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Abstract: Immune checkpoint inhibitors (ICIs) have improved the care of patients in multiple cancer
types. However, PD-L1 status, high Tumor Mutational Burden (TMB), and mismatch repair deficiency
are the only validated biomarkers of efficacy for ICIs. These markers remain imperfect, and new
predictive markers represent an unmet medical need. Whole-exome sequencing was carried out on
154 metastatic or locally advanced cancers from different tumor types treated by immunotherapy.
Clinical and genomic features were investigated using Cox regression models to explore their capacity
to predict progression-free survival (PFS). The cohort was split into training and validation sets to
assess validity of observations. Two predictive models were estimated using clinical and exome-
derived variables, respectively. Stage at diagnosis, surgery before immunotherapy, number of lines
before immunotherapy, pleuroperitoneal, bone or lung metastasis, and immune-related toxicity were
selected to generate a clinical score. KRAS mutations, TMB, TCR clonality, and Shannon entropy were
retained to generate an exome-derived score. The addition of the exome-derived score improved the
prediction of prognosis compared with the clinical score alone. Exome-derived variables could be
used to predict responses to ICI independently of tumor type and might be of value in improving
patient selection for ICI therapy.

Keywords: biomarkers; TMB; TCR; exome sequencing; immunotherapy

1. Introduction

Antitumor immune response relies predominantly on CD8 cytotoxic T lymphocytes.
Tumor cells express specific antigens that can activate the adaptative system through anti-
gen recognition by the T-cell receptor (TCR) [1]. However, tumor cells have the ability to
develop mechanisms of immune evasion, which favors the development of clinically de-
tectable cancers [2]. One well-known mechanism is the expression of immune checkpoints,
such as CTLA-4 (cytotoxic T lymphocyte–associated protein 4) and PD-1 (programmed cell
death protein-1), two major proteins with immunoregulatory functions. PD-1 is a marker
of exhausted function in CD8 T-cells. Exhausted T cells progressively lose their capacity to
produce cytokines and kill tumor cells. Under physiological conditions, immune check-
points and CD8 exhaustion are involved in the regulation of immune responses against
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pathogens, as well as in autoimmunity [3]. In the context of cancer, the tumor promotes the
differentiation of CD8 T-cells into exhausted T-cells that express checkpoint inhibitors and
fail to induce effective antitumor immune response. Checkpoint blockade has progressively
emerged as a promising way to restore exhausted T-cell activity and, therefore, re-enhance
the antitumor immune response.

In 2011, the anti-CTLA-4 drug ipilimumab was the first immune checkpoint inhibitor
(ICI) to be approved by the Food and Drug Administration (FDA) for melanoma [4].
Different molecules targeting other checkpoints such as PD-1, PD-L1 (programmed death-
ligand 1) or LAG-3 (lymphocyte-activation gene 3) have rapidly been developed since,
revolutionizing the treatment of a wide array of cancer types. After melanoma, ICIs alone
or in association with chemotherapies or antiangiogenic therapies also demonstrated a
significant benefit in various tumor types, such as non-small-cell lung cancer (NSCLC) [5–7],
renal cell carcinoma [8–10], squamous cell carcinoma of the head and neck [11], small-cell
lung cancer [12], urothelial carcinoma [13], endometrial carcinoma [14], cervical carci-
noma [15], mesothelioma [16], hepatocellular carcinoma [17], esophageal carcinoma [18],
gastric adenocarcinoma [19], and microsatellite instability (MSI) cancers [20].

Novel patterns of unknown response with cytotoxic chemotherapies or targeted agents
have been experienced, with potentially durable responses that can be maintained even
years after treatment discontinuation [21]. Unfortunately, despite this success, resistance to
ICIs restricts the number of patients who yield a durable response. There is thus a need to
identify predictive biomarkers to select the patients most likely to respond to ICIs.

Currently, PDL-1 tumor expression [22] and MSI [20] are the only biomarkers fre-
quently used in routine clinical practice. In 2020, the FDA approved pembrolizumab for
adults and children with high Tumor Mutational Burden (TMB), based on the results of
the KEYNOTE 158 trial [23]. This phase 2 study showed that patients with TMB-high
status (≥10 mutations per megabase) have a better chance of yielding benefit from pem-
brolizumab monotherapy. However, using TMB alone may be insufficient, and the origin
of high TMB, as well as the tumor type, should be considered before using TMB [24].
In mismatch-repair–proficient tumors, TMB-high status was associated with improved
survival in a limited subgroup of patients with specific tumor types, including head and
neck cancer, NSCLC, and melanoma. Conversely, many patients yield a benefit from ICI
despite TMB-low status [25]. Precision medicine is an emerging strategy to improve access
to target therapies and includes an extension of indications based on genomic analysis of
tumors by analyzing multiple genomic biomarkers associated with ICI response. In many
cancer types, genomic mutations are targetable by small inhibitory molecules, leading to
a high response rate and better outcome compared with chemotherapies. Recent trials
demonstrated the feasibility and the relevance of large genomic testing in order to improve
patients outcome [26].

In this retrospective study, we analyzed data derived from exome sequencing per-
formed in the context of the EXOMA 1 and 2 trials [26] in patients treated with ICIs
for metastatic solid cancers. The objective of the present study was to identify genomic
biomarkers that predict response to immunotherapy and to generate a genomic prediction
score for response to ICIs.

2. Results
2.1. Patient Characteristics

Among 1234 patients included in the EXOMA 1 and 2 trials, 154 patients with ad-
vanced or metastatic solid cancer were included in this retrospective analysis. These
154 patients were all treated with at least one injection of ICI, given as treatment for their
advanced or metastatic disease at our center, and had exome sequencing between 2015
and 2020. Complete sequencing data with checked quality control were available for all
154 patients. Among them, we had blood and tumor tissue for 96 (62.3%) patients and
tumor tissue only for 58 (37.7%) patients.
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The median age was 62 years (interquartile range (IQR) = (54, 68)). Fifty-five (36%)
patients had NSCLC, nineteen (12%) had colorectal cancer, and thirteen (8%) had breast
cancer. The 67 (44%) remaining patients were grouped in a category named “other cancers”,
comprised gastric, esophageal, pancreatic, biliary tract, anal, upper aerodigestive tract,
parotid, kidney, bladder, upper urinary tract, prostatic, ovarian, cervical, endometrial, soft
tissue, skin, adrenal and choroidal cancers, and cancer of unknown primary. Sixty-seven
patients (44%) underwent surgery before immunotherapy, mostly with curative intent.
Most patients (77%) received immunotherapy (anti-PD1 or anti-PD-L1) as monotherapy.
Two-thirds of patients received immunotherapy in the first or second line (n = 101; 66%)
and 53 (34%) patients in the third line or more.

In the overall population, 22% of patients were considered as responders (complete or
partial response) and 78% experienced stable or progressive disease (non-responders).

No significant difference was observed between the training (n = 101) and validation
cohorts (n = 53). The detailed clinical characteristics of the patients are described in Table 1.

Table 1. Clinical characteristics for the study population (whole cohort and training and validation cohorts).

Variables Whole Cohort
N = 154

Training Cohort
N = 101

Validation Cohort
N = 53 p-Value Adjusted

p-Value

Sex 0.9 >0.9
Male 80 (52%) 53 (52%) 27 (51%)

Female 74 (48%) 48 (48%) 26 (49%)

Age, years 62 (54, 68) 62 (55, 68) 61 (54, 67) 0.6 0.9
≤60 66 (43%) 42 (42%) 25 (47%) 0.5 0.8
>60 87 (57%) 59 (58%) 28 (53%)
NA 1 1 0

Stage at diagnosis 0.044 0.4
Local 70 (45%) 40 (40%) 30 (57%)

Metastatic 84 (55%) 61 (60%) 23 (43%)

PDL1 status >0.9 >0.9
Positive 18 (30%) 13 (30%) 5 (29%)

Negative 43 (70%) 31 (70%) 12 (71%)
NA 93 57 36

Surgery 0.2 0.7
No 87 (56%) 61 (60%) 26 (49%)
Yes 67 (44%) 40 (40%) 27 (51%)

Type of surgery 0.2 0.7
Curative 60 (90%) 34 (85%) 26 (96%)
Palliative 7 (10%) 6 (15%) 1 (3.7%)

Histology >0.9 >0.9
Adenocarcinoma 81 (53%) 54 (53%) 27 (51%)

Carcinoma 55 (36%) 35 (35%) 20 (38%)
Other 18 (12%) 12 (12%) 6 (11%)

Line of ICI 0.5 0.8
≤2 101 (66%) 68 (67%) 33 (62%)
>2 53 (34%) 33 (33%) 20 (38%)

Number of cycles 0.4 0.8
≤2 59 (38%) 41 (41%) 18 (34%)
>2 95 (62%) 60 (59%) 35 (66%)

Type of ICI 0.5 0.8
PD-1 93 (60%) 61 (60%) 32 (60%)

PD-L1 26 (17%) 20 (20%) 6 (11%)
PD-1/CTLA-4 4 (2.6%) 3 (3.0%) 1 (1.9%)

PD-L1/CTLA-4 27 (18%) 15 (15%) 12 (23%)
Other 4 (2.6%) 2 (2.0%) 2 (3.8%)
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Table 1. Cont.

Variables Whole Cohort
N = 154

Training Cohort
N = 101

Validation Cohort
N = 53 p-Value Adjusted

p-Value

WHO status at ICI >0.9 >0.9
0 55 (36%) 36 (36%) 19 (36%)

>0 98 (64%) 64 (64%) 34 (64%)
NA 1 1 0

Smoking status 0.9 >0.9
Never smoker 35 (29%) 22 (28%) 13 (30%)

Smoker 87 (71%) 56 (72%) 31 (70%)
NA 32 23 9

Cerebral metastasis 25 (16%) 17 (17%) 8 (15%) 0.8 >0.9
NA 1 0 1

Liver metastasis 47 (31%) 35 (35%) 12 (23%) 0.14 0.7
NA 1 0 1

Bone metastasis 51 (33%) 35 (35%) 16 (31%) 0.6 0.9
NA 1 0 1

Lymph node metastasis 106 (70%) 65 (64%) 41 (80%) 0.042 0.4
NA 2 0 2

Lung metastasis 60 (42%) 38 (39%) 22 (47%) 0.4 0.8
NA 10 4 6

Pleuro-peritoneal metastasis 58 (38%) 42 (42%) 16 (31%) 0.2 0.7
NA 1 0 1

Toxicity 66 (43%) 41 (41%) 25 (47%) 0.4 0.8

Use of corticosteroids 51 (33%) 39 (39%) 12 (23%) 0.045 0.4

RECIST 0.3 0.8
Progression 115 (78%) 71 (76%) 44 (83%)

Response 32 (22%) 23 (24%) 9 (17%)
NA 7 7 0

Cancer type 0.2 0.7
Breast 13 (8%) 12 (12%) 1 (1.9%)
Colon 19 (12%) 12 (12%) 7 (13%)
Lung 55 (36%) 36 (36%) 19 (36%)
Other 67 (44%) 41 (41%) 26 (49%)

Continuous variables are described by median values and interquartile range (IQR). Categorical variables are
described by number of observation and percentages (%). NA: Not Available; ICI: Immune Checkpoint Inhibitor;
PD-1: Programmed cell Death protein 1; PD-L1: Programmed Death-Ligand 1; CTLA-4: Cytotoxic T Lymphocyte-
Associated protein 4; WHO: World Health Organization.

Median PFS survival under immunotherapy was 2.8 months (95% confidence interval
(CI) [2.6, 4.4]) for the entire cohort, with PFSs of 2.7 [2.5, 3.4], 8.4 [5.2, not reached (NR)],
2.6 [1.2, NR], and 2.8 [2, 5.4] months, respectively, for NSCLC, colorectal cancer, breast
cancer, and other cancers. Median PFS in the training cohort was 2.7 [2.5, 4.5] months, and
it was 3.2 [2.6, 5.4] months in the validation cohort.

Genomic structural analysis determined TMB, the number of neoantigens, MSI score,
CNV signatures, and TCR and BCR clonality. For TCR clonality, 734 clones were identified
in the whole cohort, with 159 expressed at least by 2 patients (Supplementary Figure S1A).
Two hundred eighty-seven BCR clones were identified with two hundred seventy-six clones
expressed by only one patient and eleven by two patients (Supplementary Figure S1B).
In the whole cohort, 20 patients (13%) had TMB-high status (using the classical cut-off
of 10 mutations per Mb), 8 (5.2%) had MSI, and 18 patients (12%) presented a KRAS
mutation—especially in NSCLC and colorectal cancers (Figure 1). No significant difference
was observed between training and validation cohorts (Table 2). Note that no patient had
pathogenic or likely pathogenic variants for KEAP1 and RSPO3.
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Figure 1: Genomic landscape of genes associated with response to immune checkpoint inhibitors. 
Tumor samples are sorted by cancer type and ascending order for TMB score.
TMB: Tumor Mutational Burden, TCR: T-Cell Receptor

Figure 1. Genomic landscape of genes associated with response to immune checkpoint inhibitors.
Tumor samples are sorted by cancer type and ascending order for TMB score. TMB: Tumor Mutational
Burden, TCR: T-Cell Receptor.

Table 2. Exome-derived variables for the whole cohort and the training and validation cohorts.

Variables Whole Cohort
N = 154

Training Cohort
N = 101

Validation Cohort
N = 53 p-Value Adjusted

p-Value

TMB status 0.3 >0.9
Low 134 (87%) 90 (89%) 44 (83%)
High 20 (13%) 11 (11%) 9 (17%)

TMB score 4.5 (2.8, 7.1) 4.5 (3.1, 6.1) 4.3 (2.6, 8.0) >0.9 >0.9

MSI status 0.4 >0.9
MSS 146 (95%) 97 (96%) 49 (92%)
MSI 8 (5.2%) 4 (4.0%) 4 (7.5%)

MSI score 1.3 (1.0, 1.9) 1.4 (1.0, 1.9) 1.2 (0.9, 1.7) 0.4 >0.9

TCR clonality 7 (4, 12) 7 (4, 12) 7 (4, 10) 0.5 >0.9

BCR clonality 0.00 (0.00, 2.00) 0.00 (0.00, 2.00) 0.00 (0.00, 2.00) >0.9 >0.9
NA 2 2 0

Neopeptides 12 (7, 28) 13 (6, 36) 11 (7, 23) 0.6 >0.9
NA 3 2 1

Strong neopeptides 2.0 (1.0, 5.0) 2.0 (1.0, 5.0) 2.0 (1.0, 3.2) 0.4 >0.9
NA 3 2 1

CNV signature 1 68 (53, 79) 65 (51, 76) 72 (61, 81) 0.2 >0.9
Cut-off = 65.3%, 71.7% Low 50 (50%) 26 (50%) >0.9 >0.9

High 50 (50%) 26 (50%)
NA 2 1 1

CNV signature 2 0.00 (0.00, 0.00) 0.00 (0.00, 0.00) 0.00 (0.00, 0.00) 0.4 >0.9
Cut-off = 0%, 0%, Low 90 (90%) 49 (94%) 0.5 >0.9

High 10 (10%) 3 (5.8%)
NA 2 1 1

CNV signature 3 13 (10, 19) 13 (10, 19) 13 (10, 20) >0.9 >0.9
Cut-off = 13.2%, 13%, Low 50 (50%) 26 (50%) >0.9 >0.9

High 50 (50%) 26 (50%)
NA 2 1 1

CNV signature 4 0.00 (0.00, 0.00) 0.00 (0.00, 0.00) 0.00 (0.00, 0.00) 0.7 >0.9
Cut-off = 0%, 0%, Low 77 (77%) 42 (81%) 0.6 >0.9

High 23 (23%) 10 (19%)
NA 2 1 1

CNV signature 5 11 (5, 18) 0.12 (0.06, 0.19) 10 (4, 16) 0.12 >0.9
Cut-off = 11.8%, 9.8%, Low 50 (50%) 26 (50%) >0.9 >0.9

High 50 (50%) 26 (50%)
NA 2 1 1

CNV signature 6 0.00 (0.00, 0.00) 0.00 (0.00, 0.00) 0.00 (0.00, 0.00) >0.9 >0.9
Cut-off = 0%, 0%, Low 88 (88%) 46 (88%) >0.9 >0.9

High 12 (12%) 6 (12%)
NA 2 1 1
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Table 2. Cont.

Variables Whole Cohort
N = 154

Training Cohort
N = 101

Validation Cohort
N = 53 p-Value Adjusted

p-Value

CNV signature 7 0.00 (0.00, 0.08) 0.00 (0.00, 11) 0.00 (0.00, 4) 0.2 >0.9
Cut-off = 0%, 0%, Low 55 (56%) 34 (65%) 0.2 >0.9

High 44 (44%) 18 (35%)
NA 3 2 1

TCR Pielou’s score 0.98 (0.96, 1.00) 0.99 (0.96, 1.00) 0.97 (0.95, 1.00) 0.3 >0.9
NA 10 6 4

BCR Pielou’s score 1.00 (0.72, 1.00) 0.99 (0.00, 1.00) 1.00 (0.96, 1.00) 0.078 >0.9
NA 84 55 29

TCR Shannon entropy 2.81 (2.00, 3.54) 2.85 (2.00, 3.55) 2.75 (2.00, 3.32) 0.6 >0.9
NA 10 6 4

BCR Shannon entropy 1.44 (0.72, 2.00) 1.26 (0.00, 2.30) 1.48 (1.00, 2.00) 0.7 >0.9
NA 84 55 29

KRAS 0.7 >0.9
WT 136 (88%) 90 (89%) 46 (87%)

Mutated 18 (12%) 11 (11%) 7 (13%)

STK11 0.7 >0.9
WT 146 (95%) 95 (94%) 51 (96%)

Mutated 8 (5.2%) 6 (5.9%) 2 (3.8%)

APC >0.9 >0.9
WT 147 (95%) 96 (95%) 51 (96%)

Mutated 7 (4.5%) 5 (5.0%) 2 (3.8%)

RNF43 0.4 >0.9
WT 148 (96%) 98 (97%) 50 (94%)

Mutated 6 (3.9%) 3 (3.0%) 3 (5.7%)

CD274 0.5 >0.9
Amplification 9 (5.8%) 5 (5.0%) 4 (7.5%)

No amplification 145 (94%) 96 (95%) 49 (92%)

Continuous variables are described by median values and interquartile range (IQR). Categorical variables were
described by number of observation and percentages (%). TMB: Tumor Mutational Burden; MSI: Microsatellite
Instability; MSS: Microsatellite Stable; TCR: T-Cell Receptor; BCR: B-Cell Receptor; CNV: Copy Number Variant.

2.2. TMB Score and Type of Cancer

To further investigate the role of TMB, the TMB score was analyzed according to
cancer type. Continuous TMB score was not associated with RECIST status (Figure 2A).
Using the standard cut-off, high TMB was not observed in breast cancer but was present
in 15% of patients with NSCLC, 26% of patients with colorectal cancer, and 10% in other
cancers (Figure 2B). Moreover, high TMB status was not associated with PFS in any cancer
type (results not shown). The optimal TMB cut-off to distinguish patients according to
PFS changed according to the tumor type, ranging from 3.41 to 5.64 (R library maxstat).
Using the optimal cut-off, high TMB was observed in 64% of patients with NSCLC, 37% of
patients with colorectal cancer, 54% of patients with breast cancer, and 31% in other cancers
(Figure 2B). Subgroup analysis showed that using the optimal cut-off, high TMB was only
significantly associated with better PFS in breast cancer (HR = 0.24 [0.06, 0.87]; p = 0.03),
and a trend was observed in other cancers (HR = 0.54 [0.29, 1]; p = 0.05). TMB was not
related to outcome in colorectal cancer (Figure 2C–F).
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Figure 2: TMB score and outcome
(A) Boxplots showing TMB score according to RECIST criteria for each cancer. (B) Barplots representing frequency of TMBHigh and TMBLow patients dichotomized according to the standard cut-off and 
optimal cut-off for each cancer (cut-off in brackets). 
(C-F) Kaplan-Meier curves with patients stratified according to TMB status (optimal cut-off) for progression-free survival for (C) non-small cell lung cancer, (D) Colorectal cancer, (E) Breast cancer and (F) 
Other cancers. 
ns: not significant
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Figure 2. TMB score and outcome: (A) Boxplots showing TMB score according to RECIST cri-
teria for each cancer. (B) Barplots representing frequency of TMBHigh and TMBLow patients di-
chotomized according to the standard cut-off and optimal cut-off for each cancer (cut-off in brackets).
(C–F) Kaplan–Meier curves with patients stratified according to TMB status (optimal cut-off) for
progression-free survival for (C) non-small-cell lung cancer, (D) colorectal cancer, (E) breast cancer,
and (F) other cancers. ns: not significant.

2.3. Association between Clinical Variables and Outcome

In the overall population, patients treated with ICIs in the first or second line and pa-
tients who experienced immune-related toxicity had a higher response rate (Supplementary
Table S1).

In the training cohort, patients with local stage at diagnosis, surgery before im-
munotherapy, ICIs in the first or second line of treatment, as well as patients who ex-
perienced immune related toxicity and those without bone, lung or pleuroperitoneal
metastasis had significantly longer PFS. Among these factors, only immune-related toxicity
and presence of pleuroperitoneal metastasis remained significant by multivariate analysis
(p-value < 0.05) (Figure 3A).

All variables significantly related to PFS by univariate analysis were selected to es-
timate a multivariate clinical model to predict patient prognosis. The linear predictor of
this model was then used as clinical composite variable and dichotomized (High vs. Low)
based on its median estimated in the training cohort. Patients in the “High” group had
a significantly poorer PFS (HR = 3.16 [1.99, 5]; p < 0.001, Figure 3B). Similar results were
observed when applying this score in the validation cohort (HR = 2.78 [1.44, 5.34]; p = 0.002,
Figure 3C).

2.4. Association between Exome-Derived Variables and Outcome

In the overall total population, no significant difference was observed between respon-
ders and progressors (Supplementary Table S2).

By univariate analysis, low TMB (using the classical cut-off of 10 mutations per Mb),
high TCR clonality, high TCR Shannon entropy, and presence of KRAS mutation were
associated with poorer PFS for patients in the training cohort (Figure 4A). No variable
remained significant by multivariate analysis.
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Figure 3: Association between progression-free survival and clinical variables.
(A) Forest plots representing hazard ratios and confidence intervals for univariate (grey) and multivariate (purple) Cox models for progression-free survival estimated using clinical variables in the training cohort. 
*: Log-rank test p-value≤0.1. 
(B-C) Kaplan-Meier curves with patients stratified according to the clinical model dichotomized by training median (High vs Low) for progression-free survival for training cohort (B) and validation cohort (C).
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cohort (B) and validation cohort (C). ICI: Immune Checkpoint Inhibitor; PD-L1: Programmed Death-
Ligand 1; PD-1; Programmed cell Death protein-1; CTLA-4: Cytotoxic T Lymphocyte-Associated
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Figure 4. Association between progression-free survival and exome-derived variables: (A) Forest plots
representing hazard ratios and confidence intervals for univariate (gray) and multivariate (purple) Cox
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models for progression-free survival estimated using exome-derived variables in the training cohort.
*: Log-rank test p-value ≤ 0.1. (B,C) Kaplan–Meier curves with patients stratified according to the
exome model dichotomized by optimal cut-off (High vs. Low) for progression-free survival for the
training cohort (B) and validation cohort (C). TMB: Tumor Mutational Burden; MSI: Microsatellite
Instability; MSS: Microsatellite Stable; CNV: Copy Number Variant; TCR: T-Cell Receptor; BCR: B-cell
Receptor; WT: Wild-Type.

An exome-derived model was estimated including variables that were significant by
univariate analysis. The linear predictor of this model was then used as an exome-derived
composite variable and dichotomized (High vs. Low) based on optimal cut-off estimated in
the training cohort through maximally selected rank statistic. This variable dichotomized
patients of the training cohort into two groups with different PFS (High vs. Low: HR = 2.3
[1.3, 3.4]; p = 0.003, Figure 4B). This score remained significant when applied in the vali-
dation cohort after re-estimating a cut-off proper to this cohort (HR = 2 [1, 3.9]; p = 0.05,
Figure 4C).

2.5. Exome-Derived Variables Add Predictive Power on Top of Clinical Variables

A combined model was estimated with clinical and exome-derived variables to test
the capacity of a combined model to improve predictive power. The linear predictor of this
model was then used as combined composite variable and dichotomized (High vs. Low)
based on its median estimated in the training cohort.

In both cohorts, patients in the Low group had better PFS (HR = 0.18 [0.11, 0.31];
p < 0.001 in the training cohort and HR = 0.39 [0.2, 0.75]; p = 0.005 in the validation cohort,
Figure 5A,B). A comparison of the models using the likelihood ratio test showed that the
exome-derived model improved the predictive power of the clinical model (p-value = 0.02,
Figure 5C).
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Figure 5. Association between progression-free survival and clinical and exome-derived variables.
Kaplan–Meier curves with patients stratified according to dichotomized linear predictors obtained
from the combined model for progression-free survival in (A) training cohort and (B) validation cohort.
(C) Barplots of time-dependent AUC (Area Under the Curve) for clinical, exome, and combined
(clinical and exome) models for progression-free survival. * p < 0.05, *** p < 0.001. Kaplan–Meier
curves with patients stratified according to clinical and exome models for progression-free survival
for the (D) training cohort and (E) validation cohort.
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Four groups were then created using composite clinical and exome-derived variables.
Patients classified as ClinicalLow/Exome-derivedLow had significantly better PFS than
patients classified as ClinicalLow/Exome-derivedHigh in the training cohort (HR = 0.39
[0.17, 0.91]; p = 0.03, Figure 5D). For patients classified as ClinicalHigh, exome-derived
status had no impact on survival (HR = 0.68 [0.31, 0.47]; p = 0.33).

In the validation cohort, the exome-derived variable allowed to further discriminate
patients between high and low risk for patients with ClinicalHigh status; in fact, patients
classified as Exome-derivedLow had a significantly better PFS (HR = 3.3 [1.1, 10.3]; p = 0.04).
This was not significant for patients classified as ClinicalLow (HR = 0.46 [0.18, 1.18]; p = 0.1,
Figure 5E).

These observations highlight the contribution of the exome-derived variable to clini-
cal variables.

3. Discussion

Over the last decade, ICIs have revolutionized the management of cancer, requiring
a rethinking of the treatment strategies that have been used for many years. However,
ICIs only benefit a small proportion of patients, and to date, no predictive biomarker has
been shown to be sufficiently robust to exhaustively select patients likely to respond to
immunotherapy. In this study, we analyzed clinical variables and data derived from exome
analysis to predict PFS under ICIs in all types of cancers, independently of location and
histologic type.

Analysis of clinical variables revealed that PFS is longer when ICIs are administered
in the first or second line of treatment, as well as when patients do not have bone, lung
or pleuroperitoneal metastasis. Patients with local stage at diagnosis, surgery before
immunotherapy, and those who present immune-related toxicity also have better PFS. Re-
garding exome-derived variables, high TMB, low TCR clonality, low Shannon entropy, and
wild-type KRAS status were found to be associated with longer PFS. As previously shown
by Litchfield et al., concerning efficacy in a large meta-analysis involving seven different
tumor subtypes [27], TMB stands out as a major predictive factor for immunotherapy.
However, those results are not confirmed by the analysis of Rousseau et al. [24], which
questions the FDA approval for ICI on the basis of high TMB, using a single-center cohort
of 1661 patients treated by ICI. In their analysis, they observed that high TMB was only
associated with better survival in the case of MSI- or POLD (POLE or POLD1)-mutated
tumors, or in cancers highly related to environmental carcinogens (head and neck, lung,
and melanoma).

To perform MSI assessment, we used MSIsensor software (v3.0.4), which generates
an MSI score using data from the exome. With a cut-off of 20, this score demonstrated its
reliability for the identification of MSI tumors [28]. Only eight patients had MSI in our
cohort. Among these, only seven patients had an available RECIST response, and three
had complete or partial responses (43%), while four had stable or progressive diseases
(57%). This is consistent with the response rate found in the KEYNOTE 158 [20] (objective
response rate of 34%). MSI status did not stand out as a predictive factor for ICI efficacy
in our study. With only 5.2% of patients having MSI, we probably did not have sufficient
power to show a statistically significant difference.

In our study, KRAS mutations were associated with shorter PFS. Generally, KRAS-
activated mutations are considered as a pejorative prognostic factor [29]. In colorectal
cancer, KRAS mutation is also widely associated with poor prognosis [30]. Similar results
have been observed in NSCLC cancer [31]. In contrast, previous studies provided evidence
that KRAS mutation was associated with a better response to immunotherapy, especially
in NSCLC. In the Checkmate-057 study, KRAS wild-type NSCLC did not benefit from
nivolumab (versus docetaxel) in the second line [6]. Our data are in opposition with these
results, and additional data are warranted to better understand the influence of RAS on the
efficacy of immunotherapy.
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We show here that a lower number of TCR clones and low Shannon entropy were
associated with better PFS, suggesting that restricted diversity is predictive of a better
immune response than tumors with polyclonal nonspecific T-cell infiltration. This is
consistent with a previous study by Valpione et al. [32], where they showed that while
high TCR diversity seemed to be a prognostic factor in cancer patients, high TCR clonality
(implying lower diversity) was a predictive factor for response to ICIs. In a previous
publication, using another dataset of patients with NSCLC treated with nivolumab in the
second line, our group reported that restriction in the number of TCR clones was also
associated with good PFS [33].

Our study has some limitations, notably the small number of patients, the single-center
design, and the heterogeneity of patients with various tumor types, treatments, and lines
of therapy.

4. Materials and Methods

Patients with locally advanced unresectable or metastatic solid cancer treated with ICIs
at the Georges-François Leclerc Cancer Center (Dijon, France) who had exome sequencing
were included in this retrospective single-center study. All of them were prospectively
included in the EXOMA trial (NCT02840604 and NCT04614480). The exome sequencing
was performed prospectively according to the EXOMA trial protocol.

Genomic analyses were performed at the Georges-Francois Leclerc Cancer Center in
the Genomic and Immunotherapy Medical Institute, Dijon, France. All patients provided
signed informed consent for the trial and genomic analysis. After informed consent, patients
had a consultation with a genetic counsellor before the constitutional exome analysis.

The dedicated analysis for the purposes of the present study was performed retrospec-
tively and was not the main purpose of the original EXOMA trial.

Patient and tumor characteristics were collected, namely sex, age, WHO Performance
Status (PS), smoking history, primary organ, histologic type, date of diagnosis, stage at
diagnosis, sites of metastasis, medical treatments, surgery of the primary cancer or the
metastasis performed before ICI administration, best response to ICIs, immune-related
toxicities, and steroid intake during ICI therapy. The best response assessment was based
on computed tomography (CT) scans using the RECIST 1.1 criteria. In case of uncon-
firmed progressive disease, reassessment was performed four to eight weeks later. Patients
were considered as responders if they experienced complete response (CR) or partial re-
sponse (PR) to ICI. They were classified as progressors if they had a stable disease (SD) or
progressive disease (PD).

The database was registered with the National French Commission on Informatics
and Liberty (CNIL). The study was conducted in accordance with French legislation and
the Declaration of Helsinki, with approval from CPP and ANSM as required.

4.1. Sample Selection

After obtaining written informed consent for the EXOMA study, physicians selected an
archival tumor sample dating from less than one year (primary or metastasis) for genomic
analysis. At the physician’s discretion, a new tumor biopsy could be proposed to the patient.
Tumor cellularity was assessed by a senior pathologist on hematoxylin and eosin slides
from the same biopsy core as that used for nucleic acid extraction and molecular analysis.

4.2. DNA Isolation

DNA was isolated from archival tumor tissue using the Maxwell 16 FFPE Plus LEV
DNA Purification kit (Promega, Madison, WI, USA). DNA from whole blood (germline
DNA) was isolated using the Maxwell 16 Blood DNA Purification Kit (Promega) according
to the manufacturer’s instructions. The quantity of extracted genomic DNA was assessed
by a fluorimetric method with a Qubit device.
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4.3. Whole-Exome Capture and Sequencing

Two hundred ng of genomic DNA was used for library preparation, using the Agilent
SureSelectXT reagent kit (Agilent Technologies, Santa Clara, CA, USA). The totality of the
enriched library was used in the hybridization and captured with the SureSelect All Exon
v5 or v6 (Agilent Technologies) baits. Following hybridization, the captured libraries were
purified according to the manufacturer’s recommendations and amplified by polymerase
chain reaction (12 cycles). Normalized libraries were pooled, and DNA was sequenced
on an Illumina NextSeq500 device using 2 × 111 bp paired-end reads and multiplexed.
Tumor and germline DNA sequencing generated mean target coverages of 78× and 90×,
respectively, and a mean of more than 90% of the target sequence was covered with a read
depth of at least 10× for somatic DNA.

4.4. Exome Analysis Pipeline

As paired normal-tumor samples were not available for the whole cohort, only tumor
samples were considered in this analysis.

Reads in the FASTQ format were aligned to the reference human genome GRCh37
using the Burrows–Wheeler aligner (BWA v0.7.17). Local realignment was performed
using the Genome Analysis Toolkit (GATK v4.1.3.0). Duplicate reads were removed us-
ing Picard v.2.5. Single-nucleotide variants (SNVs) were detected using Mutect2 (GATK
v 4.1.3.0) variant caller.

TMB was calculated using the number of significant SNVs (with Untranslated Tran-
scribed Region, synonyms, introns, and intergenic SNVs filtered out) divided by the number
of megabases covered at a defined level.

To identify tumor-specific mutant peptides, pVAC-Seq (personalized Variant Antigens
by Cancer Sequencing) [34] was used (pVACtools v 1.5.4). This computational workflow
compares and differentiates the epitopes found in normal cells against the neoepitopes
specifically present in tumor cells to predict neoantigens. pVAC-Seq is based on HLA
typing obtained by HLAminer (v1.4) [35].

The microsatellite instability (MSI) score was computed using MSIsensor (v0.5) [36].
Copy number alterations were inferred using SuperFreq algorithm [37]. Copy number
variant signatures were then inferred following the methodology of Macintyre et al. [38].
With this method, the copy number profile of each patient was reconstructed based on the
weighted combination of 7 signatures.

Presence and quantitation of T-cell receptor (TCR) and B-cell receptor (BCR) clones were
determined using the MixCR software (v3.0.4) [39], available at http://mixcr.milaboratory.
com/ (accessed on 1 March 2023). In the present analysis, clonotypes were assembled
based on CDR3 sequence only, making it possible to estimate the frequency and clonality
of T and B cells at the tumor site. Population diversity of TCR or BCR repertoires can
be quantitatively expressed by two separate factors: diversity (i.e., the number of unique
elements in a population) and clonality (i.e., the frequency distribution of those elements).
Diversity of each sample was calculated using the Shannon entropy index, which takes into
account both sample richness and the degree of unevenness in the frequencies of CDR3
sequence, thus meaning that the higher the Shannon entropy index, the more diverse the
CDR3 clone distribution [40]. Clonal evenness of each sample was calculated using Pielou’s
index, which equals the ratio between the Shannon entropy index and the maximization
of the diversity distribution of the CDR3 sequence. Therefore, a Pielou’s index close to 1
represents a maximally diverse population, with each CDR3 clone having a frequency close
to 1 [41].

4.5. Analysis of Somatic Mutations

We limited our analysis to a short list of genes reported to be associated with response
to ICI, namely KEAP1, STK11, CD274, RNF43, RSPO3, KRAS, and APC [42–45].

According to the literature and knowledge databases, each selected variant was clas-
sified as “pathogenic”, “likely pathogenic”, “unknown pathogenicity”, or “benign”. For

http://mixcr.milaboratory.com/
http://mixcr.milaboratory.com/
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each detected and annotated variant, we retained for interpretation only variants classed as
pathogenic or likely pathogenic. Unknown variants were retained when present in somatic
analysis only and located in a critical domain of the protein. Each therapeutic proposal was
then classified using the ESCAT recommendations [46].

4.6. Statistical Analysis

Given the small number of patients in each cancer type, all cancer types were combined
into a global cohort. This cohort was randomly split into two groups, two thirds of the
patients in a training set (n = 101) and one third of the patient in an unseen validation set
(n = 53).

Patient characteristics are described as median and interquartile range (IQR) for
continuous variables and as number and percentage (%) for qualitative variables.

All characteristics were compared by cohort (training or validation) or by group of RE-
CIST criteria using the Chi-2 or Fisher’s exact test for qualitative variables, or the Wilcoxon test
for continuous variables, as appropriate. p-values were adjusted using Benjamini–Hochberg
FDR correction, and adjusted p-values < 0.05 were considered significant [47].

Progression-free survival (PFS) was calculated as the time from the start of im-
munotherapy until disease progression and was censored at five years.

Survival analysis was performed using the survival R library. The prognostic value of
the different variables was tested using univariate and multivariate Cox models for PFS in
the training cohort. Survival probabilities were estimated using the Kaplan–Meier method,
and survival curves were compared using the log-rank test. Variables with unadjusted
p-values < 0.10 in univariate analysis were selected for multivariate analysis. TMB score
was dichotomized based on the cut-off value determined using the maximally selected
rank statistics from the maxstat R library [48]. CNV signatures were dichotomized based
on their median computed on the training and validation cohorts, respectively.

Three multivariate prognostic models were estimated, one including clinical variables
only, one including exome-derived variables, and a last one combining clinical and exome-
derived variables. In each case, all variables associated with PFS by univariate Cox models
with a p-value < 0.1 were included in the multivariate Cox model. For each model, a
composite score was estimated based on the corresponding linear predictor of the Cox
model. These scores were then dichotomized (High vs. Low) based on the cut-off value
determined using either the maximally selected rank statistics or the median.

Nested models were compared using the likelihood ratio test (LRT) and the Area
Under the Curve (AUC).

Data were analyzed using R (version 4.0.3) statistical software (http://www.R-project.
org/, accessed on 1 March 2023), and graphics were prepared with Prism 9 (GraphPad, San
Diego, CA, USA).

5. Conclusions

In conclusion, our study showed that WES could provide useful information to predict
response to ICI independently of tumor type. It supports the concept that in a cancer-
agonist manner, TCR diversity could be used in combination with TMB to improve patient
prognostic prediction.

Supplementary Materials: The supporting information can be downloaded at: https://www.mdpi.
com/article/10.3390/ijms24087592/s1.

Author Contributions: Conceptualization, C.T. and F.G.; methodology, C.T. and J.L.; validation, C.T.,
L.D., and F.G.; formal analysis, C.T. and J.L.; data acquisition, A.L., C.F., C.K., H.M., L.D., L.F., R.B.,
S.C., and V.D.; writing—original draft preparation, C.T., F.G., J.L., and L.D.; visualization, C.T., F.G.,
J.L., and L.D.; supervision, C.T. and F.G. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

http://www.R-project.org/
http://www.R-project.org/
https://www.mdpi.com/article/10.3390/ijms24087592/s1
https://www.mdpi.com/article/10.3390/ijms24087592/s1


Int. J. Mol. Sci. 2023, 24, 7592 14 of 17

Institutional Review Board Statement: The study was conducted according to the guidelines of
the Declaration of Helsinki and European legislation and approved by the CNIL (French national
commission for data privacy) and the local ethics committee.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: Data are available from authors upon reasonable request.

Acknowledgments: We wish to thank Fiona Ecarnot, (EA3920, University of Franche-Comté,
Besançon, France) for correcting the manuscript and for helpful comments.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
AUC Area Under the Curve
BCR B-cell receptor
CNV Copy Number Variant
CT Computed Tomography
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