, resulting in
vascular occlusion and multi-organ failure. Several strategies may be employed to target glutamine in
COVID-19. Dietary supplementation with free or dipeptide forms of Gln provides a straightforward
approach to restore circulating levels of Gln in SARS-CoV-2-infected patients. Alternatively, the
direct administration of Gln metabolites (NH3 or αKG) or downstream effectors of Gln (inhaled NO,
NO donors, HO-1 inducers, CO donors, biliverdin, or bilirubin) provides a more selective avenue
in correcting disturbances of Gln metabolism in patients with COVID-19. Downward pointing
arrows indicate a decrease while upward pointing arrows indicate an increase. Gln, glutamine; Glu,
glutamate; COVID-19, coronavirus disease 2019; SARS-CoV-2, severe acute respiratory syndrome
coronavirus 2; GLS, glutaminase; EC, endothelial cell; NO, nitric oxide; Arg, arginine; HO-1, heme
oxygenase-1; GSH, glutathione; NETosis; the release of neutrophil extracellular traps; NH3, ammonia;
αKG, alpha-ketoglutarate; CO, carbon monoxide.
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The administration of specific metabolites of glutamine with known beneficial actions
should also be considered. In this respect, the thoughtful delivery of NH3 may be advanta-
geous given its ability preserve to EC viability and stimulate HO-1 expression. In addition,
NH3 and its chloride salt inhibits the replication of several viruses, including the influenza
virus, reovirus, papilloma virus, and the infectious pancreatic necrosis virus [174–177], and
may be efficacious against the SARS-CoV-2 virus [178]. Aside from NH3, the use of another
gas such as NO holds promise in managing COVID-19 [179,180]. Both inhaled NO and NO
donors have a wide range of antiviral activity and serve as a first line of defense against
foreign invaders. In addition, NO plays a critical role in maintaining vascular integrity
and endothelial function, controlling the response of immune cells and platelets, and has
pulmonary protective properties. Furthermore, the glutamine metabolite αKG may be
of benefit to patients with COVID-19. αKG has immuno-augmenting properties and a
recent report found that ingestion of αKG inhibits SARS-CoV-2 replication and reduces
inflammation, thrombosis, and apoptotic cell death in the lungs of in infected animals [181].
Moreover, αKG restores EC function in cells deprived of glutamine, and oral administration
of αKG enhances NO synthesis by ECs in diet-induced obese rodents [26,84,85,182]. Thus,
the delivery of NH3, NO, and αKG provides an attractive means for combatting COVID-19.

Alternatively, downstream effectors of glutamine may be employed to treat COVID-19.
In this respect, HO-1 represents an attractive target for COVID-19 since it is strongly induced
by glutamine and possesses potent antiviral and vasoprotective properties [32,183–185].
HO-1 or its reaction products CO and biliverdin/bilirubin suppress many viral infections,
including influenza A, hepatitis B, human immunodeficiency virus, Ebola, dengue, and
Zika, and there is a strong possibility that they may control SARS-CoV-2 infections by restor-
ing IFNγ production and/or blocking viral proteases and RNA polymerases [186–188]. In
addition, HO-1 and its end products confer anti-thrombotic effects by lessening endothelial
injury, the expressing of adhesion receptors, and inflammatory responses, diminishing pro-
coagulant molecules, such as vWF, PAI-1, and tissue factors [93–97,189–193]. Interestingly,
an increase in HO-1 expression is observed in critically ill COVID-19 patients, and this may
serve as an adaptive mechanism to counteract increased heme levels driving coagulation
and thrombosis in these patients [194,195].

Several approaches may be taken to target HO-1 in COVID-19. Numerous inducers
of HO-1 have been identified and shown to be effective in preclinical studies. Heme and
its derivates are potent inducers of HO-1 that elicit beneficial effects in animal models of
infection, inflammation, and cardiovascular disease [93–97,186]. However, the induction of
HO-1 by heme analogues in patients is transient and does not persist for more than one
week [196]. Moreover, heme is a danger-associated molecular pattern molecule that may
exacerbate inflammation in SARS-CoV-2-infected patients [197]. More promising, the syn-
thetic triterpenoid bardoxolone methyl is a strong inducer of HO-1 that has generated some
positive results in patients with kidney disease [198–200]. In addition, dimethylfumarate is
another activator of HO-1 that is approved for use in multiple sclerosis and, importantly,
shows efficacy in an animal model of vascular occlusion [201]. Interestingly, we recently
identified the sodium–glucose cotransporter 2 inhibitor canagliflozin as a robust inducer of
HO-1 that directly mitigates vascular cell proliferation and inflammation [190,202]. This
work suggests that HO-1 contributes to the beneficial cardiovascular profile of canagliflozin
in patients with type 2 diabetes and supports the use of this drug in both the diabetic and
non-diabetic patient populations [203].

The direct application of HO-1-derived products affords another avenue for ameliorat-
ing COVID-19-mediated complications. While the inhalation of CO has been successfully
employed in a myriad of preclinical studies [93–96,204], its translation to the clinic re-
mains problematic, owing to safety concerns and suboptimal dosing regimens [205]. The
difficulties associated with CO inhalation protocols led to the development and use of
CO-releasing molecules that liberate controlled amounts of CO in response in specific
stimuli [206,207]. In addition, the use of organic-based click-and-release prodrugs that
employ a chemical reaction to generate CO provides another mode for the application



Int. J. Mol. Sci. 2023, 24, 7593 11 of 20

of this gas [208]. Furthermore, saturated solutions of CO impart a simple vehicle for gas
delivery that has been demonstrated to prevent vascular occlusion in injured rat arteries
and in a murine model of sickle cell disease [209,210]. In a similar manner, saturated
solutions of biliverdin may also be used to attenuate COVID-19-related issues [211–213].
However, the limited solubility and stability of bilirubin in aqueous solutions hampers
its direct administration. Instead, a pegylated form of bilirubin that self-assembles into
hydrophilic nanoparticles may be used, as this formulation was shown to be non-toxic and
effective in a mouse model of ulcerative colitis [214]. One potential drawback with the use
of bile pigments is their rapid metabolism by the liver which necessitates frequent dosing.
However, the rise in circulating bilirubin following its administration may be extended by
blocking its metabolism by uridine diphosphate-glucuronosyltransferase 1A1 (UGTA1A).
Indeed, atazanavir and canagliflozin are dual HO-1 inducers and UGTA1A inhibitors that
raise plasma bilirubin concentrations and improve vascular function in diabetic patients,
offering proof of principle for this strategy [191,202,215–218].

8. Conclusions

Clinical studies have discovered a low circulating level of glutamine in patients with
COVID-19 that is associated with disease severity. This glutamine deficiency is a central
metabolic feature of COVID-19 that may contribute to the increased risk of infection,
inflammation, immune and EC dysfunction, coagulopathy, vascular occlusion, and multi-
organ failure. Strategies that target glutamine, its metabolites, and/or its downstream
effectors along with approved antiviral drugs may provide a robust approach in alleviating
the calamitous ramifications of SARS-CoV-2 infection.
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