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Today, the future paradigm of intracellular transport could be based on four competing
models, namely the vesicular model, the cisterna maturation–progression model, the
diffusion model, and the kiss-and-run model. In the current Special Issue of the International
Journal of Molecular Science (IJMS), seven papers were published. In this editorial, I aim
to summarize important discoveries in the field of intracellular transport which have
considerably contributed to the understanding of the function and organization of the
Golgi complex (GC) and introduce new findings presented in the current Special Issue of
the International Journal of Molecular Science.

In this Special Issue, two original papers are presented by Beznoussenko et al. [1,2]. In
these papers, models of intra-Golgi transport are compared. Three papers are presented by
Mironov et al. [3–5]. These papers represent reviews devoted to the role of intracellular
transport and models describing this process for different tissue cells and the role of
intracellular transport for COVID-19. The review paper by Brodsky et al. [6] explores the
role of the GC in the organization of microtubules. Finally, the paper by Dejgaard and
Presley [7] discusses the roles of membrane trafficking in the life cycle of lipid droplets. This
includes the complementary roles of lipid phase separation and proteins in the biogenesis of
lipid droplets from endoplasmic reticulum (ER) membranes, and the attachment of mature
lipid droplets to membranes by lipidic bridges and by more conventional protein tethers.

The essence of different models of intra-Golgi transport and their problems are de-
scribed in detail by Mironov and Beznoussenko [8]. The progression model (or the concept
of cis-to-trans flow) was the first mechanism proposed for the explanation of mechanisms
of intracellular transport. The diffusion mechanism could be based not only on the con-
stantly existing wide connections, but also on narrow connections in combination with
the bolus-like mechanism [9]. The main problems of the lateral diffusion model are the
presence of SNARE complexes within all steps of the secretory and endocytic pathway and
the existence of gradients across the Golgi. The bolus-like mechanism was adapted for
intra-Golgi transport in the form of peristaltic movement of membranes [10].

However, if the connections are transient, one can use with the kiss-and-run model
(KARM) that does not face problems due to the existence of SNAREs. The KARM as-
sumes that compartments fuse with each other, and then become separated from each
other. KARM has been proposed for synaptic vesicles, for the fusion of secretory granules
with the plasma membrane in neuroendocrine cells, and fusion between endosomes and
lysosomes [11].

For its normal function, the KARM has several requirements.

1. To ensure that correct compartments will fuse with each other, it is necessary to have
a mechanism for SNARE sorting along the secretory and endocytic pathways.

2. There should be a working mechanism for the concentration of SNARE in sites
through which two compartments fuse with each other.

3. The cells have to have a mechanism to break connections.
4. The connections between organelles should be thin. If connections become thick,

it will be necessary to perform their fission initially to make them thin. On the
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other hand, if connections become thick, the ionic composition of two compartments
involved in kiss-and-run mechanism will be easily equilibrated.

5. Cells should have a mechanism to stimulate fusion at the defined time.
6. It should be a gradient of ionic pumps of other protein machineries regulating the

concentration of ions along the secretory and endocytic pathway able to create lin-
ear gradients.

7. The kiss-and-run mechanism actually means that there is no specific retrograde
transport, and this transport occurs simultaneously with the anterograde transport.

In the framework of the kiss-and-run model, the three main coats have different
functions. The important role of coat-dependent concentration through the cytosolic
domain of membrane proteins is the concentration of SNAREs at the correct locations of
endomembrane compartments.

On the other hand, the kiss-and-run mechanism can exist in two forms: the first is
when two organelles temporarily fuse with each other and then become separated, and the
second mechanism involves the temporary fusion between two organelles in one site with
consecutive fission in another places, thus causing some membrane displacement from one
organelle to another. The carrier maturation model is the individual case (the asymmetric
KARM) within the frame of the kiss-and-run mechanism.

In the framework of the KARM, the fission of membrane tubules connecting different
Golgi compartments becomes one of the most important mechanisms. There are two
possibilities here—the first is that the machineries responsible for fission do not exist, and
the second is that only local temperature fluctuations can regulate fission.

The main challenge for the KARM is the elucidation of the function of coat complexes.
The most enigmatic issue is the role of COPI vesicles. First of all, COPI vesicles are not
an obligatory feature of all cells. In some eukaryotes, intracellular transport can occur
without the generation of COPI-dependent vesicles. For instance, in minimal secretory
(Microsporidia) systems, 50–60 nm vesicles (both COPI- and COPII-dependent) do not exist
at all because both COPI and COPII machineries in this parasite are reduced [12].

Several roles have been proposed for COPI-dependent vesicles. COPI vesicles can
impact the regulation of the cisterna shape [13] or the generation of COPI-coated buds in
order to facilitate the subsequent uncoating of Golgi membranes [8]. Transformation of
COPI-coated buds into vesicles could accelerate the uncoating of Golgi membranes from
COPI. COPI participates in the fission of COPI-coated Golgi buds [14]. The same mechanism
may be responsible for the fission of intercisternal connections. COPI is involved in the
formation of cisternal pores [1,2,8].

In 2007, S. Rothman [15], who was against the vesicular model from the very be-
ginning [16], wrote: “ . . . it (protein synthesized in the ER) must exit by the budding of
membrane because no other option exists”. However, now, such an option exists—the
KARM [8,11]. Today, the most powerful model for the explanation of the ER-to PM trans-
port is the KARM. However, in order to confirm its role as a paradigm, a high volume of
experiments and re-interpretations should be performed. The KARM can be symmetric,
asymmetric for membrane cargoes and even spiral-based. The KARM explains why the
secretory and endocytosis pathways appear as a united system. However, there are many
unresolved questions necessary for the explanation of intracellular transport, especially of
regulation secretory proteins. Its main pitfalls include the function of COPI vesicles, the
mechanisms of SNARE recycling and the rare presence of intercisternal connections within
Golgi stacks.
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