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Abstract: The irradiation of 2-aryl-4-(E-3′-aryl-allylidene)-5(4H)-oxazolones 1 with blue light (456 nm)
in the presence of [Ru(bpy)3](BF4)2 (bpy = 2,2′-bipyridine, 5% mol) gives the unstable cyclobutane-
bis(oxazolones) 2 by [2+2]-photocycloaddition of two oxazolones 1. Each oxazolone contributes to the
formation of 2 with a different C=C bond, one of them reacting through the exocyclic C=C bond, while
the other does so through the styryl group. Treatment of unstable cyclobutanes 2 with NaOMe/MeOH
produces the oxazolone ring opening reaction, affording stable styryl-cyclobutane bis(amino acids)
3. The reaction starts with formation of the T1 excited state of the photosensitizer 3[Ru*(bpy)3]2+,
which reacts with S0 of oxazolones 1 through energy transfer to give the oxazolone T1 state 3(oxa*)-1,
which is the reactive species and was characterized by transient absorption spectroscopy. Measure-
ment of the half-life of 3(oxa*)-1 for 1a, 1b and 1d shows large values for 1a and 1b (10–12 µs), while
that of 1d is shorter (726 ns). Density functional theory (DFT) modeling displays strong structural
differences in the T1 states of the three oxazolones. Moreover, study of the spin density of T1 state
3(oxa*)-1 provides clues to understanding the different reactivity of 4-allylidene-oxazolones described
here with respect to the previously reported 4-arylidene-oxazolones.

Keywords: amino acids; truxinic; photocatalysis; cyclobutane; sensitization; laser flash photolysis;
density functional theory (DFT) calculations; triplet excited state

1. Introduction

The role of amino acids as key building blocks in the synthesis of peptides and
proteins is critical [1,2]. Each parameter of their three-dimensional structure, as well as their
electronic and steric characteristics, must be carefully designed to produce the necessary
effect within the structure of the protein that hosts them. Given their relevance, it is
clear that having versatile and selective synthetic methods for the preparation of amino
acid analogues of natural ones is highly desirable. In fact, interest in new methods for
the synthesis of unnatural amino acids derives from the possibility of introducing small
controlled changes that lead to unusual structural situations and that allow modulation of
the activity of the proteins [3–10].

The synthesis of truxillic and truxinic acids, originally isolated from plant extracts [11,12],
has experienced growing interest in recent years due to their pharmacological properties
(Figure 1a). In this respect, they show strong anti-inflammatory and antinociceptive ac-
tivities through inhibition of different targets, such as fatty acid binding protein (FABP),
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anoctamin-1, NO, and radicals [13–20]. They also show antioxidant and anti-hypoglycaemic
activities [21] and cytotoxic activity [22]. In addition, they are involved in glucose metabolism
through activation of peroxisome proliferator-activated receptors (PPAR) [23,24]. Beyond
biological activities, they also show interesting properties as internal donors in Ziegler–Natta
catalysts [25].
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Figure 1. Schematic representation of (a) truxillic and truxinic acids; (b) unnatural 1,3-diaminotruxillic
and 1,2-diaminotruxinic amino acids, showing their simplest retrosynthetic route.

Closely related to the truxillic and truxinic acids are the unnatural bis-amino acids
1,3-diaminotruxillic and 1,2-diaminotruxinic derivatives (Figure 1b), which also show
antinociceptive activity, and, moreover, are promising substrates in the treatment of diabetes
type-II because they are the only non-peptidic agonists of the Glucagon Like-Peptide-1
(GLP-1) receptor [26–28]. The basic scaffold of 1,3-diaminotruxillic and 1,2-diaminotruxinic
amino acids is a cyclobutane; therefore, the simplest synthetic approximation for their
preparation could be the [2+2]-photocycloaddition of two olefins [29], more specifically,
two 4-aryliden-5(4H)-oxazolones (Figure 1b). Despite its apparent simplicity, this synthetic
method has been scarcely investigated, and, as far as we know, only four reports have
appeared in the literature (Figure 2).

Between 2007 and 2012, Wang and coworkers reported two examples of [2+2]-photocy-
cloaddition of oxazolones, involving irradiating oxazolone for 3 days with a high-power
Hg lamp (500 W); they obtained the corresponding 1,3-diaminotruxillic cyclobutanes as
four different isomers with a global yield of 10% [26–28]. In 2017, our group improved both
the scope and the yield of the reaction using low-power (20 W) LED blue light (465 nm),
but still a mixture of diaminotruxillic derivatives was obtained [30] (Figure 2a). Further
contributions from Amarante [31] and our group [32] have included the synthesis of
1,2-diaminotruxinic derivatives by irradiation of aryliden-oxazolones with blue light in the
presence of a photocatalyst ([Ru(bpy)3](BF4)2, versus Eosin Y, Figure 2b,c). Remarkably,
the reaction in the presence of the photocatalyst takes place with a different orientation
with respect to that in its absence (1,2- instead of 1,3-coupling) and with complete stereose-
lectivity, since the corresponding 1,2-diaminotruxinic derivatives were obtained as single
isomers. This fact is quite noteworthy because this methodology allows control of the
regio- and diastereoselectivity, so the method is simple, cheap, and efficient. The geometric
isomers obtained were different as a function of the photocatalyst since the µ-isomer was
obtained in the case of the Ru-photosensitized reaction, while the zeta-isomer was obtained
for the eosin Y photocatalyst. All these observations give an idea of the potential of this
known methodology to be applied to the synthesis of bis-amino acids using oxazolones as
starting materials.
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Figure 2. Past work reported on the synthesis of truxillic and truxinic derivatives from irradiation of
aryliden-oxazolones: (a) direct irradiation of oxazolones giving 1,3-coupling and the epsilon isomer;
(b) irradiation in presence of a Ru-photosensitizer giving 1,2-coupling and the mu-isomer; (c) irradi-
ation in presence of an organic photosensitizer giving 1,2-coupling and the zeta-isomer [26,30–32].
Comparison with the present work from allyliden-oxazolones.

However, as mentioned previously, these processes have only been studied using 4-
aryliden-5(4H)-oxazolones as precursors. These substrates contain only one C=C bond able
to be activated, so the number of isomers of the bis-amino acid is limited. The introduction
of additional activatable C=C bonds in the molecule would give access to new bis-amino
acids not achievable by other synthetic methods. In addition, the possibility to control regio-
and stereoselectivity, as the number of C=C double bonds increases, is highly challenging.

Here, we report the results obtained from the irradiation of 2-aryl-4-(E-3′-aryl-allylidene)-
5(4H)-oxazolones 1, in solution and in the presence of the [Ru(bpy)3](BF4)2 photocatalyst.
These oxazolones contain an additional C=C bond conjugated with the exocyclic C=C bond,
resulting in different reactivity. As well as the structural characterization of the resulting
bis-amino acids, the determination of the photochemical active species was accomplished by
transient absorption spectroscopy and density functional theory (DFT) modeling. The theo-
retical studies also provide clues for the understanding of the different reactivity found here.

2. Results and Discussion
2.1. Synthesis of the 2-Aryl-4-(E-3′-aryl-allylidene)-5(4H)-oxazolones 1a–1h

The oxazolones 1a-1h, shown in Figure 3, were prepared following the classical
Erlenmeyer–Plöch method [33–40]. The cinnamaldehydes and the hippuric acids em-
ployed in the synthesis were selected in order to cover a wide set of possibilities, with
electron-releasing and electron-withdrawing substituents in the two aryl rings and in the
allyl group. Oxazolones 1a, 1c, and 1d appear on SciFinder, but 1c and 1d have not been
characterized. Therefore, they are fully characterized here. For oxazolone 1a, data were
given [41] but in different solvents (CDCl3, dmso-d6) than that reported here (toluene-d8).
Oxazolones 1b, 1e-1h are new compounds and were fully characterized by NMR, MS, and
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X-ray diffraction data. All the oxazolones were obtained in moderate to good yields, except
oxazolone 1g which is highly soluble in ethanol (see Materials and Methods for details).
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NMR data (Figures S1–S80) showed that oxazolones 1d and 1e (Figures S17–S30) were
obtained as single isomers. The configuration of the C=C double bonds of the C(H)=C(Me)-
C(H)=C fragment can be clearly inferred in the 1H-selective NOESY of 1d. The perturbation
of the signal at 7.16 ppm (H3’, see Figure 3 and Figure S23 of Supplementary Materials)
produced a strong NOE in the signal at 7.07 ppm (H1’), as well as in the signal assigned to
the ortho H of the 3′-Ph ring (see also Materials and Methods), showing their proximity. This
means that the configuration of the C3’=C2’ double bond is E in 1d. The same conclusions
can be derived from the observation in 1e of a NOE between the peaks at 8.44 ppm (H3’) and
7.08 ppm (H1’), although in this case, due to the presence of the Br atom, the configuration
is Z. The configuration of the exocyclic C1’=C4 double bond was determined, in turn,
by measurement of the 3JCH coupling constant of the carbonyl signal with H1’ in the 13C
NMR spectrum of 1d. The value determined (5.2 Hz) shows that this C=C bond has a
Z-configuration by comparison with reported data [42,43]. Therefore, 1d and 1e show EZ
and ZZ configurations, respectively (Figure 3).

However, analysis of the NMR data in toluene-d8 of 1a–1c (Figures S1–S16) and 1f–1g
(Figures S31–S45) showed the presence of a mixture of two isomers in 3.3/1 to 1.7/1 molar
ratios, depending on the oxazolone. Two sets of signals assigned to the protons of the
-C3’(H)=C2’(H)-C1’(H)=C4 fragment were observed, with 3JH3’H2’ values identical in the
two isomers (15.7 Hz), suggesting an E configuration of the C3’=C2’ double bond in both
isomers. As expected, the large 3JH1’H2’ value (11.6 Hz) suggests the formation of the s-trans
rotamer of the diene system. Thus, the source of isomerism in these oxazolones must be
located in the relative disposition of the oxazolone ring with respect to the C1’=C4 bond.
The proton-coupled 13C NMR spectrum of 1a showed the presence of two doublet peaks
assigned to the CO group. The major species showed a value of the coupling constant
3JCH = 4.2 Hz. According to previous reports [42,43], this suggests that the C1’=C4 bond
has a Z-configuration; therefore, the major isomer of the oxazolone is EZ. As expected, in
the minor isomer, this value was 3JCH = 11.6 Hz, suggesting an E-configuration for this
bond and that the oxazolone is EE.

The determination of the crystal structure of 1a provides additional information. A
molecular drawing is shown in Figure 4, while relevant crystallographic data and selected
bond distances and angles are given as Supplementary Materials (Tables S2–S6).

The structure shows that the two C=C double bonds (C2-C10 and C11-C12) are trans,
thus corresponding to the minor EE-isomer. The allylidene fragment C13-C12-C11-C10-C2
shows the expected long-short-long-short pattern of bond distances, corresponding to a
C-C=C-C=C- molecular skeleton. Despite this pattern, the individual values of the bond
distances show electronic delocalization throughout this system, as both the long bond
distances (C12-C13 = 1.455(4) Å and C10-C11 = 1.427(4) Å), as well as the short ones (C11-
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C12 = 1.358(4) Å and C2-C10 = 1.361(4) Å) are in the respective range of distances found
in the literature for this type of conjugated bonds [44]. Other internal parameters of the
oxazolone and Ph rings do not show deviations with respect to similar compounds found
in the literature [45–48].
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2.2. Synthesis of the Cyclobutane-bis(oxazolones) 2 and 1,2-Diaminotruxinic Bis-amino Acids 3 by
[2+2]-Photocycloaddition of Oxazolones 1

The irradiation of oxazolones 1a–1h in CD2Cl2 at room temperature with the blue light
provided by a Kessil lamp (456 nm) was monitored by 1H NMR and showed the appearance
of many peaks in the 4–6 ppm region. This fact suggests the formation of the expected
cyclobutanes, but the large number of peaks observed suggests the formation of many
isomers and that the reaction takes place without selectivity. We previously observed that
the introduction of a photosensitizer improved the selectivity of the reaction [32]. In this
respect, the irradiation of oxazolones 1a, 1b, 1d, and 1f with blue light (456 nm, Kessil lamp)
in deoxygenated CD2Cl2 at room temperature, under Ar atmosphere and in the presence
of [Ru(bpy)3](BF4)2 (5% mol), took place with complete conversion of the oxazolone 1 in
18 h and formation of the corresponding cyclobutanes 2a, 2b, 2d and 2f (Figure 5). The
characterization of these cyclobutanes by NMR spectroscopy (Figures S46–S66) showed
that each one was formed by a mixture of two isomers, one of them clearly as a major
species with respect to the other (molar ratio 10.1/1 for 2a, 3.6/1 for 2b, 2.9/1 for 2d, 4.8/1
for 2f). For 2a and 2f this mixture could be separated by flash column chromatography. The
structure determined from NMR data for isolated 2a and 2f is shown in Figure 5. For 2b
and 2d, the mixture could not be separated, and the structure represented in Figure 5 was
assigned to the major isomer. The structure of the minor isomers could not be determined
due to their low molar ratio.
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Figure 5. Selective formation of styryl-cyclobutanes 2 from allylidene-5(4H)-oxazolones 1.

The formation of only two isomers for cyclobutanes 2a, 2b, 2d, and 2f, one of them
in a clear majority, is remarkable (i.e., more than 80 possible isomers) and shows that
the photosensitized reactivity of allyliden-5(4H)-oxazolones 1 also has a high degree of
selectivity. Despite this, the scope of this reaction was more limited, since not all attempted
oxazolones showed clear reactivity. The monitoring of the irradiation of 1c, 1e, 1g, and
1h under the same reaction conditions (456 nm, Ru 5%, CH2Cl2, Ar) by 1H NMR showed



Int. J. Mol. Sci. 2023, 24, 7583 6 of 20

complete conversion of the oxazolones 1, but also the presence of many peaks in the
4–6 ppm region, suggesting the formation of many different isomers of the respective
cyclobutanes 2c, 2e, 2g and 2h. These mixtures proved to be intractable and were not
further analyzed.

The cyclobutanes 2a, 2b, 2d, and 2f were stable once isolated as solids, but, in solu-
tion at room temperature, they underwent a thermal retro [2+2] reaction giving back the
starting oxazolones 1a, 1b, 1d, and 1f. This low stability is related to intramolecular steric
strains. It was also observed in µ-truxinic derivatives [32], and it seems to be responsible
for the low yields observed after chromatographic purification (Figure 5). The simplest
strategy to eliminate this steric constraint and to obtain stable cyclobutane derivatives is
the transformation of the oxazolone ring in compound 2 into the corresponding ester 3
(Figure 6). The reaction can be performed in a one-pot, two-steps way, without isolating the
cyclobutane intermediate 2, therefore minimizing the erosion of yield during isolation of 2.

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 6 of 21 
 

 

 

Figure 5. Selective formation of styryl-cyclobutanes 2 from allylidene-5(4H)-oxazolones 1. 

The formation of only two isomers for cyclobutanes 2a, 2b, 2d, and 2f, one of them in 

a clear majority, is remarkable (i.e., more than 80 possible isomers) and shows that the 

photosensitized reactivity of allyliden-5(4H)-oxazolones 1 also has a high degree of selec-

tivity. Despite this, the scope of this reaction was more limited, since not all attempted 

oxazolones showed clear reactivity. The monitoring of the irradiation of 1c, 1e, 1g, and 1h 

under the same reaction conditions (456 nm, Ru 5%, CH2Cl2, Ar) by 1H NMR showed com-

plete conversion of the oxazolones 1, but also the presence of many peaks in the 4–6 ppm 

region, suggesting the formation of many different isomers of the respective cyclobutanes 

2c, 2e, 2g and 2h. These mixtures proved to be intractable and were not further analyzed. 

The cyclobutanes 2a, 2b, 2d, and 2f were stable once isolated as solids, but, in solution 

at room temperature, they underwent a thermal retro [2+2] reaction giving back the start-

ing oxazolones 1a, 1b, 1d, and 1f. This low stability is related to intramolecular steric 

strains. It was also observed in μ-truxinic derivatives [32], and it seems to be responsible 

for the low yields observed after chromatographic purification (Figure 5). The simplest 

strategy to eliminate this steric constraint and to obtain stable cyclobutane derivatives is 

the transformation of the oxazolone ring in compound 2 into the corresponding ester 3 

(Figure 6). The reaction can be performed in a one-pot, two-steps way, without isolating 

the cyclobutane intermediate 2, therefore minimizing the erosion of yield during isolation 

of 2. 

 

Figure 6. Selective formation of bis-amino acids 3 from allylidene-5(4H)-oxazolones 1 in a one-pot, 

two-steps synthesis. 

This strategy was exemplified in the cases of 1a and 1b, as represented in Figure 6. 

The irradiation of 1a and 1b in deoxygenated CH2Cl2 in the presence of the Ru-photosen-

sitizer was performed as reported above. Once the full conversion of 1a,b was observed 

(18 h), the reaction solvent was evaporated to dryness, while irradiation was kept to min-

imize the retro [2+2] reaction in intermediates 2. The dry residues were suspended in 

methanol and subjected to ring opening reaction by treatment with NaOMe and heating, 

giving the 1,2-diaminotruxinic acids 3a and 3b in good to excellent yields (Figure 6). As is 

evident from Figure 6, the improvement in the reaction yields was more than notable. As 

expected, both 3a and 3b were stable in solid and in solution and could be purified, crys-

tallized, and characterized in solution without observing retro-[2+2] or other side-reac-

tions. Therefore, this is a very convenient method for the synthesis of this kind of new bis-

amino acid. 

Figure 6. Selective formation of bis-amino acids 3 from allylidene-5(4H)-oxazolones 1 in a one-pot,
two-steps synthesis.

This strategy was exemplified in the cases of 1a and 1b, as represented in Figure 6. The
irradiation of 1a and 1b in deoxygenated CH2Cl2 in the presence of the Ru-photosensitizer
was performed as reported above. Once the full conversion of 1a,b was observed (18 h),
the reaction solvent was evaporated to dryness, while irradiation was kept to minimize
the retro [2+2] reaction in intermediates 2. The dry residues were suspended in methanol
and subjected to ring opening reaction by treatment with NaOMe and heating, giving the
1,2-diaminotruxinic acids 3a and 3b in good to excellent yields (Figure 6). As is evident
from Figure 6, the improvement in the reaction yields was more than notable. As expected,
both 3a and 3b were stable in solid and in solution and could be purified, crystallized, and
characterized in solution without observing retro-[2+2] or other side-reactions. Therefore,
this is a very convenient method for the synthesis of this kind of new bis-amino acid.

The characterization of compounds 2 and 3 was carried out on the basis of their MS and
NMR data (Figures S46–S80). The ESI+ spectra of 2 and 3 showed perfect agreement with the
structures shown in Figures 5 and 6. The analysis of the NMR spectra of 2 (Figures S46–S66)
enabled inference of the cyclobutane scaffold, but the absence of significative NOE cross-
peaks precluded knowledge of the spatial distribution of the cyclobutane substituents,
and hence, their full structural characterization. Fortunately, the NMR data of 3a and
3b (Figures S67–S80 of Supplementary Materials) allowed an unambiguous structural
determination, showing that photodimerization occurred between the exocyclic C1’=C4
bond attached to the oxazolone ring of one molecule and the styryl C3’=C2’ bond of the
other molecule (Figures 5 and 6). The simultaneous presence in the NMR spectra of signals
due to the vinyl oxazolone proton (C1’(H)=C) and the styryl fragment (Ar-C3’(H)=C2’(H)-)
supports this hypothesis. The 1H COSY spectrum of 3a (Figure S71) showed a clear
correlation between the vinylic protons and the peak at 3.76 ppm, which was then assigned
to H-C1’. The COSY spectrum of 3a also showed a correlation between the proton at
3.30 ppm with those appearing at 3.76 ppm and 4.68 ppm, but no correlation was observed
between the latter, showing that the signal at 3.30 ppm was due to the H at C3’. The
multiplicity of the signals due to the three chemically inequivalent protons at C1’, C2’ and
C3’ showed that only head-to-head coupling was possible. In turn, the peak at 4.68 ppm
(H at C2’) correlated with the peak at 6.50 ppm, which was then assigned to the proton at
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the N-C=CH group. This structural information of 3a is presented in Figure 7a, and similar
conclusions can be obtained from the analysis of the 1H COSY of 3b.
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To determine the relative spatial arrangement of the cyclobutane substituents, the
1H NOESY spectrum of 3a (Figure S72) was measured, as well as the selective 1H 1D-
SELNOESY spectra of 3b (Figures S78–S80). The 1H NOESY spectrum of 3a showed
clear NOE correlations between the H at 3.30 ppm (H3’) and the ortho H of the styryl
fragment, as well as with the H at 6.50 ppm, showing that all these groups were close in
space and pointing to the same side of the molecular plane defined by the cyclobutane
(upwards of the plane in Figure 7b). The vinylic H at 6.50 ppm also showed an intense
NOE with one of the NH protons (7.72 ppm); this indicated that the configuration of this
alkene fragment was E. In addition, the signal at 4.68 ppm (H-C2’) showed strong NOEs
with the Hortho of the Ph ring at C3’ and with the NH at 8.25 ppm, allowing their full
assignation and showing that all these groups were also on the same side of the molecular
plane (downwards of the plane in Figure 7b). Once the structure of 3 was established
and taking into account that the ring opening reaction of the oxazolone did not alter the
configuration of the cyclobutane carbons [32], we assume the structures shown in Figure 5
for the cyclobutane-bis(oxazolones) 2.

2.3. Characterization of the Oxazolone Reactive Excited State by Transient Absorption Spectroscopy

The remarkable difference among the cyclobutanes 2a, 2b, 2d, 2f and the truxinic
derivatives 3a, 3b with respect to examples previously reported is that, in the cyclobu-
tane rings 2 and 3, the exocyclic C=C bond attached to the oxazolone has reacted with
a C=C bond quite differently, instead of with another exocyclic C=C bond. This fact is
of considerable interest because it opens the door for new heterodimerizations involving
oxazolones and other alkenes as sources of new cyclobutane-amino acids. A key point for
understanding this different reactivity is the characterization of the reactive species in the
excited state; this task was accomplished using transient absorption spectroscopy.

A comparison of the absorption spectrum of [Ru(bpy)3](BF4)2, which showed strong
absorption at 460 nm [49], with the spectra of the oxazolones 1 (having broad absorp-
tion around 380–400 nm; see Figures S81–S84 of Supplementary Materials) indicated that
the absorption of the incident light of the Kessil lamp (456 nm) was mostly produced
by the ruthenium species. This excitation resulted in the formation of its singlet excited
state 1[Ru(bpy)3

2+]*, which was followed by fast ISC (intersystem crossing) to give its
reactive triplet excited state 3[Ru(bpy)3

2+]*. Hence, there are two main possibilities for
the reaction between 3[Ru(bpy)3

2+]* and the oxazolone: either an electron transfer (a
redox process) or an energy transfer. Taking into account that the redox potentials re-
ported for the Ru species are [Ru(bpy)3]3+/[Ru(bpy)3]2+ and [Ru(bpy)3]2+/[Ru(bpy)3]+

(+1.29 V and−1.33 V vs. SCE, respectively) [49–51], and that the measured redox potentials
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for oxazolone 1a (Figures S92 and S93 of Supplementary Materials; CH2Cl2; NBu4PF6
1M) are E0(oxazolone•+/oxazolone) = +1.65 V and E0(oxazolone/oxazolone•−) = −1.15 V,
it is possible to see that both redox processes are thermodynamically unfavorable by
∆G0

et = +0.08 eV and + 0.60 eV, respectively. Therefore, we assume at this point that the re-
action takes place through an energy transfer process from the ruthenium to the oxazolone,
as will be shown later (Section 2.4).

The energy transfer from 3[Ru(bpy)3
2+]* to oxazolone promoted efficient quenching of

the emission of the ruthenium sensitizer when increasing amounts of oxazolone 1a were
added. As previously reported, the transient absorption spectrum of the 3[Ru(bpy)3

2+]*
(Figure S85) after laser excitation at 532 nm showed a stimulated emission at 620 nm, a
ground state bleaching at 450 nm, and a transient absorption band at 360 nm [32]. The three
bands showed the same kinetic behavior, confirming that all of them belonged to the same
ruthenium species. The effect of the addition of increasing the amounts of oxazolone 1a to
a [Ru(bpy)3]2+ solution was to produce effective quenching of the emission, as is clearly
shown in Figure 8a. Analysis of the decay using the Stern–Volmer equation produced a
value of 4.25 × 1010 M−1s−1 for the deactivation constant, showing that the reaction was
diffusion-controlled [52]. Similar values of this constant were found for the oxazolones 1b
and 1d (Figures S86–S91 and Table S1 in Supplementary Materials).
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Figure 8. (a) Decay traces recorded at 660 nm for [Ru(bpy)3]2+ (in deoxygenated CH2Cl2) after
addition of different amounts of 1a, obtained after LFP excitation at 532 nm; (b) Transient absorption
spectrum of a deoxygenated CH2Cl2 solution of [Ru(bpy)3]2+ in the presence of 1a (2.4 · 10−3 M)
registered at different times after laser pulse (λexc = 532 nm).

Moreover, the measurement of the transient absorption spectra of deoxygenated
solutions of [Ru(bpy)3]2+ in CH2Cl2 and in the presence of oxazolones 1 at different times
after the laser pulse enabled visualization of the formation of a new transient species.
This is shown in Figure 8b, where it is clear that the spectrum of the triplet excited state
3[Ru(bpy)3

2+]* vanished with time, and a new species with an absorption band at 450 nm
emerged and disappeared in a few microseconds. At a short interval after the pulse
(12 or 44 ns, black or red lines, respectively) the main species was the triplet of the Ru,
while at long intervals (552 or 924 ns, grey and ochre lines), the triplet of the Ru had
almost disappeared due to energy transfer to the oxazolone and the subsequent formation
of a transient species, which was visible in the emerging absorption at 450 nm. Our
proposal is that this transient species is the oxazolone excited state, which appears as
the photosensitizer disappears. Figure 9 shows the decay curve (black line) measured
at 470 nm of the new species detected in deoxygenated solutions by the reaction of 1a
with 3[Ru(bpy)3

2+]*. The half-life of this intermediate, determined from the exponential
decay, was 12.15 µs in deoxygenated solution. Both the half-life of this intermediate, in the
scale of microseconds, as well as the fast deactivation of this species in the presence of O2
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(red line in Figure 9; a value of 1 × 109 M−1s−1 was determined for the deactivation rate
constant) points to the triplet nature of this excited state. A similar value for the half-life
was measured for 1b (10.72 µs), while for 1d, the value was shorter (726.1 ns), although this
still suggests a triplet nature of the excited state. From all these data, we can conclude that
the ruthenium species behaves as a photosensitizer of the oxazolones 1, whose reactive state
3[oxa-1]* is a triplet excited state generated, presumably, by an energy transfer process from
3[Ru(bpy)3

2+]* to the oxazolone oxa-1, as shown in Figure 10. Due to the importance of the
correct characterization of the reactive species, it was further studied using DFT methods.
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Figure 10. Proposed mechanism for the formation of the reactive species of the oxazolone 3[oxa-1]* by
photosensitization of the oxazolone in the ground state oxa-1 from 3[Ru(bpy)3

2+]* by energy transfer.
Further reaction of 3[oxa-1]* with oxa-1 affords the cyclobutanes 2.

2.4. Characterization of the Reactive Excited State by DFT Methods

We employed DFT (ωB97X-D/def2-QZVPP//ωB97X-D/6-31+G(d), SMD = dichloro-
methane in all calculations) [53–61] to gain insights regarding the T1 excited state of 1a,
3[oxa-1a]*, which could reveal the reasons behind the reactivity differences shown by the
allyliden-5(4H)-oxazolone 1a and aryliden-5(4H)-oxazolones 4 (Figure 11). In this study,
we focused on the major isomer E,Z-1a observed experimentally.

There were significant variations in the excited state properties of the two oxazolone
derivatives considered. The Gibbs free energy (G) gap was considerably lower in 1a
(29.8 vs. 35.7 kcal·mol−1), which was probably due to the higher delocalization of the
two unpaired electrons from T1 of 1a with the longer conjugated system (Figure 11A).
Moreover, the atoms with higher spin density differed: in 1a, the α and δ C atoms of the
diene system showed the highest spin density (0.58 and 0.35 unpaired electrons), while in 4,
the α and β positions were predominant (0.70 and 0.42 unpaired electrons). The unpaired
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electrons accumulated in the reactive positions in each species, explaining the switch in
reactivity observed.

The T1 geometries of the two oxazolones also differed significantly. While in 1a,
the conjugated system was planar (θ = 178◦), the Ph ring was perpendicular to the ox-
azolone ring in 4 (θ = 96◦) (Figure 11A). Interestingly, we found that 1a and 4 showed
rotation transition states (TSs) to interconvert from E to Z structures with low barriers
(2.6 and 2.5 kcal·mol−1, respectively, Figure S94). The low calculated barriers were con-
sistent with previous photophysical experimental results, which indicated that the same
triplet state was rapidly formed when starting from the E and Z forms of compound 4 [32].
These rapid isomerization processes may have been an important contributing factor to
the low yields obtained experimentally since multiple competitive isomers of 2 can be
formed. We studied how these T1 geometries distorted over time using molecular dynamics
(MD, Figure 11B) [62]. The population distribution of 1a was relatively narrow and rested
around the planar system (average θ = 168◦, approximate range of θ = 130-180◦). This
result suggested that the perpendicular rotation TS (θ = 90◦) with low energy was not
immediately reached. In contrast, the geometry of 4 can easily switch from the planar to
the perpendicular geometry (average θ = 110◦, approximate range of θ = 60–180◦).
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(B) Distribution of the θ dihedral angle from MD simulations of 1a and 4 in T1. Since rotations were
symmetrical in both directions, any values above 180◦ were converted to their equivalent degrees
between 0 and 180◦ for clarity (i.e., 190◦ would be equivalent to 170◦).

3. Materials and Methods
3.1. General Procedures

The [2+2] photocycloadditions were performed under Ar atmosphere, using deoxy-
genated CH2Cl2. Other reactions were carried out in reagent-grade solvents in open air.
Flash column liquid chromatographies were carried out on silica gel (70−230 µm). 1H, 13C,
and 19F NMR spectra were measured in CDCl3, CD2Cl2, or toluene-d8 solutions at 25 ◦C on
Bruker AV300 or Bruker AV500 spectrometers (δ in ppm, J in Hz) at 1H operating frequen-
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cies of 300.13 MHz and 500.13 MHz, respectively. 1H and 13C NMR spectra were referenced
using the solvent signal as the internal standard, while 19F NMR spectra were referenced to
CFCl3. The assignment of 1H NMR peaks was performed with the help of 2D 1H−COSY, 2D
1H-NOESY and 1D 1H SELNOE experiments (mixing times of 1.2−1.8 s, as a function of the
irradiated signal), while 13C NMR peaks were identified using 1H−13C edited HSQC and
1H−13C HMBC 2D experiments. HRMS and ESI (ESI+) mass spectra were recorded using a
MicroToF Q, API-Q-ToF ESI instrument with a mass range from m/z 20 to 3000 and a mass
resolution of 15,000 (full width at half-maximum). The absorption spectra of 1a−1h were
measured in an Evolution 600 UV−Vis spectrophotometer in CH2Cl2 solutions (10−5 M),
the excitation and emission spectra were recorded on a Horiba Jobin Yvon Fluoromax-P
spectrophotometer, and the quenching of the phosphorescence of [Ru(bpy)3](BF4)2 by 1a
was measured on a Horiba Jobin Yvon Fluorolog FL-3.11 spectrophotometer. All spec-
tra were recorded at 25 ◦C using 10 mm quartz cuvettes. The cyclic voltammetry of 1a
(5 · 10−4 M) was carried out using a Voltalab50 potentiostat/galvanostat, equipped with a
glass electrochemical cell with the typical configuration of three electrodes: a Pt working
electrode, another Pt counter electrode, and the SCE electrode. The solution of the pure
electrolyte (NBu4PF6, 0.1 M) was measured over the whole window of the solvent (CH2Cl2)
to check the absence of electroactive impurities. The oxazolones 1a–1h were prepared
following published methods [33–40]. The photosensitizer [Ru(bpy)3](BF4)2 was synthe-
sized following methods found in [64,65] and stored under Ar at 4 ◦C. The melting points
(degrees Celsius) were determined on a Gallenkamp apparatus and were uncorrected.

3.2. Irradiation Setup

The solution of oxazolone 1a–1h in a Schlenck flask was irradiated at 456 nm by a
Kessil PR160L LED lamp (maximal power of 50W, but this intensity can be tuned). The
lamp and the flask were placed 5 cm apart to avoid overheating the solution. To maximize
the light of the lamp received by the solution, a mirror was placed in front of the lamp.

3.3. X-ray Crystallography

The crystals of oxazolone 1a were obtained by slow evaporation at room temperature
of a CDCl3 solution of 1a. The crystals were assembled at low temperature (100 K) using a
specific commercial system called MiTeGen micromunts Cryoloop. Diffraction data were
obtained on a Bruker D8 Venture diffractometer using Mo-Kα radiation (λ = 0.71073 Å),
filtered through a graphite monochromator and multilayer optics, at low temperature
(100 K). The diffraction frames were integrated using SAINT [66] and the integrated
intensities were corrected for absorption with SADABS [67]. The structure was determined
and developed by Fourier methods [68]. All non-hydrogen atoms were refined with
anisotropic thermal parameters. The H atoms were placed at idealized positions and
treated as riding atoms. Both structure resolution and structure refinement were carried
out using a commercial Bruker package (Bruker APEX3 software package) [69]. CCDC-
1972175 contains the supplementary crystallographic data for this paper. These data
can be obtained free of charge from The Cambridge Crystallographic Data Centre via
www.ccdc.cam.ac.uk/data_request/cif (accessed on 9 December 2020).

3.4. Photophysical Experiments

The laser flash photolysis (LFP) experiments were performed using a pulsed Nd:YAG
SL404G-10 Spectron Laser Systems laser at an excitation wavelength of 532 nm. The energy
of the single pulses (around 10 ns duration) was smaller than 15 mJ pulse−1. The LFP
system is formed by the following elements: a pulsed laser, a pulsed Lo255 Oriel Xe-lamp,
an Oriel monochromator model 77,200, an Oriel photomultiplier tube (PMT) housing, a
power supply model 70,705 PMT, and a Tektronix oscilloscope TDS-640A. Quenching rate
constants (kq) were determined according to the Stern−Volmer equation 1/τ = 1/τo + kq[Q].
In this equation τo is the triplet lifetime of Ru(bpy)3

2+ in the absence of oxazolone (Q), τ is
the lifetime of 3[Ru(bpy)3

2+]* in the presence of a given concentration of oxazolone, and

www.ccdc.cam.ac.uk/data_request/cif
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[Q] is the oxazolone concentration. The quenching rate constants (kq, M−1 s−1) were the
corresponding slopes of the linear fittings of the Stern−Volmer plots.

3.5. General Procedure for the Synthesis of 2-Aryl-4-(E-3′-aryl-allylidene)-5(4H)-oxazolones 1a–1h

The synthesis of 1a–1h was carried out following published procedures [33–40], which
are detailed here for 1a. All other oxazolones were prepared using the same procedure.

3.5.1. Synthesis of 2-Phenyl-4-(E-3′-phenylallylidene)-5(4H)-oxazolone 1a (EZ and
EE Isomers)

A Schlenk flask was charged with cinnamaldehyde (0.776 g, 5.88 mmol), hippuric acid
(1.054 g, 5.88 mmol), sodium acetate (0.467 g, 5.69 mmol), and acetic anhydride (4 mL). This
mixture was stirred while heating at 100 ◦C for 2 h. Then, the resulting suspension was
allowed to cool, giving oxazolone 1a as a viscous waxy solid. This solid was vigorously
stirred with 25 mL of ethanol. The solid thus obtained was filtered, washed with additional
ethanol (60 mL), dried by suction, and characterized as the mixture of EZ and EE isomers
of oxazolone 1a. Obtained: 1.002 g (62% yield). Ratio 2.5/1 (EZ/EE). HRMS (ESI+) [m/z]:
calculated for [C18H13NO2Na]+ = 298.0844; found 298.0833. 1H NMR major isomer (EZ)
(toluene-d8, 300.13 MHz, 25 ◦C): δ = 7.99 (dm, 2H, Ho, NCOPh, 3JHH = 7.7 Hz), 7.66 (dd,
1H, H2’, 3JHH3 = 15.7 Hz, 3JHH1 = 11.6 Hz), 7.17 (m, 2H, Ho, Ph), 7.10–6.95 (m, 6H, Hm + Hp,
NCOPh + Hm + Hp, Ph), 6.88 (dd, 1H, H1’, 3JHH = 11.6 Hz, 4JHH = 0.8 Hz), 6.51 (d, 1H,
H3’,

3JHH = 15.7 Hz). 13C{1H} NMR major isomer (EZ) (toluene-d8, 300.13 MHz, 25 ◦C):
δ = 166.12 (CO), 162.62 (CN), 143.03 (C3’), 132.74 (Cp, NCOPh), 132.37 (C1’), 136.53, 134.76,
126.49 (Ci, NCOPh + Ci, Ph + Cq, oxa, C4), 129.67(Cp, Ph), 128.97, 128.85 (Cm, Ph + Cm,
NCOPh), 128.33 (Co, Ph), 128.04 (Co, NCOPh), 123.74 (C2’).

3.5.2. Synthesis of 2-Phenyl-4-(E-3′-(4-chlorophenyl)allylidene)-5(4H)-oxazolone 1b (EZ
and EE Isomers)

1b, yellow solid. 4-chlorocinnamaldehyde (1.042 g, 6.28 mmol), hippuric acid (1.084 g,
6.05 mmol), sodium acetate (0.528 g, 6.43 mmol) and acetic anhydride (2 mL). Obtained:
1.368 g (74% yield). Ratio 1.7/1 (EZ/EE). HRMS (ESI+) [m/z]: calculated for
[C18H12ClNO2Na]+ = 332.0454; found 332.0441. 1H NMR major isomer (EZ) (CDCl3,
500.13 MHz, 25 ◦C): δ = 8.14 (m, 2H, Ho, NCOPh), 7.65 (dd, 1H, H2’, 3JHH3 = 15.6 Hz,
3JHH1 = 11.6 Hz), 7.61–7.49 (m, 5H, Hm, Hp, NCOPh + Ho, C6H4), 7.37 (m, 2H, Hm, C6H4),
7.11 (dd, 1H, H1’, 3JHH = 11.6 Hz, 4JHH = 0.8 Hz), 7.06 (d broad, 1H, H3’, 3JHH = 15.6 Hz).
13C{1H} NMR major isomer (EZ) (CDCl3, 125.7 MHz, 25 ◦C): δ = 166.68 (CO), 162.45 (CN),
135.77, 125.62, 125.61 (Ci, C6H4 + Ci, NCOPh + Cp, C6H4), 142.12 (C3’), 134.48 (Cq, oxa, C4),
132.32 (C1’), 133.22, 129.24, 129.04, 128.98 (Cm, Cp, NCOPh + Co, Cm, C6H4), 128.20 (Co,
NCOPh), 123.88 (C2’).

3.5.3. Synthesis of 2-Phenyl-4-(E-3′-(2-nitrophenyl)allylidene)-5(4H)-oxazolone 1c (EZ and
EE Isomers)

1c, yellow solid. 2-nitrocinnamaldehyde (1.122 g, 6.33 mmol), hippuric acid (1.128 g,
6.30 mmol), sodium acetate (0.556 g, 6.77 mmol) and acetic anhydride (2 mL). Obtained:
1.865 g (92% yield). Ratio 1.7/1 (EZ/EE). HRMS (ESI+) [m/z]: calculated for
[C18H12N2O4Na]+ = 343.0695; found 343.0696. 1H NMR major isomer (EZ) (toluene-d8,
500.13 MHz, 25 ◦C): δ = 7.96 (m, 2H, Ho, NCOPh, 3JHH = 7.0 Hz), 7.46 (dd, 1H, H2’,
3JHH3 = 15.6 Hz, 3JHH1 = 11.4 Hz), 7.39 (m, 1H, H3, C6H4), 7.10–6.95 (5H, Hm, Hp, NCOPh,
H6, C6H4, H1’), 6.78 (m, 1H, H4, C6H4), 6.74 (dd, 1H, H3’, 3JHH2 = 11.4 Hz, 4JHH3 = 1.0 Hz),
6.64 (m, 1H, H5, C6H4). 13C{1H} NMR major isomer (EZ) (CDCl3, 125.7 MHz, 25 ◦C):
δ = 166.35 (CO), 163.34 (CN), 148.31 (Cq-NO2, C6H4), 137.19, 133.61, 133.38, 129.86, 129.12,
128.72, 128.46, 127.86 (Cm, Cp, NCOPh + C2, C3, C4, C5, C6, C6H4), 136.09, 131.52, 125.51
(Ci, C6H4 + Ci, NCOPh + Cq, Oxazolone, C4), 131.31 (C1), 125.19 (C3, Ph).
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3.5.4. Synthesis of (Z)-2-Phenyl-4-(E-2′-methyl-3′-phenylallyliden)-5(4H)-oxazolone 1d

1d, yellow solid. α-methyl-cinnamaldehyde (1.93 mL, 13.82 mmol), hippuric acid
(2.485 g, 13.87 mmol), sodium acetate (1.355 g, 16.51 mmol) and acetic anhydride (4 mL). Ob-
tained: 3.484 g (87% yield). HRMS (ESI+) [m/z]: calculated for [C19H15NO2Na]+ = 312.1000;
found 312.0991. 1H NMR (CDCl3, 500.13 MHz, 25 ◦C): δ = 8.12 (dm, 2H, Ho, NCOPh,
3JHH = 7.0 Hz), 7.59 (tt, 1H, Hp, NCOPh, 3JHH = 7.0 Hz, 4JHH = 2.2 Hz), 7.51 (m, 2H, Hm,
NCOPh), 7.46 (m, 2H, Ho, Ph), 7.42 (m, 2H, Hm, Ph), 7.34 (tt, 1H, Hp, Ph, 3JHH = 7.0 Hz,
4JHH = 2.2 Hz), 7.16 (s broad, 1H, H3’), 7.07 (d, 1H, H1’, 4JHH = 1.0 Hz), 2.59 (d, 3H, 2-Me,
4JHH = 1.0 Hz). 13C{1H} NMR (CDCl3, 125.7 MHz, 25 ◦C): δ = 168.32 (CO), 161.86 (CN),
143.93 (C3’), 137.74 (C1’), 136.64 (Ci, Ph), 135.83 (Cq, oxazolone, C4), 133.09 (Cp, NCOPh),
132.67 (C2’), 130.05 (Co, Ph), 129.03 (Cm, Ph), 128.62 (2C overlapped, Cm, NCOPh + Cp-Ph),
128.21 (Co, NCOPh), 126.01 (Ci, NCOPh), 16.81 (Me).

3.5.5. Synthesis of (Z)-2-Phenyl-4-(Z-2′-bromo-3′-phenylallylidene)-5(4H)-oxazolone 1e

1e, yellow solid. α-bromo-cinnamaldehyde (2.461 g, 11.72 mmol), hippuric acid (2.110 g,
11.78 mmol), sodium acetate (0.962 g, 11.69 mmol) and acetic anhydride (4 mL). Obtained:
1.282 g (32% yield). HRMS (ESI+) [m/z]: calculated for [C18H12BrNO2Na]+ = 375.9949;
found 375.9954. 1H NMR (CDCl3, 500.13 MHz, 25 ◦C): δ = 8.44 (s, 1H, H3’), 8.15 (m, 2H,
Ho, NCOPh, 3JHH = 7.2 Hz), 7.89 (m, 2H, Ho, Ph, 3JHH = 7.0 Hz), 7.63 (tt, 1H, Hp, NCOPh,
3JHH = 7.4 Hz, 4JHH = 1.1 Hz), 7.53 (m, 2H, Hm, NCOPh), 7.47–7.41 (m, 3H, Hp + Hm, Ph),
7.08 (s, 1H, H1’).13C{1H} NMR (CDCl3, 125.7 MHz, 25 ◦C): δ = 166.59 (CO), 164.81 (CN),
141.86 (C3’), 135.30 (Ci, Ph), 133.86 (Cp, NCOPh), 133.38 (Cq, oxazolone, C4), 132.59 (C1’),
130.12 (Co, Ph), 129.93 (Cp, Ph), 129.06 (Cm, NCOPh), 128.62 (Cm, Ph), 128.43 (Co, NCOPh),
125.20 (Ci, NCOPh), 114.75 (C2’).

3.5.6. Synthesis of 2-(4-Cyanophenyl)-4-(E-3′-phenylallylidene)-5(4H)-oxazolone 1f (EZ
and EE Isomers)

1f, yellow solid. Cinnamaldehyde (2.100 g, 15.89 mmol), 4-cyanohippuric acid (3.089 g,
15.12 mmol), sodium acetate (1.381 g, 16.82 mmol) and acetic anhydride (4.5 mL). Obtained:
1.990 g (65% yield). Ratio 3.3/1 (EZ/EE). HRMS (ESI+) [m/z]: calculated for [C19H13N2O2]+

= [M + H]+ = 301.0977; found 301.0960. 1H NMR major isomer (EZ) (CDCl3, 300.13 MHz,
25 ◦C): δ = 8.23 (dm, 2H, Ho, NCOC6H4CN), 7.80 (tm, 2H, Hm, NCOC6H4CN), 7.68
(dd, 1H, H2’, 3JH2H3 = 15.7 Hz, 3JH2H1 = 11.6 Hz), 7.62 (m, 2H, Ho, Ph), 7.44–7.38 (m,
3H, Hm + Hp, Ph), 7.23 (dd, 1H, H1’, 3JH1H2 = 11.6 Hz, 4JH1H3 = 0.9 Hz), 7.19 (d broad,
1H, H3’, 3JH3H2 = 15.6 Hz). 13C{1H} NMR Major isomer (EZ) (CDCl3, 75.5 MHz, 25 ◦C):
δ = 166.08 (CO), 160.41 (CN), 145.63 (C3’), 135.85 (Ci, Ph), 135.32 (C1’), 133.54 (Cq, oxazolone,
C4), 132.75 (Cm, NCOC6H4), 130.57 (Cp, Ph), 129.86 (CN), 129.19 (Cm, Ph), 128.53 (Co,
NCOC6H4), 128.32 (Co, Ph), 123.30 (C2’), 118.05 (Ci, NCOC6H4), 116.21 (Cp, NCOC6H4).

3.5.7. Synthesis of 2-(E-Styryl)-4-(E-3′-phenylallylidene)-5(4H)-oxazolone 1g (EZ and
EE Isomers)

1g, yellow solid. Cinnamaldehyde (0.735 g, 5.56 mmol), cinnamoylglycine (1.063 g,
5.18 mmol), sodium acetate (0.4222 g, 5.14 mmol) and acetic anhydride (1.5 mL). Ob-
tained: 0.180 g (17% yield). Ratio 1.7/1 (EZ/EE). HRMS (ESI+) [m/z]: calculated for
[C20H15NO2]+ = 301.1103; found 301.1164. 1H NMR major isomer (EZ) (CDCl3, 300.13 MHz,
25 ◦C): δ = 8.10 (dd, 1H, H2’, 3JHH3 = 15.6 Hz, 3JHH1 = 12.1 Hz), 7.70–7.35 (m, 11H, Ho, Hm,
Hp, NCOPh + Ho, Hm, Hp, Ph + = CH5”), 7.20 (dd, 1H, H1’, 3JHH = 12.1 Hz, 4JHH = 0.7 Hz),
7.08 (d broad, 1H, H3’, 3JHH = 15.6 Hz), 6.72 (d, 1H, =CH4”, 3JHH = 16.2 Hz). 13C{1H}
NMR major isomer (EZ) (CDCl3, 75.5 MHz, 25 ◦C): δ = 166.33 (CO), 161.69 (CN), 144.91
(C3’), 142.70 (C5”), 137.24 (C1’), 135.99 (Ci, Ph), 134.69 (Ci, NCOPh), 133.82 (Cq, oxazolone,
C4), 130.57, 129.99, 129.08, 128.95, 128.04 (2C overlapped) (Co, Cm, Cp, Ph + Co, Cm, Cp,
NCOPh), 123.45 (C2’), 113.17 (C4”).
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3.5.8. Synthesis of (Z)-2-Phenyl-4-(3’,3′-diphenylallylidene)-5(4H)-oxazolone 1h

1h, yellow solid. β-phenyl-cinnamaldehyde (0.502 g, 2.41 mmol), hippuric acid
(0.432 g, 2.41 mmol), sodium acetate (0.202 g, 2.46 mmol) and acetic anhydride (1 mL). Ob-
tained: 0.341 g (40% yield). HRMS (ESI+) [m/z]: calculated for [C24H17NO2Na]+ = 374.1157;
found 374.1124. 1H NMR (CDCl3, 300.13 MHz, 25 ◦C): δ = 8.14 (m, 2H, Ho, NCOPh,
3JHH = 7.0 Hz), 7.68 (d, 1H, H2’, 3JHH = 12.1 Hz), 7.59 (m, 1H, Hp, NCOPh), 7.53 (m, 2H, Hm,
NCOPh), 7.49–7.26 (m, 10H, Ph), 7.08 (d, 1H, H1’, 3JHH = 12.1 Hz). 13C{1H} NMR (CDCl3,
75.5 MHz, 25 ◦C): δ = 167.02 (CO), 162.08 (CN), 154.92 (C3’), 141.15, 138.36 (Ci, Ph), 134.74
(Cq, oxazolone, C4), 133.16 (Cp, NCOPh), 131.09 (C1’), 130.78, 129.62, 129.06 (2C overlaped),
128.86, 128.67, 128.60 (Cm, NCOPh + Co, Cm, Cp, 2 Ph), 128.25 (Co, NCOPh), 125.89 (Ci,
NCOPh), 122.52 (C2’).

3.6. Synthesis and Characterization of Cyclobutane-bis(oxazolone) Intermediates 2a, 2b, 2d and 2f

The synthesis of cyclobutanes 2 was carried out by [2+2]-photocycloaddition of ox-
azolones 1, photosensitized by [Ru(bpy)3](BF4)2. This procedure is detailed here for oxa-
zolone 1a. All other cyclobutanes were prepared using the same procedure.

3.6.1. Synthesis of Cyclobutane 2a

The oxazolone 1a (0.138 g, 0.502 mmol) and the photocatalyst [Ru(bpy)3](BF4)2 (0.0186 g,
0.025 mmol) were dissolved in deoxygenated CH2Cl2 (5 mL) under Ar atmosphere. This
red solution was irradiated with the blue light (456 nm) provided by a Kessil LED lamp
(50 W) for 18 h. Then the solvent was evaporated to dryness and the residue characterized
as a mixture of isomers of cyclobutane 2a (10.1/1 molar ratio): The major isomer in this mix-
ture was separated and purified by flash chromatography on silica gel using hexane/ethyl
acetate as eluent (8/2 ratio). The orange band collected was evaporated to dryness to give
cyclobutane 2a as an orange-yellowish solid. Obtained: 0.060 g (43% yield). HRMS (ESI+)
[m/z]: calculated for [C36H26N2NaO4]+ = 573.1793 [M+Na]+; found: 573.1778. 1H NMR
(CDCl3, 300.13 MHz, 25 ◦C): δ = 7.97 (m, 2H, Ho, Ph-oxa), 7.82 (m, 2H, Ho, Ph-oxa), 7.50 (m,
2H, Hp, Ph-oxa), 7.39 (m, 2H, Hm, Ph-oxa), 7.23–7.15 (m, 6H, 4Ho + 2Hm, Ph), 7.11–6.98
(m, 6H, 4Hm + 2Hp, Ph), 6.26 (dd, 1H, H2′-vinyl, 3JHH = 10 Hz, 4JHH = 1.8 Hz), 6.16 (d, 1H,
=CH1′-oxa, 3JHH = 12 Hz), 5.69 (dd, 1H, H3′-vinyl, 3JHH = 10 Hz, 4JHH = 1.8 Hz), 4.97 (m,
1H, H2’, cyclo), 3.78–3.69 (m, 2H, H3’ + H1’, cyclo). 13C{1H} NMR (CDCl3, 75.5 MHz, 25 ◦C):
δ = 177.10 (C(O)O-cyclo), 164.64 (C(O)O-vinyl), 162.46, 161.93 (C=N), 141.68, 140.25 (Ci,
Ph), 138.69 (Cq, oxa), 137.48 (CH vinyl, C2’), 138.86 (C1’H-oxa), 133.44, 133.15 (Cp, Ph-oxa),
128.95, 128.92, 128.63, 128.55, 128.46, 128.21, 128.18 (Cm, Co, Ph + Ph-oxa), 127.25, 126.96
(Cp, Ph), 125.39, 125.03 (Ci, Ph-oxa), 123.45 (CH vinyl, C3’), 73.42 (C4, cycle), 50.45 (CH
cyclo, C3’), 49.03 (CH cyclo, C1’), 44.06 (CH cyclo, C2’).

3.6.2. Synthesis of Cyclobutane 2b

The synthesis of the cyclobutane 2b was carried out following the same experimental
procedure described for 2a. Therefore, 1b (0.154 g, 0.498 mmol) and the photocatalyst
(0.0186 g, 0.025 mmol) were irradiated in CH2Cl2 (5 mL) with blue light (456 nm) for
18 h to give a mixture of two cyclobutanes in 3.6/1 molar ratio, which could not be
separated by column chromatography. The major isomer in this mixture was characterized
spectroscopically as 2b. Obtained: 0.030 g (19% yield). HRMS (ESI+) [m/z]: calculated for
[C36H24Cl2N2NaO4]+ = 641.1013 [M+Na]+; found: 641.0977. 1H NMR (CDCl3, 300.13 MHz,
25 ◦C): δ = 7.95 (m, 2H, Ho, Ph-oxa), 7.83 (m, 2H, Ho, Ph-oxa), 7.56–7.51 (m, 4H, Hp, Ph-oxa
+ Hm, Ph-Cl), 7.44–7.38 (m, 4H, Hm, Ph-oxa), 7.19 (m, 2H, Ho, Ph-Cl), 7.10 (m, 2H, Hm,
Ph-Cl), 6.93 (m, 2H, Ho, Ph-Cl), 6.19 (dd, 1H, H2′- vinyl, 3JHH = 9.8 Hz, 4JHH = 1.9 Hz), 6.10
(d, 1H, =CH1′-oxa, 3JHH = 12 Hz), 5.72 (dd, 1H, H3′-vinyl, 3JHH = 9.8 Hz, 4JHH = 2.3 Hz), 4.94
(m, 1H, H2’, cyclo), 3.64–3.69 (m, 2H, H3’ + H1’, cyclo). 13C{1H} NMR (CDCl3, 75.5 MHz,
25 ◦C): δ = 177.05 (C(O)O-cyclo), 164.68 (C(O)O-vinyl), 162.84, 162.12 (C=N), 139.89 (Ci,
Ph-vinyl), 139.05 (Cq, oxa), 138.58 (Ci, Ph-vinyl), 136.52 (CH vinylic, C2’), 135.82 (CH-oxa),
133.63, 133.28 (Cp, Ph-oxa), 133.16, 133.00 (C4, Ph-Cl), 129.90, 129.01, 128.98, 128.96, 128.81,
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128.30, 128.24 (Cm, Co, Ph-Cl + Ph-oxa), 125.25, 124.90 (Ci, Ph-oxa), 124.11 (CH vinylic, C3’),
73.24 (C4, cyclo), 49.94 (CH cyclo, C3’), 48.47 (CH cyclo, C1’), 43.74 (CH cyclo, C2’).

3.6.3. Synthesis of Cyclobutane 2d

The synthesis of the cyclobutane 2d was carried out following the same experimental
procedure described for 2a. Therefore, 1d (0.154 g, 0.533 mmol) and the photocatalyst
(0.0186 mg, 0.025 mmol) were irradiated in CH2Cl2 (5 mL) with blue light (456 nm) for
17 h to give a mixture of two cyclobutanes in 2.9/1 molar ratio, which could not be
separated by column chromatography. The major isomer in this mixture was characterized
spectroscopically as 2d. Obtained: 0.035 g (22% yield). HRMS (ESI+) [m/z]: calculated for
[C38H30N2NaO4]+ = 601.2106 [M+Na]+; found: 601.2081. 1H NMR (CDCl3, 300.13 MHz,
25 ◦C): δ = 8.00 (m, 2H, Ho, Ph-oxa), 7.84 (m, 2H, Ho, Ph-oxa), 7.62–7.04 (overlapped
aromatics, 16H), 5.40 (s, 1H, H3′-vinyl), 4.06 (m, 1H, H3’, cyclo), 3.80 (m, 1H, H1’, cyclo), 1.62
(s, 3H, CH3-C2’ vinyl), 1.30 (s, 3H, CH3-C2’ cyclo). 13C{1H} NMR (CDCl3, 75.5 MHz, 25 ◦C):
δ = 177.68 (C(O)O-cyclo), 167.55 (C(O)O-vinyl), 162.68, 161.73 (C=N), 143.87 (C vinylic, C1),
141.51 (Ci, Ph-vinyl), 138.38 (Ci, Ph-vinyl), 138.20 (Cq, oxa), 137.20 (CH-oxa), 133.29, 133.04,
127.03, 126.64 (Cp, Ph-oxa + Ph), 128.88 (br), 128.84 (br), 128.40 (br), 128.32, 127.96 (Cm,
Co, Ph + Cm, Ph-oxa), 125.58, 125.69 (Ci, Ph-oxa), 119.83 (CH vinyl, C2’), 77.40 (C4, cyclo),
54.39 (CH cyclo, C3’), 51.50 (CH cyclo, C1’), 48.51 (C cyclo, C2’), 22.30 (CH3-C vinyl), 19.92
(CH3-C cyclo).

3.6.4. Synthesis of Cyclobutane 2f

The synthesis of the cyclobutane 2f was carried out following the same experimental
procedure described for 2a. Therefore, the oxazolone 1f (0.145 g, 0.482 mmol) and the
photocatalyst (0.0186 g, 0.025 mmol) were irradiated in CH2Cl2 (5 mL) with blue light
(456 nm) for 18 h to give cyclobutane 2f as a yellow solid after separation and purification
by column chromatography (silica gel, hexane/ethyl acetate = 8/2 as eluent). Obtained:
0.026 g (18% yield). HRMS (ESI+) [m/z]: calculated for [C38H24N4NaO4]+ = 623.1698
[M+Na]+; found: 623.1656. 1H NMR (CDCl3, 300.13 MHz, 25 ◦C): δ = 8.16 (m, 2H, Ho,
Ph-CN), 8.03 (m, 2H, Ho, Ph-CN), 7.83 (m, 2H, Hm, Ph-CN), 7.65 (m, 2H, Hm, Ph-CN),
7.42–7.31 (m, 4H, Ho, Ph), 7.21–7.18 (m, 2H, Hm, Ph), 7.04–6.97 (m, 4H, Hp, Ph + Hm, Ph),
6.33 (dd, 1H, H2′-vinyl, 3JHH = 10 Hz, 4JHH = 1.7 Hz), 6.09 (d, 1H, =CH1′-oxa, 3JHH = 11 Hz),
5.68 (dd, 1H, H3′-vinyl, 3JHH = 10 Hz, 4JHH = 1.7 Hz), 4.52 (m, 1H, H2’, cyclo), 3.79–3.70 (m,
2H, H3’ + H1’, cyclo). 13C{1H} NMR (CDCl3, 75.5 MHz, 25 ◦C): δ = 175.95 (C(O)O-cyclo),
163.82 (C(O)O-vinyl), 162.38, 160.59 (C=N), 141.15 (Ci, Ph-vinyl), 140.34 (Cq, oxa), 139.32
(Ci, Ph-cyclo), 138.20 (CH vinyl, C2’), 134.27 (CH-oxa), 132.80, 132.67 (Co, Ph), 129.18, 129.15
(CN-Ph), 128.83, 128.68, 128.58, 128.54 (br), 128.42 (Cm, Co, Ph-CN + Cm, Ph), 127.36, 127.19
(Cp, Ph), 122.50 (CH vinylic, C3’), 117.80, 117.68 (Ci, Ph), 117.00, 116.71 (C4-CN, Ph-CN)
73.37 (C4, cyclo), 50.49 (CH cyclo, C3’), 48.40 (CH cyclo, C1’), 46.39 (CH cyclo, C2’).

3.7. Synthesis and Characterization of Cyclobutanes 3a and 3b
3.7.1. Synthesis of Methyl-1-benzamido-2-((E)-2-benzamido-2-methoxycarbonylprop-1-en-
1-yl)-3-phenyl-4-((E)-styryl)cyclobutane-1-carboxylate 3a

Oxazolone 1a (0.2982 g, 1.084 mmol) and [Ru(bpy)3](BF4)2 (0.0391 g, 0.053 mmol) (5%
mol) were dissolved in deoxygenated CH2Cl2 under Ar atmosphere and irradiated for 18 h
(456 nm, Kessil lamp, 50 W). Then the solution was evaporated to dryness (irradiation was
maintained during evaporation to prevent thermal retro-[2+2]) and the oily residue treated
with methanol (10 mL) and NaOMe (9 mg, 0.167 mmol). The resulting suspension was
heated in an oil bath to the reflux temperature for 45 min. The resulting solution was cooled
and evaporated to dryness. The residue was taken in the minimal amount of CHCl3 (2 mL)
and subjected to flash chromatography on silica gel using CHCl3 as eluent. The colorless
fraction containing 3a was evaporated to dryness and treated with n-pentane (15 mL),
giving 3a as a white solid. The white solid was crystallized in CH2Cl2/n-pentane at −18 ◦C
to give 3a as a white crystalline solid. Obtained: 0.2401 g (80% yield). Mp: 145–146 ◦C.
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HRMS (ESI+) [m/z]: calculated for [C38H34N2NaO6]+ = 637.2309 [M+Na]+; found: 637.2322.
1H NMR (CDCl3, 500.13 MHz, 25 ◦C): δ = 8.25 (s, 1H, NH-C4 cyclo), 7.92 (m, 2H, Ho,
C6H5-CONHC4 cyclo), 7.72 (s, 1H, NH-C4=C1’ (vinyl)), 7.66 (m, 2H, Ho, C6H5-CONHCq
(vinyl)), 7.56–7.33 (m, 6H, 2Hp+ 4Hm, COC6H5), 7.23–7.05 (m, 6H, 2Hp+ 4Hm, C6H5), 6.99
(m, 2H, Ho, =C(H)-C6H5), 6.92 (m, 2H, Ho, C3′-C6H5), 6.50 (d, 1H, =C1’H, 3JHH = 10.8 Hz),
6.22 (dd, 1H, C6H5-CH=CH, 3JHH = 10.2 Hz, 4JHH = 2.7 Hz), 6.10 (dd, 1H, C6H5-CH=CH,
3JHH = 10.2 Hz, 4JHH = 2.1 Hz), 4.68 (t, 1H, H-C2’ cyclo, 3JHH4 = 3JHH3 = 12 Hz), 4.01 (s, 3H,
C1-C(O)OCH3), 3.76–3.70 (m, 4H, =C-C(O)OCH3 + H-C1’ cyclo), 3.30 (dd, 1H, H-C3’ cyclo,
3JHH = 10.20 Hz, 3JHH = 12 Hz). 13C{1H} NMR (CDCl3, 125.75 MHz, 25 ◦C): δ = 171.51
(C(O)OCH3), 166.19 (CONH), 165.33 (2 C(O), CONH + C(O)OCH3), 142.96 (Cq, C6H5),
141.25 (Cq, C6H5), 134.32 (Cq, C6H5), 134.05 (Cq, C6H5), 133.52 (CH, C6H5), 131.86 (CH,
C6H5), 131.52 (-CH=CH-), 128.59 (CH, C6H5), 128.51 (CH, C6H5), 128.38 (2CH, Co, C6H5),
128.25 (Cq=CH-), 128.13 (CH, C6H5), 128.08 (CH, C6H5), 127.86 (Cq=CH), 127.18 (Co, C6H5),
126.91 (Co, C6H5), 126.71 (-CH=CH-), 126.60 (CH, C6H5), 126.43 (CH, C6H5), 64.20 (C4),
53.30 (CH3, C(O)OCH3), 52.81 (CH3, C(O)OCH3), 51.96 (CH cyclo, C3’), 50.33 (CH cyclo,
C1’), 44.23 (CH cyclo, C2’).

3.7.2. Synthesis of Methyl-1-benzamido-2-((E)-2-benzamido-2-methoxycarbonylprop-1-en-
1-yl)-3-(4-chlorophenyl)-4-((E)-chlorostyryl)cyclobutane-1-carboxylate 3b

Compound 3b was obtained following the experimental procedure described for
3a. Therefore, oxazolone 1b (0.2991 mg, 0.968 mmol) and [Ru(bpy)3](BF4)2 (0.036 mg,
0.048 mmol) (5% mol ratio) were irradiated for 18 h in CH2Cl2 (5 mL) and then reacted with
NaOMe in refluxing MeOH (5 mL) for 45 min to give 3b as a white solid after chromato-
graphic purification and crystallization in CH2Cl2/n-pentane. Obtained: 230.0 mg (78%
yield). Mp: 151–152 ◦C. HRMS (ESI+) [m/z]: calculated for [C38H32Cl2N2NaO6]+ = 705.1535
[M+Na]+; found: 705.1524. 1H NMR (CDCl3, 500.13 MHz, 25 ◦C): δ = 8.09 (s, 1H, NH, NH-
C4 cyclo), 7.86 (m, 2H, Ho, C6H5-CONHC4 cyclo), 7.81 (s, 1H, NH, NH-C4=C1’ (vinyl)),
7.67 (m, 2H, Ho, C6H5-CONHC4), 7.52–7.38 (m, 6H, 2Hp+ 4Hm, COC6H5), 7.16 (dm, 2H,
Hm, C6H4Cl, 3JHH = 8.4 Hz), 7.09 (dm, 2H, Hm, C6H4Cl, 3JHH = 8.1 Hz), 6.90 (dm, 2H, Ho,
C6H4Cl, 3JHH = 8.4 Hz), 6.85 (dm, 2H, Ho, C6H4Cl, 3JHH = 8.1 Hz), 6.64 (d, 1H, =C1’H oxa-
zolone, 3JHH= 11.9 Hz), 6.13 (dd, 1H, CH=CH-C4, 3JHH= 10.1 Hz, 4JHH= 2.7 Hz), 6.10 (dd, 1H,
-CH=CH-C4, 3JHH= 10.1 Hz, 4JHH= 2.1 Hz), 4.75 (t, 1H, H-C2’ cyclo, 3JHH = 3JHH = 11.9 Hz),
4.00 (s, 3H, C1-C(O)OCH3), 3.69–3.64 (m, 4H, =C-C(O)OCH3 + H-C1’ cyclo), 3.27 (dd,
1H, H-C3’ cyclo, 3JHH =10.4 Hz, 3JHH = 11.9 Hz). 13C{1H} NMR (CDCl3, 125.7 MHz,
25 ◦C): δ = 171.53 (C(O), C(O)OCH3), 166.23 (C(O), CONH), 165.57 (C(O), CONH), 165.16
(C(O)OCH3), 141.42 (Ci, C6H4Cl), 139.83 (Ci, C6H4Cl), 134.38, 134.30 (Ci, C6H5 + Ci, C6H5),
133.17 (-CH=CH-), 132.57, 132.54 (Cp, C6H4Cl + Cp, C6H4Cl), 132.13 (Cp, C6H5), 131.83 (Cp,
C6H5), 129.84 (Co, C6H4Cl), 129.79 (Co, C6H4Cl), 128.83, 128.74 (Cm, C6H5 + Cm, C6H5),
128.63 (Cm, C6H4Cl), 128.59 (Cm, C6H4Cl), 128.40 (Cq=CH), 127.27 (2C, Co, C6H5 + Cq=CH),
127.17 (-CH=CH-), 127.06 (Co, C6H5), 64.39 (C4, cyclo), 53.69 (CH3,C(O)OCH3), 53.09 (CH3,
C(O)OCH3), 51.71 (CH cyclo, C3’), 49.78 (CH cyclo, C1’), 43.88 (CH cyclo, C2’).

4. Conclusions

The Ru-sensitized irradiation of 4-(3-aryl-allyliden)-5(4H)-oxazolones with blue light
(456 nm) takes place with the formation of a series of styryl-cyclobutanes by [2+2]-photocyc-
loaddition of two oxazolones. The coupling is produced using the exocyclic C=C bond of
one oxazolone and the styryl C=C bond of the other one and occurs with a high degree
of selectivity, because one isomer is mostly formed. This coupling is very different from
that observed in 4-aryliden-5(4H)-oxazolones, which involves only the exocyclic C=C bond.
The reactive species was characterized as a triplet excited state T1 by transient absorption
spectroscopy. In addition, DFT methods showed that this T1 state is planar and that the spin
distribution is concentrated in the α and δ carbons of the diene system, instead of in the α
and β carbons as observed in aryliden-oxazolones, providing a reasonable explanation for
the different reactivity observed.
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