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Abstract: Linderone is a major compound in Lindera erythrocarpa and exhibits anti-inflammatory
effects in BV2 cells. This study investigated the neuroprotective effects and mechanisms of linderone
action in BV2 and HT22 cells. Linderone suppressed lipopolysaccharide (LPS)-induced inducible
nitric oxide synthase, cyclooxygenase-2, and pro-inflammatory cytokines (e.g., tumor necrosis factor
alpha, interleukin-6, and prostaglandin E-2) in BV2 cells. Linderone treatment also inhibited the
LPS-induced activation of p65 nuclear factor-kappa B, protecting against oxidative stress in glutamate-
stimulated HT22 cells. Furthermore, linderone activated the translocation of nuclear factor E2-related
factor 2 and induces the expression of heme oxygenase-1. These findings provided a mechanistic
explanation of the antioxidant and anti-neuroinflammatory effects of linderone. In conclusion, our
study demonstrated the therapeutic potential of linderone in neuronal diseases.
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1. Introduction

Neurodegenerative diseases, such as Parkinson’s disease and Alzheimer’s disease,
are often associated with neuroinflammation. As an important immune response, neuroin-
flammation protects the body from damage by eliminating harmful factors and repairing
cells and tissues. However, excessive neuroinflammation can lead to severe neurological
dysfunction [1–3]. Microglia are key immune cells that mediate inflammation in the cen-
tral nervous system [4–6]. Under the stimulation of lipopolysaccharide (LPS), microglia
produce prostaglandin E2 (PGE2) and nitric oxide (NO) through the expression of proin-
flammatory proteins, inducible nitric oxide synthase (iNOS), and cyclooxygenase (COX-2),
resulting in inflammatory-related neurological dysfunction [7–9]. In addition, nuclear factor
κB (NF-κB) signal transduction is crucial in the process of microglia-mediated neuroin-
flammation. Nuclear factor-κB (NF-κB)/Rel proteins include NF-κB2 p52/p100, NF-κB1
p50/p105, c-Rel, RelA/p65, and RelB. These proteins act as dimerization transcription
factors, among which RelA/p65 is an important type of NF-κB/Rel protein and a key
target for regulating inflammatory responses in cells [10]. Under unstimulated conditions,
NF-κB is a complex composed of p65 and I-κB subunits, and exists in the cytoplasm [11].
However, LPS induction will lead to the phosphorylation of I-κB, leading to a structural
change of the p65/I- κB complex, and the p65 subunit will be dissociated and transferred
into the nucleus to affect the transcription of inflammatory factors [12]. After that, the free
p65 subunit is transported to the nucleus, where it induces inflammatory factors such as
tumor necrosis factor (TNF)-α and interleukin (IL)-6. Therefore, one strategy for inhibiting
microglial inflammation is to regulate NF-κB translocation [13–15].
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Another important pathogenesis of neurodegenerative diseases is oxidative stress [16–18].
Oxidative imbalances lead to imbalances in the antioxidant system, leading to the production
of reactive oxygen species (ROS) [19]. Rising levels of reactive oxygen species can lead to cell
apoptosis, damage proteins and organelles, damage mitochondrial membranes, and lead to
neuronal cell death [20]. As a key regulator of the antioxidant response, nuclear factor E2
related factor 2 (Nrf2) can promote the expression of antioxidant enzymes, including heme
oxygenase (HO)-1 [21]. HO-1 has strong antioxidant and anti-inflammatory effects [22]. In
addition, the activation of the Nrf2/HO-1 pathway can reduce the NF-κB-mediated inflam-
matory response to prevent neuronal cell death. Therefore, the Nrf2/HO-1 pathway has been
a therapeutic target for neuroprotective medicine [23,24].

Lindera erythrocarpa (family Lauraceae) is widely distributed in Korea, Japan, and
China [25]. Our previous study identified the fungal metabolite linderone in L. erythrocarpa
and found that it inhibited NO overproduction in lipopolysaccharide (LPS)-treated BV2
cells [26]. However, little research has been conducted on the neuroprotective effects
of linderone.

In this study, we therefore investigated the anti-neuroinflammatory effects of linderone
in LPS-stimulated BV2 cells. We also examined the protective effects of linderone in
glutamate-induced HT22 cells.

2. Results
2.1. Effects of Linderone on BV2 and HT22 Cell Viability

Linderone was isolated from the leaves of L. erythrocarpa Makino (see Figure 1A for
chemical structure). To determine the cytotoxic effects of linderone, we treated HT22 and
BV2 cells with various linderone concentrations, followed by a 3-(4,5-dimethylthiazol-2-yl)-
2,5-diphenyltetrazolium bromide (MTT) assay. The results showed that 10–40 µM was a
safe concentration range (Figure 1B,C). Thus, we set the maximum treatment concentration
of linderone at 40 µM for subsequent experiments.
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Figure 1. Linderone chemical structure (A) and effects on cell viability. BV2 (B) and HT22 (C) cells
were incubated with various concentrations for 24 h. The MTT assay was used to determine
cell viability.

2.2. Effects of Linderone on Inflammatory Factors in BV2 Cells

An LPS-induced BV2 cell was established for measuring nitrite production. We used
sulfuretin (20 µM) as a positive control because its anti-inflammatory effect is excellent. The
effect of linderone on nitrite levels was significant at 40 µM (Figure 2A). We demonstrated
that prostaglandin E2 (PGE2) production was inhibited by linderone (Figure 2B). Linderone
also inhibited IL-6 and TNF-α production (Figure 2C,D). Thus, linderone significantly
reduced the level of inflammatory factors in LPS-induced BV2 cells.
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Figure 2. Effects of linderone on nitrite (A), PGE2 (B), TNF-α (C), and IL-6 (D) levels in LPS-induced
BV2 cells. Cells were pretreated with linderone for 2 h and cultured for 24 h with LPS. * p < 0.05,
*** p < 0.001 compared with LPS-treated group. Sulfuretin at a concentration of 20 µM was the
positive control.

Furthermore, western blots of inflammation-related protein expression showed that
both iNOS and COX2 expression rose in LPS-treated cells, and linderone pretreatment
inhibited this LPS-induced increase (Figure 3).
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2.3. Effects of Linderone on Regulation of NF-κB (p65) Pathway in BV2 Cells

The cytosolic and nuclear fractions from LPS-induced BV2 cells were extracted to
explore the inhibitory effect of linderone on the NF-κB pathway. We then measured the
protein levels with western blotting. Linderone inhibited p-IκBα expression and p65
nuclear translocation (Figure 4A,B). Using immunofluorescence, we also compared p65
NF-κB expression in LPS-treated cells with and without the linderone treatment (Figure 4C).
Linderone reduced the LPS-induced increase in p65 nuclear translocation. These results
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suggest that linderone blocks the LPS-induced production of neuroinflammatory cytokines
through inhibiting the NF-κB pathway.
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Figure 4. Effects of linderone on NF-κB (A,B) and p65 localization (C) in BV2 cells. Cells were
pretreated with linderone for 2 h and cultured with LPS for 1 h. * p < 0.05, *** p < 0.001 compared
with LPS-treated group.

2.4. Effects of Linderone on Glutamate-Induced Oxidative Stress in HT22 Cells

Linderone was treated for proving neuroprotective effects against oxidative stress-
induced cytotoxicity in glutamate-treated HT22 cells. Linderone exerted neuroprotective
effects in glutamate-treated HT22 cells in a concentration-dependent manner (Figure 5A).
Furthermore, the glutamate treatment group produced significantly more ROS than the con-
trol group (Figure 5B). Linderone, on the other hand, significantly reduced ROS production
(Figure 5C).
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was detected using fluorescence microscope (original magnification: ×100); and fluorescence inten-
sities were quantified using ImageJ software (C) * p < 0.05, ** p < 0.01, *** p < 0.001 compared with
control group. N-acetyl-cysteine (NAC, 1 mM) was the positive control.

2.5. Effects of Linderone on Nrf2/HO-1 Pathway in HT22 and BV2 Cells

To determine whether HO-1 was the source of linderone’s antioxidant effect, we treated
BV2 and HT22 cells with various linderone concentrations for 12 h before performing
western blotting. Cobalt protoporphyrin (CoPP) served as a positive control. Linderone
significantly increased HO-1 expression in BV2 and HT22 cells (Figure 6).
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We also explore the effect of linderone on Nrf2 activation. We measured Nrf2 expres-
sion every 0.5 h and observed that cytosolic Nrf2 transfers to the nucleus in BV2 and HT22
cells after linderone administration (Figure 7).
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Tin protoporphyrin-IX (SnPP), a selective HO-1 inhibitor, was used to further examine
whether the neuroprotective effects of linderone were related to the Nrf2/HO-1 pathway.



Int. J. Mol. Sci. 2023, 24, 7569 6 of 10

Nitrite concentration was lower in the linderone group compared to those treated with
both linderone and SnPP (Figure 8A). The neuroprotective effects were also stronger in
the linderone-treated HT22 cells compared to those treated with both linderone and SnPP
(Figure 8B). Additionally, SnPP treatment reversed the anti-inflammatory and neuroprotec-
tive effects of linderone, suggesting that HO-1 expression regulates linderone’s effects.
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3. Discussion

Long used as a herbal medicine, L. erythrocarpa has been found to exhibit antioxidant,
anti-inflammatory, anticancer, and antifungal activities. One of the main compounds in
L. erythrocarpa is linderone, a cyclopentadione that shows anti-inflammatory effects on
BV2 cells. Linderone is a compound belonging to the cyclopentadione class. Reports have
shown that linderone not only has the ability to scavenge free radicals such as DPPH or
ABTS [27], but can also inhibit NO production in RAW264.7 [28]. However, there are no
papers about the regulation of neuronal effects using linderone. Here, we verified that this
characteristic of linderone confers neuroprotection.

First, the cell viability experiment determined the safe concentration range of lin-
derone (Figure 1). Next, the effects of linderone on neuroinflammation were confirmed
in LPS-induced BV2 cells. Our results show that linderone can significantly inhibit the
production of nitrite and PGE2 (Figure 2A,B). Nitrite and PGE2 are important inflamma-
tory mediators produced by microglia. Nitrite is mediated by iNOS and then destroys
the cell membrane of neurons, damaging DNA transcription and protein synthesis [28].
PGE2 is a COX-2 product that also plays an important role in neuroinflammation [29].
Other proinflammatory cytokines activated by NF-κB, including TNF- α and IL-6, were
also significantly inhibited by linderone (Figure 2C,D). In the meantime, a western blot
analysis showed that linderone also inhibited LPS-induced iNOS and COX-2 expression
(Figure 3). NF-κB is a key regulatory protein of the aforementioned inflammatory fac-
tors, so the effect of linderone on the NF-κB pathway was also determined. As a key
protein in the response of microglia to stimulation under ischemic, traumatic, neurotoxic,
or inflammatory conditions [30], NF-κB activation contributes to neuronal damage and
promotes the development of neurodegenerative diseases [31–33]. The results suggest that
linderone significantly inhibited the nuclear translocation of p65 (Figure 4). In summary,
these results demonstrate that linderone can inhibit inflammation via the NF-κB pathway
in LPS-stimulated BV2 cells.

Neuronal apoptosis in neurodegenerative diseases is a direct cause of morbidity,
and high concentrations of glutamate can induce neuronal apoptosis through oxidative
stress [34]. Therefore, we studied the neuroprotective effect of linderone on glutamate-
induced HT22 cells. The results show that linderone significantly improved glutamate-
induced damage in HT22 cells and increased cell survival (Figure 5A). After that, our
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study measured ROS in HT22 cells using a fluorescence microscope. In glutamate-induced
neuronal cells, the activation of ionic glutamate receptors leads to excessive ROS formation,
ultimately leading to cell death [35]. The results show that Lindelun reversed the ROS
produced by HT22 cells induced by glutamate (Figure 5B,C). This result indicates that
ninhydrin can protect HT22 cells by inhibiting oxidative stress. The Nrf-2/HO-1 pathway is
crucial in neuroprotective strategies [36]. The activation of HO-1 can protect neurons from
oxidative damage [37]. Our results indicate that indenone induces HO-1 expression in both
BV2 and HT22 cells (Figure 6A,B). On the other hand, Nrf2 is a negative regulator of HO-1,
and after activation, it enters the nucleus for transcription and induces the production
of HO-1 [38]. We found that linderone treatment decreased the content of Nrf2 in the
cytoplasm, while increasing the content of Nrf2 in the nucleus (Figure 7). This result
indicates that linderone can activate the Nrf2/HO-1 pathway in BV2 and HT22 cells. We
also used SnPP, the inhibitor of HO-1, to verify this point. As expected, linderone reduced
the nitrite levels in BV2 cells and protected HT22 cells from death, while SnPP reversed
these beneficial effects (Figure 8). Therefore, it can be concluded that linderone significantly
targets Nrf2/HO-1 to exert protective effects on HT22 cells. In this study, we only focused
on the mechanism of cell protective effects or anti-neuroinflammation by linderone using
the two cell lines, BV2 and HT22 cells; however, the neuroprotective effects in vivo should
be further studied.

4. Materials and Methods
4.1. Materials

Cell reagents were purchased from Gibco BRL Co., Ltd. (Grand Island, NY, USA).
Primary antibodies were purchased from Cell Signaling Technology (Danvers, MA, USA);
ELISA kits were purchased from R&D Systems Inc., (Minneapolis, MN, USA). Secondary
antibodies were purchased from Millipore (Billerica MA, USA). Other reagents were pur-
chased from Sigma-Aldrich (St. Louis, MO, USA).

4.2. Cell Culture and Cell Viability Assays

BV2 cells were incubated in RPMI1640 containing 1% penicillin-streptomycin and
10% FBS. HT22 cells were cultured in DMEM containing 10% FBS and 1% penicillin-
streptomycin, under a humidified atmosphere of 5% CO2 and a temperature of 37 ◦C. Cell
viability was measured with the MTT assay.

4.3. Measurement of NO Generation

Equal volumes of cell supernatant and Griess reagent were mixed for nitrite level
determination.

4.4. PGE2 Assay

The culture supernatant was collected to determine the PGE2 levels per sample using
a commercially available kit.

4.5. Assays for IL-6 and TNF-α

The supernatant of the BV2-cultured medium was collected to determine IL-6 and
TNF-α levels using the ELISA method.

4.6. Western Blotting Analysis

Cells were lysed using a RIPA buffer. Protein was mixed with the sample loading
buffer, then transferred onto nitrocellulose membranes, which were incubated in skimmed
milk in order to block non-specific protein binding. Primary antibodies were treated at
4 ◦C overnight.
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4.7. p65 Localization

BV2 cells were seeded on Lab-Tek II chamber slides and then treated with linderone
or LPS. Formalin was used for fixing cells. Next, the p65 antibody and Alexa Fluor
488 were treated. DAPI was used to visualize nucleifor. Finally, cells were observed
and photographed using a fluorescence microscope (Provis AX70; Olympus Optical Co.,
Tokyo, Japan).

4.8. Determination of ROS Levels in HT22 Cells

HT22 cells were incubated with DCFH-DA (10 µM) for 20 min. After PBS washing,
cells were observed and photographed under a fluorescence microscope (Provis AX70;
Olympus Optical Co., Tokyo, Japan).

4.9. Statistical Analysis

Data are shown as the average and standard deviation of three independent experi-
ments. A one-way ANOVA method was adopted to analyze data using GraphPad Prism
version 5.01 (GraphPad Software Inc., San Diego, CA, USA).

5. Conclusions

In conclusion, this study suggests linderone can suppress the activation of the NF-
κB pathway in BV2 cells. Additionally, linderone activates the Nrf2/HO-1 pathway in
both BV2 and HT22 cells. The strong effect of linderone can be attributed to these dual
mechanisms. Our findings provide valuable evidence that linderone can be a potential
therapeutic target for neurodegenerative diseases.
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