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Abstract: The relationship between dysbiosis and central nervous diseases has been proved in the
last 10 years. Microbial alterations cause increased intestinal permeability, and the penetration of
bacterial fragment and toxins induces local and systemic inflammatory processes, affecting distant
organs, including the brain. Therefore, the integrity of the intestinal epithelial barrier plays a central
role in the microbiota–gut–brain axis. In this review, we discuss recent findings on zonulin, an
important tight junction regulator of intestinal epithelial cells, which is assumed to play a key
role in maintaining of the blood–brain barrier function. In addition to focusing on the effect of
microbiome on intestinal zonulin release, we also summarize potential pharmaceutical approaches to
modulate zonulin-associated pathways with larazotide acetate and other zonulin receptor agonists or
antagonists. The present review also addresses the emerging issues, including the use of misleading
nomenclature or the unsolved questions about the exact protein sequence of zonulin.

Keywords: zonulin; zonula occludens 1; microbiota; gut; brain; dysbiosis; larazotide acetate;
permeability; tight junction; barrier

1. Introduction

Emerging literary data have revealed a dynamic bidirectional interaction between gut
microbiota and the nervous system, described by the microbiota–gut–brain axis (MGBA) [1].

Various factors regulate microbial composition, including stress, nutritional habits,
environmental impacts, and in parallel, luminal agents in gut affect neural functions [1,2].
The complex communication between microbiota and brain is continuous via inflammatory
mediators, neurotransmitters, neuroactive microbial metabolites, and vagus and enteric
nerves, among others [1]. The importance of MGBA was revealed by numerous human
studies that demonstrated a correlation between altered composition of gut microbiota
and neurological disorders, including Parkinson’s disease, Alzheimer’s disease, anxiety,
depression, and autism both in children and adults [2–4]. Intestinal permeability is a key
factor in this process determining the penetration of luminal elements into the circulation [5].
The barrier function of the intestinal epithelial layer is provided by intercellular junctions,
including tight junction (TJ), adherens junction, and desmosome [6]. In the development of
“leaky gut”, TJs and their component, the zonula occludens 1 (ZO-1), play a crucial role.
ZO-1, also known as tight junction protein 1 (TJP-1), is a membrane-associated protein that
ensures the basolateral cell–cell adherence of intestinal epithelial cells by cross-linking the
TJ transmembrane proteins (claudin, occludin, junction adhesion molecule) and the actin
cytoskeleton [7,8].

In 2000, the research group of Fasano reported the discovery of zonulin, a human
protein analogue of the Vibrio cholerae-derived Zonula occludens toxin (Zot), regulating
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paracellular permeability through protein kinase C (PKC)-dependent rearrangement of
actin microfilaments and deterioration of ZO-1 structure [9]. Since then, the effect of the
zonulin pathway on the regulation of intestinal permeability has been supported by phase
2 clinical studies demonstrating the beneficial effect of the zonulin antagonist larazotide
acetate (AT-1001) in patients with celiac disease [10]. Although the most of our knowledge
about zonulin is related to intestinal diseases, its importance in almost all our organs,
including brain, heart, lung, kidney, liver, skin, etc., has now been described [11–17].
Indeed, dysbiosis is associated with increased intestinal zonulin release, impaired gut
permeability, and upregulation of inflammatory mediators. The spread of gut-derived
microbial fragments, toxins, and inflammatory factors, including zonulin, finally reach
distant organs, including the central nervous system, leading to increased blood–brain
barrier (BBB) permeability, neuroinflammation, and behavioral changes that are partially
ameliorated by microbiota depletion [18]. All these together suggest that dysbiosis and the
zonulin pathway may be central factors in MGBA-related diseases.

In this review, we aimed to summarize the latest results about the zonulin pathway,
focusing on the regulatory effect of microbiota on zonulin release, the relationship between
zonulin and the central nervous system (CNS), and the possible zonulin-related therapeutic
opportunities targeting TJs, in particular ZO-1. Due to the similar appellations of ZO-1,
Zot, and zonulin, these molecules are often confused in the literature. Therefore, as a part
of this article, we try to draw attention to the misunderstandings arising from imprecise
wording, as well the known technical issues and limitations of zonulin-related research.
Our review processes a wide variety of literary data, including clinical observations, clinical
trials, in vitro, and in vivo experimental data; therefore, we hope that it will prove useful
to those involved in translational research on zonulin and MGBA.

2. Zonulin
2.1. Zonulin as Pre-Haptoglobin 2

In the 1990s, a novel toxin secreted by Vibrio cholera, called Zot or zonula occludens
toxin, was described. Zot interacts with its specific cell surface receptor present in the
gut [19] and brain [20] and induces PKC-dependent polymerization of actin microfilaments
thereby regulating TJs and increasing the permeability of the epithelial layer [21–24]. In
addition to Vibrio cholerae, other Vibrio strains can produce similar 3D structure proteins,
causing cytoskeletal disruption of epithelial cells [25]. Moreover, Campylobacter spp., in-
cluding Campylobacter concisus, can also release Zot, and although it has only 16% amino
acid identity compared to Vibrio cholerae Zot, it still induces intestinal epithelial barrier
damage [26–28].

In 2000, Wang et al. reported a protein isolated from the human intestine, sharing
significant structural and biological similarities with Zot, derived from Vibrio cholerae, it
was therefore named zonulin [11]. In this study, zonulin was purified from mucosal lysates
using anti-Zot antibody affinity columns, and it was demonstrated that the exposure of
intestinal tissue to zonulin decreases the transepithelial resistance in an Ussing chamber. In
the same year, Fasano et al. published their findings on the elevated level of zonulin in the
intestinal tissue of patients with active celiac disease [9].

Later, Tripathi et al. demonstrated that zonulin is identical to pre-haptoglobin 2, an
inactive precursor of haptoglobin 2 [7]. Haptoglobins are secretory proteins, belonging
to the acute-phase plasma proteins [29]. Although a large amount of haptoglobin is
present in the serum under physiological conditions, its production is upregulated by major
inflammatory cytokines, including IL-1, IL-6, and TNF-α [29–31]. The primary function
of haptoglobins is to eliminate the hemoglobin released from lysed red blood cells, which
could cause tissue damage due to its strong oxidative and proinflammatory effect [32].
Haptoglobins form a stable covalent bond with hemoglobin, thereby stabilizing it in a
reduced state and facilitating its binding to CD163 receptor expressed on macrophages,
thereby accelerating the clearance of hemoglobin via endocytosis [29].
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Haptoglobin has two genetic variants, haptoglobin 1 and 2, resulting in three possible
phenotypes (1-1 homozygote, 2-1 heterozygote, and 2-2 homozygote) in humans [33]. Pre-
haptoglobin 2 is the primary translation product of the haptoglobin 2 mRNA, found in
individuals with heterozygous or homozygous haptoglobin 2 genotypes [7,34,35]. The
pre-haptoglobin 2 goes through a complex maturation process to reach its active form,
including proteolytic cleavage in the endoplasmic reticulum, formation of disulphide
bonds, dimerization, and other post-translational modifications, such as glycosylation,
acetylation, iodination, or nitration [31,33]. In this process, the cleavage enzyme protease
complement C1r subcomponent-like protein (C1r-LP) plays a crucial role [36–38], and thus
is also hypothesized by Fasano to modulate the amount of zonulin in the circulation [39].
Serum level of pre-haptoglobin 2 or zonulin is approximately one thousandth of mature
haptoglobins [7] and do not form complexes with hemoglobin [36,40].

2.2. Regulation of Zonulin

The liver is known as the major source of haptoglobins and C1r-LP; however, intestinal
mucosal biopsies, organoids, and epithelial cell cultures have shown that large amounts of
zonulin can also be released from the intestine [9,11,41,42].

The main regulator of zonulin release in the gut is C-X-C chemokine receptor type 3
(CXCR3) [42,43], which is an inflammatory chemokine receptor, characterized by a versatile
ligand profile, including members of the interferon-γ-induced C-X-C motif chemokine
ligand (CXCL) family. The primary role of CXCR3 is to induce chemotaxis, cell migration,
and adhesion of immune cells [44,45]. Recently, CXCR3 has also been shown to be present
in the intestinal lamina propria and epithelial cells, and its expression is upregulated in
the inflamed intestine of patients with celiac or inflammatory bowel diseases [43,46,47].
In addition, luminal agents, including microbial and nutritional components (which rep-
resent important members of the MGBA) can also activate CXCR3-dependent zonulin
release [48]. Indeed, using CXCR3 knock-out mice and various ex vivo and in vitro models,
Lammers et al. demonstrated that CXCR3 activation by gliadin fragments led to myeloid
differentiation primary response 88 (MyD88)-dependent zonulin release from intestinal
epithelial cells [43,49]. MyD88 is an intracellular adaptor molecule for cell surface receptors
such as Toll-like receptors (TLRs) and interleukin 1 receptors, and its primary role is to
induce transcription by nuclear translocation of transcription factors, including interleukin
regulatory factor (IRF) proteins and nuclear factor-κB (NF-κB) [50]. Although the gliadin-
induced zonulin release has been found to be associated with celiac disease, the harmful
effects of gluten exposition on intestinal epithelial cell viability and permeability have
also been described in non-celiac patients [6,51]. Therefore, understanding the complex
role of zonulin may also contribute to the development of therapy against other diseases.
Disorders associated with abnormal zonulin levels will be discussed later in Section 3.
Zonulin-related diseases.

Recently, the pivotal impact of microbiota on zonulin release has also been described;
however, the underlying mechanism is partly unclear. Several studies have shown that
bacterial lipopolysaccharide (LPS), derived from Escherichia coli, induces zonulin release in
CaCo2 colon epithelial cells [52], whereas Thomas et al. found no effect on macrophages [49].
In addition, work by others has shown that treatment with LPS can also increase the
expression of CXCR3 in epithelial and endothelial cells in vitro and in vivo [53,54]. Zhang
et al. proved on CXCR3 knock-out mice that LPS-induced intestinal dysfunction and barrier
damage is a CXCR3-dependent mechanism related to the NF-κB signalling pathway [55].
Lauxmann et al. drew attention to the structural similarity between gliadin fragments and
certain parasite proteins and showed that the polyQ sequences of coccidian proteins can
bind to the intestinal CXCR3 receptor, leading to an increase in intestinal permeability,
thereby promoting parasite invasion into the lamina propria [56]. Indeed, the possible
connection between zonulin and parasitic infections, such as malaria, was suggested by
genetic studies, demonstrating an increased allele frequency in disease population [57].
Moreover, another study reported that elevated fecal zonulin levels were associated with
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fungal and parasitic overgrowth in stool samples [58]. These preliminary findings suggest
that zonulin may play a role in parasitic infections.

Nevertheless, the link between gut microbiota and the regulation of zonulin release
is unquestionable. Numerous studies have aimed to explore the effect of various species
of bacteria (without expressing Zot) on zonulin levels in both descriptive (Table 1) and
interventional (Table 2) human studies.

Table 1. Correlation between zonulin levels and the abundance of certain bacterial species based on
literary data of descriptive human studies.

Gut Microbiome Member Population Zonulin Levels in Relation with
Microbial Abundance Ref.

Escherichia coli

ankylosing spondylitis patients ↑ [59]

relatively healthy elderly volunteers ↑ [60]

healthy adult volunteers ↑ [61]

Bacteroides
normal weight and obese volunteers ↑ [62]

Hashimoto-thyroiditis patients ↑ [63]

Prevotella
ankylosing spondylitis patients ↑ [59]

obese colorectal carcinoma patients ↑ [64]

Pseudomonas

relatively healthy elderly volunteers

↑

[60]Shigella ↑

γ-Proteobacteria ↑

Rhizobiales ↑

Firmicutes normal weight and obese volunteers ↑ [62]

Erysipelotrichales healthy women ↑ [65]

Actinobacteria relatively healthy elderly volunteers ↑ [60]

Clostridium healthy adult volunteers ↑ [61]

Enteroviridae celiac disease with or without T1D ↑ [66]

LPS (in serum)

community-acquired pneumonia patients ↑ [67]

precocious acute myocardial infarction patients ↑ [68]

T1D ↑ [69]

Graves’ disease patients ↑ [70]

children with IgE mediated and non-IgE-mediated
food allergy ↑ [71]

vitiligo patients ↑ [72]

adolescents with major depressive disorder ↑ [73]

septic patients ↑ [74]

Lachnoclostridium

healthy newborns

↑

[75]

Ruminococcus gnavus ↑

Ruminococcus torques ↑

Erysipelotrichales ↑

Coriobacteriales ↑

Alphaproteobacteria ↓

Corynebacterium ↓

Pdeudomonadales ↓

Moraxellaceae ↓

Staphylococcus ↓
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Table 1. Cont.

Gut Microbiome Member Population Zonulin Levels in Relation with
Microbial Abundance Ref.

Bifidobacterium Hashimoto-thyroiditis patients ↓ [63]

Lactobacillus spp. healthy adult volunteers ↓ [61]

Ruminococcaceae

healthy women

↓

[65]Faecalibacterium ↓

Odoribacter ↓

Rikenellaceae ↓

Abbreviations: LPS: lipopolysaccharide; Ref.: reference; T1D: type 1 diabetes; ↑: increased expression;
↓: decreased expression.

Table 2. Effect of mixtures of various bacterial species on zonulin levels based on literary data of
randomized, interventional human clinical studies. Species separated by dashed lines indicate the
elements of a multi-component treatment.

Species Strain Treatment and Population
Findings

Ref.Blood
Zonulin

Fecal
Zonulin

Lactobacillus plantarum CGMCC no.1258 pre- and postoperative probiotic treatment
of patients operated on for

colorectal carcinoma
↓ NE [76]Lactobacillus acidophilus 11

Bifidobacterium longum 88

Lactobacillus plantarum CGMCC no.1258 pre- and postoperative probiotic treatment
of patients operated on for colorectal

carcinoma and liver metastasis
↓ NE [77]Lactobacillus acidophilus 11

Bifidobacterium longum 88

Bifidobacterium animalis lactis 420 probiotic and fiber treatment of healthy
overweight volunteers ↓ NE [78]

SCM-III synbiotic mixture:
synbiotic treatment of healthy

stressed individuals
↓ ↓

[79]

Lactobacillus acidophilus 145
Lactobacillus helveticus ATC15009

Bifidobacterium 420
probiotic treatment of healthy

stressed individuals
- ↓P3T/J probiotic mixture:

Bifidobacterium animalis lactis Bi1

Bifidobacterium breve Bbr8
synbiotic and probiotic treatment of healthy

stressed individuals
↓ ↓Lactobacillus acidophilus LA1

Lactobacillus paracasei 101/37

Bifidobacterium lactis W51

dietary changes and probiotic treatment in
obese patients NE ↓ [80]

W52
Lactobacillus acidophilus W22
Lactobacillus paracasei W20

Lactobacillus plantarum W21
Lactobacillus salivarius W24

Lactococcus lactis W19

Bifidobacterium bifidum W23

impact of exercise in trained men treated
with probiotics NE ↓ [81]

Bifidobacterium lactis W51
Enterococcus faecium W54

Lactobacillus acidophilus W22
Lactobacillus brevis W63
Lactococcus lactis W58

Bifidobacterium bifidum W23

synbiotic treatment of healthy volunteers - NE [82]

Bifidobacterium lactis W51
W52

Lactobacillus acidophilus W22
Lactobacillus casei W56

Lactobacillus paracasei W20
Lactobacillus plantarum W62
Lactobacillus salivarius W24

Lactococcus lactis W19
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Table 2. Cont.

Species Strain Treatment and Population
Findings

Ref.Blood
Zonulin

Fecal
Zonulin

Bifidobacterium lactis
synbiotic treatment of children with NAFLD - NE [83]Lactobacillus acidophilus

Lactobacillus casei

Bifidobacterium bifidum W23

probiotic treatment of migraine patients - - [84]Bifidobacterium lactis W52
Lactobacillus acidophilus W37

Lactobacillus brevis W63

Lactobacillus casei W56
probiotic treatment of ulcerative

colitis patients ↓ - [85]Lactobacillus salivarius W24

Lactococcus lactis
W19
W58

Bacillus subtilis DE111 probiotic treatment of professional
baseball players - NE [86]

Abbreviations: NAFLD: non-alcoholic fatty liver disease; NE: not examined; Ref.: reference; ↓: decreased level;
-: no effect.

Related findings from experimental studies on cell lines and animal models are sum-
marized in Table 3. Briefly, several Gram-negative bacterial strains, including Escherichia coli,
Prevotella, Pseudomonas, and Salmonella spp., induce intestinal zonulin release, whereas oth-
ers, mostly Gram-positive strains, such as Bifidobacterium and Lactobacillus spp., decrease
zonulin levels (figure in Section 6). A possible mechanism underlying the protective effects
of Bifidobacterium and Lactobacillus spp. is that these bacteria can cleave gluten peptides via
hydrolyzing enzymes, thereby inhibiting the gliadin-induced cytotoxic responses in intestinal
epithelial cells [87–89]. The presence of an additional pathway is suggested by recent findings
demonstrating that heat-killed Bifidobacterium [90] and Lactobacillus [91] spp. (which do not
produce active enzymes) still have beneficial effects on epithelial barrier function.

Table 3. Effect of various bacterial species on zonulin and/or ZO-1 levels based on literary data of
experimental studies on cell lines and animal models. Species separated by dashed lines indicate the
elements of a multi-component treatment.

Species Strain
Cell Line/

Experimental Model
Findings

Ref.
Zonulin ZO-1

Escherichia coli

6-1

CaCo2 ↑ ↓,
disruption

[42]

rat, rabbit, and monkey small
intestinal organoids ↑ NE

K-12 DH5α rabbit and monkey small
intestinal organoids ↑ NE

21-1 rabbit small intestinal organoids ↑ NE

K88 4-day-old piglets ↑ ↓
[92]

K88 IPEC-J2 - ↓

RY13
HT-29

- NE
[93]

K12 DH5α - NE

042, JM221 T84 NE disruption [94]

055:B5 (LPS) CaCo2 ↑ ↓ [52]

CaCo2 ↑ NE [59]

HB101 T84 NE disruption [95]



Int. J. Mol. Sci. 2023, 24, 7548 7 of 28

Table 3. Cont.

Species Strain
Cell Line/

Experimental Model
Findings

Ref.
Zonulin ZO-1

Bacteroidales and
Escherichia coli malnourished mice ↑ ↓ [96]

Salmonella typhimurium SO1344 rabbit small intestinal organoids ↑ NE [42]

Pseudomonas fluorescens CaCo2 ↑ disruption [97]

Prevotella CaCo2 ↑ NE [59]

Acetobacter ghanensis CaCo2 treated with PT-gliadin ↓ - [98]

Porphyromonas gingivalis healthy mice NE ↓ [99]

Pseudomonas aeruginosa pneumonia induced in mice NE ↑ [100]

Fusobacterium nucleatum
CaCo2 NE ↓

[101]

DSS-induced colitis in mice NE ↓,
disruption

Ruminococcus blautia gnavus

VPI C7-9

germ-free mice

- NE

[102]CC55_001C - NE

S107-48 ↑ NE

S47-18 - NE

Clostridium difficile toxin A
and B T84 NE disruption [103]

Faecalibacterium prausnitzii
MAM

NCM460 transfection NE ↑

[104]
Caco2 transfection NE ↑

HT-29 transfection NE ↑

diabetes mellitus induced in
mice NE ↑

Lactobacillus rhamnosus

GG
CaCo2 treated with gliadin ↓ ↑ [91]

HT-29 ↑ NE [93]

P1

HT-29 treated with PT-gliadin

↓ ↑

[105]

P2 ↓ ↑

F1 ↓ ↑

P3 ↓ -

GG ↓ ↑

Lactobacillus casei C1 HT-29 treated with PT-gliadin ↓ ↑

Bifidobacterium longum

CECT-7347 HT-29 treated with TNF-α NE ↑ [90]

T84 NE ↑ [106]

HT-29 - NE [93]

Bifidobacterium
(not specified)

CaCo2 treated with LPS ↓ ↑
[52]

LPS-induced NEC in rats ↓ ↑

VSL#3

IEC-6 treated with
hydrolyzed gliadin ↓ NE

[89]
mouse small intestinal organoid
treated with hydrolyzed gliadin ↓ NE

Lactobacillus paracasei D3-5

high-fat diet in old mice NE ↑ [107]

Lactobacillus rhamnosus
D4-4
D7-5

Lactobacillus plantarum D6-2
D13-4

Enterococcus rafnosus D24-1
Enterococcus INBio D24-2

Enterococcus Avium
D25-1
D25-2
D26-1
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Table 3. Cont.

Species Strain
Cell Line/

Experimental Model
Findings

Ref.
Zonulin ZO-1

Lactobacillus paracasei 101/37 LMG P-17504

CaCo2 treated with PT-gliadin NE ↑ [108]
Lactobacillus plantarum 14 D CECT 4528

Bifidobacterium animalis lactis Bi1 LMG
P-17502

Bifidobacterium breve Bbr8 LMG P-17501
BL10 LMG P-17500

Abbreviations: DSS: dextran sulphate sodium; LPS: lipopolysaccharide; MAM: microbial anti-inflammatory
molecule; NE: not examined; NEC: necrotizing enterocolitis; PT: pepsin/trypsin digested; Ref.: reference;
VSL#3: Streptococcus thermophilus, Lactobacillus plantarum, L. acidophilus, L. casei, L. delbrueckii spp. bulgaricus,
Bifidobacterium breve, B. longum, B. infantis; ↑: increased expression; ↓: decreased expression; -: no effect.

However, the therapeutic applicability of protective bacteria was proved in a few
clinical studies, although further research is needed to reveal the most promising bacte-
rial strains and to develop effective medical products containing the optimal mixture of
probiotics and prebiotics.

2.3. Biological Activity of Zonulin

Tripathi et al. found that zonulin contains an epidermal growth factor (EGF)-like and
also a proteinase-activated receptor 2 (PAR2) activating peptide-like motif, both necessary to
activate EGFR [7]. Indeed, zonulin has been shown to fail to induce EGFR phosphorylation
in PAR2 knock-down cells or knock-out mice, suggesting the importance of PAR2-induced
transactivation of EGFR.

Since then, several studies have shown that crosstalk between EGFR and PAR2 via
Ras-MAP-kinase pathway has a major impact on epithelial processes [109–111]. During its
maturation, proteolytically cleaved zonulin (pre-haptoglobin 2) loses its EGFR activating
capacity and does not increase intestinal permeability; however, it gains a new property for
hemoglobin binding (see above in Section 2.1. Zonulin as pre-haptoglobin 2) [7].

Besides the transactivation of EGFR, PAR2-activation induces phosphatidyl inositol
(PPI) turnover and stimulation of phospholipase C leading to diacylglycerol (DAG) acti-
vation and intracellular Ca2+ release through inositol 1,4,5-triphosphate (IP-3) increment,
both of which induce PKC activation [112–114]. PKC activation causes depolymerisation
and reduced peripheral density of the actin fibers, leading to cytoskeletal rearrangement
and phosphorylation of ZO-1, causing its dislocation from the cell membrane [23,115–117].
As ZO-1 and actin fibers have a pivotal role in the maintenance of cell–cell adhesion of
epithelial and endothelial cells, these processes lead to transient disassembly of the tight-
junction complex and thus an increase in paracellular permeability [7,8,115,118,119] (figure
in Section 6).

Interestingly, whereas zonulin-independent activation of PAR2 resulted in zonulin-like
effects on the epithelial layer, leading to a decrease in transepithelial resistance (TER) and
ZO-1 translocation [120–122], activation of EGFR by recombinant EGF had a protective
effect on paracellular permeability and TJ integrity [123,124]. However, PAR2-mediated
EGFR activation by house dust mite leads to decreased resistance and TJ disruption in
bronchial epithelial cells [111]. Similarly, contradictory results have been obtained from
studies using PAR2 or EGFR modulator compounds. These data are discussed later in
Section 4.4. Other receptor modulators.

3. Diseases Associated with Altered Zonulin Levels

Most of our knowledge of the zonulin pathway is derived from research on gluten-
sensitive enteropathy, also known as celiac disease [125]. Exposure to intestinal bacterial
components or gliadin has been shown to lead to increased zonulin release, intestinal
permeability, and consequently exacerbation of worsening clinical symptoms in patients
with celiac disease [7,9,11]. Recent studies have proved that intestinal zonulin plays a
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crucial role in the pathomechanism of other gastrointestinal diseases [8,42]. Elevated
zonulin levels, associated with impaired mucosal barrier functions, have been described
in non-celiac gluten sensitivity (NCGD) [126], irritable bowel syndrome (IBS) [127,128],
inflammatory bowel diseases (IBD) [34,46,129], necrotizing enterocolitis [130], neonatal
gastrointestinal abnormalities [75,131], and environmental enteric dysfunction [132,133].

In addition to intestinal diseases, numerous studies have reported increased zonulin
levels in various liver diseases, including non-alcoholic fatty liver disease, hepatitis, cir-
rhosis, and hepatocellular carcinoma [14,134–136]. In a recent systematic review, Ghanadi
et al., analyzing the related literature, concluded that elevated levels of zonulin may lead to
the release of pathogens, antigens, and toxic metals from the intestine to the liver, thereby
triggering inflammatory responses and subsequent liver tissue damage [14].

A remarkable body of evidence links the zonulin-induced loss in small intestinal
barrier function with diabetes mellitus, as elevated serum or fecal zonulin levels may
predict the onset of the disease and shows correlation with poor glycaemic control in
type 1 (T1D) [137–139] and type 2 (T2D) diabetes patients [69,140]. The association be-
tween zonulin levels and impaired glucose metabolism has also been described in patients
with obesity [62,141–144] or insulin resistance associated with polycystic ovary syndrome
(PCOS) [145,146]. Moreover, it has recently been shown that elevated levels of zonulin
could be a potential predictor of complications related to pregnancy, including gestational
diabetes (GDM), intrahepatic cholestasis (ICP), hypertensive disorders (HDP), and adverse
perinatal outcomes [131,147–152].

Similarly, increased intestinal permeability and elevated zonulin levels have been
described in patients with various forms of arthritis, including rheumatoid arthritis (RA),
ankylosing spondylitis, or spondyloarthropathy [59,153–155]. These studies suggest that
the integrity of intestinal barrier may determine the severity of systemic inflammation due
to the migration of immune cells from the gut into the joints [153]. In addition, a possible
role of zonulin in the pathomechanism of other disorders has been suggested, including but
not limited to cardiac [68,156], pulmonary [12,13,157,158], or renal diseases [15,159–161].

3.1. Central Nervous System Diseases

Emerging literary data over the past decades have revealed the link between the
presence of dysbiosis, gastrointestinal disorders, and an increased risk of diseases affecting
the central nervous system. Not surprisingly, a growing body of research has demonstrated
the possible role of zonulin in the pathomechanism of these MGBA diseases.

High serum zonulin levels and impaired intestinal barrier functions have been re-
ported in pediatric patients with mental disorders, including attention deficit hyperactivity
disorder (ADHD) and autism spectrum disorder (ASD) [162,163]. In addition, positive
correlation has been found between zonulin levels and the severity of autism as quantified
by Childhood Autism Rating Scale (CARS) scores [164,165].

Similarly, elevated zonulin release has been found in adult patients with CNS dis-
eases, including bipolar disorder [166], schizophrenia [167], anxiety, depression [73,168],
Alzheimer’s disease [169], Parkinson’s disease [170], or sclerosis multiplex [171]. Most of
these studies have shown that zonulin levels are associated with disease progression.

The intact BBB plays a crucial role in the protection of central neurons by regulating
the penetration of circulating antigens, immune cells, inflammatory agents, toxins, and
pathogens [172]. Previously, Rahman et al. have shown that brain endothelial cells express
zonulin receptors, including EGFR and PAR2, and that the exposure of BBB to zonulin leads
to its increased permeability [173]. As we described above (Section 2.2 Biological activity
of zonulin), activation of zonulin receptors leads to the disruption of actin cytoskeleton
and to the dislocation of ZO-1, causing the deterioration of the TJ complex. Claudin-5
is the most enriched member of TJ proteins in the BBB, and its integrity is crucial for
neuroprotection [174]. Several studies have shown that increased intestinal zonulin release
and permeability are associated with high serum levels of claudin-5 in patients with
neuroinflammatory or neurodegenerative disorders [73,166,167,175,176].
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Recently, Miranda-Ribera et al. have demonstrated a key role of the zonulin pathway
in CNS diseases using a zonulin transgenic mouse strain [18]. It has been shown that high
levels of zonulin resulted in increased intestinal permeability of mice and dysbiosis as a
consequence of the malabsorption-related changes of luminal content. In addition, zonulin
transgenic mice were characterised by impaired BBB integrity, neuroinflammation, and
behavioral alterations, which were moderately ameliorated by antibiotic treatment, causing
microbiota depletion in their gut.

Stuart et al. published their results on the role of zonulin in BBB integrity in a short
Letter to editor, suggesting that zonulin may regulate the pathophysiological processes in
neurological diseases indirectly, through the regulation of the gut–brain axis. The author
did not demonstrate a direct effect of zonulin treatment on the permeability of cerebral
microvascular endothelial cells [35], which contradicts the previous findings of Rahman
et al. [173]. A possible explanation could be that these studies used different recombinant
zonulins, but it is more likely that the reason for the different findings is the applied
dose of zonulin. Indeed, Tripathi et al. demonstrated that zonulin (which was identical
to Stuart’s) at concentrations of 40–200 µg/mL increased intestinal permeability in mice,
but a concentration of 20 µg/mL or lower had no effect on permeability [7]. Stuart et al.
used a single zonulin treatment of 15 µg/mL, which probably was too low to affect the
permeability of endothelial cells.

3.2. Viral Infections

Partly due to the intensified research on the SARS-CoV-2 pandemic, emerging data
have recently revealed the role of the zonulin pathway in viral infections, which, in addition,
often have CNS involvement. Elevated zonulin levels were demonstrated in patients with
SARS-CoV-2 infection, which was associated with more severe outcomes [175,177–181].
These studies suggest that the prolonged presence of undigested SARS-CoV-2 viruses
leads to enhanced zonulin release in the gastrointestinal tract, resulting in impaired in-
testinal permeability, which goes together with the accelerated trafficking of viral antigens
into the bloodstream, leading to hyperinflammation (causing multisystem inflammatory
syndrome—MIS). Moreover, a high serum level of zonulin leads to the disruption of BBB
allowing viruses to penetrate into the brain and cause severe neurological symptoms as
well [178,180].

Accordingly, similar findings have been demonstrated in connection with the human
immunodeficiency virus (HIV), showing the connection between elevated serum zonulin
levels and worsening gastrointestinal symptoms or decreased liver function [182–184].

Increased zonulin levels were also reported in patients with hepatitis B virus-associated
chronic hepatitis [134]. However, decreased serum zonulin amounts were measured in pa-
tients with hepatitis B and C virus infection [185,186], which are somehow contradictory to
the substantial amount of literary data on zonulin in different liver diseases [14]. Although
the authors gave no explanation for decreased serum zonulin levels, the reason for the
observed phenomenon could be a technical issue, which is discussed later in Section 5.2.
Technical issues.

4. Zonulin Pathway as a Therapeutic Target

The integrity and thus the function of BBB TJs play a crucial role in the pathomechanism
of neuroinflammatory and neurodegenerative diseases. Previously, it has been suggested
that targeting different elements of the zonulin pathway, including actin filaments, TJs, or
NF-κB, have potential therapeutic effects on CNS diseases. Indeed, encouraging results are
accumulating from a recent preclinical study, using myosin light chain kinase (MLCK) inhibitor
ML-7, which attenuates BBB disruption by preventing the disintegration of actin cytoskeletal
microfilaments [187]. Similarly, blocking the cleavage of TJ proteins by matrix metalloproteases
(MMP) inhibitors, using either direct (broad-spectrum or selective MMP-2 and MMP-9)
[188,189] or indirect inhibitors (COX) [190] has been shown to protect BBB. Peroxisome
proliferator-activated receptor-γ (PPAR-γ) agonists, such as rosiglitazone, pioglitazone, or
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D-allose, also prevented BBB integrity by inhibiting NF-κB activation [191–194]. Therefore,
the use of zonulin inhibitors seems to be justified in the treatment of CNS diseases.

4.1. Human Studies with Larazotide Acetate

Over the past decade, larazotide acetate (also known as AT-1001), a pharmacological
inhibitor of the zonulin pathway, has received increasing attention. Firstly, Wang et al.
published a synthetic oligopeptide (GGVLVQPG) in 2000, representing an N’-terminal
sequence of zonulin, which had a strong inhibitory effect on receptor binding of zonulin [11].
Since then, a large amount of knowledge has accumulated on this competitive zonulin
inhibitor, demonstrating its strong effect on the regulation of TJs and making it one of
the most promising therapeutic candidates for celiac disease [195]. Several interventional
human studies have demonstrated good tolerability and beneficial effects of larazotide
acetate on intestinal permeability (Table 4).

Table 4. Human clinical studies investigating the therapeutic applicability of larazotide acetate.

Condition Results Study
(Enrollment)

Clinical Trials
Identifier Ref.

Healthy good tolerability Phase I
(24) NCT00386490 [196]

Celiac disease,
gluten-free diet good tolerability Phase Ib

(21) NCT00386165 [197]

Celiac disease,
gluten challenge

improvement in GI symptoms,
good tolerability

Phase IIa
(80) NCT00362856 [198–201]

Celiac disease,
gluten challenge

improvement in
histological scores,
good tolerability

Phase IIb
(105) NCT00620451 [202,203]

Celiac disease,
gluten challenge

improvement in GI symptoms,
decreased level of anti-tTG IgA

Phase IIb
(171) NCT00492960 [204,205]

Celiac disease,
persistent symptoms
with gluten-free diet

improvement in GI and
extra-GI symptoms,

good tolerability

Phase IIb
(342) NCT01396213 [206,207]

Celiac disease,
gluten-free diet

(terminated based on
interim analysis)

Phase III
(307) NCT03569007 [208,209]

COVID19—MIS-C

improvement in clinical
symptoms, decreased level of

inflammatory markers and
SARS-CoV-2 nucleocapsid

(N) protein

case report
(1) [178]

COVID19—MIS-C
improvement in GI symptoms,
decreased level of SARS-CoV-2

Spike (S) protein

case series
(4) [210]

COVID19—MIS-C (not completed) Phase IIa
(20) NCT05022303 [211]

Abbreviations: Ref.: reference; GI: gastrointestinal; MIS-C: Multisystem Inflammatory Syndrome in Children.

As larazotide acetate has successfully passed phase I and II clinical trials, the scientific
community has raised the opportunity of its expanded access. As discussed above in the
Section 3.2. Viral infections, a role for zonulin has been suggested in the pathomechanism
of COVID-19-associated complications. Accordingly, short time proof-of-concept studies in
a limited number of enrolled patients have shown that treatment with larazotide acetate
improves the clinical manifestations of MIS-C by reducing gastrointestinal symptoms
and the severity of systemic inflammation (Table 4) [178,210]. Now, its efficacy is under
investigation in a phase II, randomized, double-blind, placebo-controlled clinical trial
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in patients with MIS-C [211]. In addition, the potential use of larazotide acetate in the
treatment of metabolic diseases, including insulin resistance, diabetes mellitus, or non-
alcoholic fatty liver disease (NAFLD), as well as to improve glucose and lipid metabolism
of patients, has been hypothesized [212].

4.2. Preclinical Studies with Larazotide Acetate

Recently, human and basic research studies have revealed that high zonulin levels
may affect the permeability of not only the intestine but also of other organs. Therefore,
numerous preclinical studies have aimed to investigate the efficacy of larazotide acetate in
experimental animal models of various diseases. Briefly, treatment with larazotide acetate
has been shown to improve epithelial barrier function, thereby attenuating the severity of
the investigated disorders, including colitis, vasculitis, fibrosis, arthritis, and respiratory or
liver diseases (Table 5).

Table 5. Preclinical animal studies investigating the therapeutic applicability of larazotide acetate.

Model Species Administration Daily Dose Results Ref.

celiac disease
gliadin-sensitized
HLA-HCD4/DQ8
transgenic mouse

p.o.
gavage 0.25 mg

reduced intestinal
permeability and macrophage

infiltration
[213]

p.o.
gavage 0.3 mg reduced intestinal

permeability [214]

intestinal
permeability

Il10−/− mouse

p.o.
gavage 5 mg

reduced intestinal
permeability and

inflammation
[215]

spontaneous colitis p.o.
in drinking water 0.1 or 1 mg/mL

reduced intestinal
permeability and

inflammation
[216]

DSS induced colitis zonulin transgenic
mouse

p.o.
in drinking water 1 mg/mL reduced intestinal

permeability [217]

radiation-induced
enteropathy mouse i.p. 0.25 mg

improved clinical state and
histological scores, inhibited

bacterial translocation,
elevated TJ protein levels

[218]

healthy
(pharmacokinetics) pig p.o.

capsule 0.05 mg/kg

determining
pharmacokinetics of

larazotide acetate in the small
intestine

[219]

Ruminococcus blautia
gnavus colonization germ-free mouse p.o.

in drinking water 0.15 mg/mL reduced intestinal
permeability [102]

spontaneous T1D BB diabetic-prone rat p.o.
in drinking water 0.01 mg/mL inhibited development of

diabetes [138]

rheumatoid arthritis

mouse p.o.
in drinking water 0.15 mg/mL attenuated arthritis [153]

Il10ra−/− mouse,
Cldn8−/− mouse

p.o.
gavage 2 × 0.05 mg

reduced intestinal
permeability, inflammation,

and joint swelling
[220]

vasculitis

mouse

i.p. 0.5 mg

reduced intestinal
permeability and LPS

translocation, prevented
cardiovascular lesions

[221]

LPS-induced acute
lung injury

i.t. 0.05 mg reduced severity, decreased
inflammatory markers [12]

i.v. 0.01 or 0.025 or 0.05 mg
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Table 5. Cont.

Model Species Administration Daily Dose Results Ref.

influenza i.v. 0.15 mg reduced severity of acute
lung injury [222]

salivary gland
fibrosis i.p. 5 mg/kg improved epithelial barrier

function, ameliorated fibrosis [223]

NAFLD

p.o.
in drinking water 0.1 or 1 mg/mL reduced intestinal

permeability [224]
p.o.

gavage 2 × 0.03 or 2 × 0.3 mg

acute liver failure rat

p.o.
in drinking water 0.01 mg/mL decreased intestinal damage

[225]
p.o.

gavage 2 × 0.03 mg

Abbreviations: Ref.: reference; p.o.: per os; i.p.: intraperitoneal; i.v. intravenous; DSS: dextran sulphate sodium;
TJ: tight junction; T1D: type 1 diabetes; LPS: lipopolysaccharide; NAFLD: non-alcoholic fatty liver disease.

4.3. Future Perspectives of Zonulin Antagonists

Larazotide acetate was originally created as an orally administered drug with minimal
absorption as the primary target cells were intestinal epithelial cells [195]. The oral adminis-
tration of a therapeutic peptide can be challenging especially for compounds with expected
systemic effect [226]. Systemic drugs have to penetrate the intestinal barriers, including
a thick mucus gel and epithelial layer before being digested by luminal enzymes. The
phase II clinical trial to evaluate the efficacy and tolerability of larazotide acetate showed
that plasma levels were below the quantification limit (0.5 ng/mL) even after 7 or 14 days
of daily treatment [198]. Therefore, no systemic effect should be expected after the per
os treatment with larazotide acetate. At the same time, as shown in Table 5, summariz-
ing the different methods of administration, intratracheal, intravenous, or intraperitoneal
administration of larazotide acetate produced beneficial effects.

The original drug has to undergo further pharmacological development for extraintesti-
nal use. Recent studies have reported that modification of larazotide acetate or its derivates
has improved lipophilicity and intestinal absorption [227–229]. The resulting compound
retained the biological activity of larazotide acetate and was detectable (20–30 ng/mL) in
the plasma of mice after a single per os administration [229].

Besides larazotide acetate, there is another synthetic zonulin-related peptide fragment
known as AT-1002, which, unlike larazotide acetate (AT-1001), has proved to be an agonist
of zonulin receptors. Indeed, treatment of epithelial or endothelial cells with AT-1002 led to
increased permeability by reversible opening of TJs [230,231]. Since its discovery, AT-1002
has become an important permeability-modulating component in drug development that
can be used to increase the absorption and distribution of other drugs [230,232]. Several
studies showed that AT-1002 can be used to increase intestinal, intranasal, intratracheal, or
transdermal penetration of various compounds improving their bioavailability [233].

These preclinical data suggest that larazotide acetate or other zonulin receptor modu-
lators (by choosing the appropriate route of administration) may prevent BBB integrity and
should be investigated in CNS-related diseases, as well.

4.4. Other Receptor Modulators

Although binding to zonulin receptors, including PAR2 and EGFR, leads to the dis-
ruption of TJs, literary data on modulation of PAR2 and EGFR by inhibitors other than
larazotide acetate are confusing (Table 6).

Recently, it has been shown that, in contrast to larazotide acetate, peptidic antagonists
of PAR2, including FSLLRY-NH2 or SLIGRL-NH2, decreased the expression of ZO-1 and
claudin-1 and destroyed the barrier function of nasal epithelial cells [121]. Similarly, a small
molecule antagonist, GB83, exerted harmful effects on colon epithelial cells by decreasing



Int. J. Mol. Sci. 2023, 24, 7548 14 of 28

the expression of autophagy- and TJ-related factors and increased permeability [234]. In
contrast, inhibition of the PAR2 pathway by GB88 in lung epithelial cells [235] or using
I-191 in arterial endothelial cells [236] moderated actin rearrangement and TJ disruption
and reduced the permeability of the cellular monolayers. Moreover, a non-peptidic PAR2
ligand, the full agonist AC-55541, ameliorated the IL-17-induced loss of epithelial resistance
in brain microvascular endothelial cells [237].

The EGFR tyrosine kinase inhibitor AG1478 also prevented TJ disassembly and ep-
ithelial resistance impairment in microvascular endothelial cells modeling BBB [238], in
lung epithelial-like cells [239], and in oral epithelial tumour cells [240]. In contrast, de-
creased expression of TJs, barrier dysfunction, and increased permeability were induced by
other EGFR tyrosine kinase inhibitors, such as erlotinib [241], gefitinib, icotinib [242], or
dacomitinib [243,244] in intestinal epithelial cells. Similar effects were found in other cell
types after treatment with lapatinib [245] or vandetanib [246]. These studies suggest that
these compounds have a significant impact on the complex signaling pathway of EGFR,
triggering stress responses, and finally leading to cell death [242]. This phenomenon may
be the underlying molecular mechanism of diarrhea, which is one of the most frequent side
effects of second-generation EGFR inhibitors [247].

All these data together suggest that PAR2 or EGFR modulators could be used to reg-
ulate epithelial or endothelial barrier function, considering that the applied drug should
affect the PPI-DAG-PKC pathway, which plays a central role in zonulin-induced TJ dis-
ruption, but not ERK, JNK, or Akt signaling, which are essential for the physiological
regulation of basic cellular processes, including cell growth, survival, proliferation, and
apoptosis [248].

Table 6. Effect of PAR2 and EGFR modulators on TJ integrity and/or transcellular permeability of
epithelial or endothelial cells based on literary data.

Target Type Compound Cell Line Effect on TJs and/or
Transcellular Permeability Ref.

PAR2

peptidic antagonist FSLLRY-NH2 pHNECs harmful [121]
SLIGRL-NH2

non-peptidic full agonist AC-55541 hBMECs
protective

[237]

small molecule
antagonist

GB88
A549 [235]

hECs [236]

GB83 Caco2 harmful [234]

EGFR tyrosine kinase inhibitor

AG1478
hCMEC/D3

protective

[238]

Calu-3 [239]

HSC-3 [240]

erlotinib

IEC-6

harmful

[241]

gefitinib
[242]

icotinib

dacomitinib T84 [244]

lapatinib HBCCs [245]

vandetanib Calu-6 [246]

Abbreviations: pHNECs: primary human nasal epithelial cells; hBMECs: human brain microvascular endothelial
cells; hECS: primary human arterial endothelial cells; hCMEC: primary human cardiac microvascular endothelial
cells; HBBCs: primary human breast cancer epithelial cells.
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5. Considerations
5.1. Nomenclature

During the preparation of the present review, several anomalies were identified in
the literature on zonulin. Some of them stemmed from the incorrect use of the zonulin-
related nomenclature. Indeed, at some point in writing the present manuscript, a Google
Scholar search gave 74 hits using “zonulin (ZO-1” as a search term, implying that at least
these studies considered the two different proteins to be identical. What is even more
astonishing is that the amount of zonulin as a biomarker was investigated in many of
these articles [69,90,108,176,249]. As discussed above (in Section 2.2 Biological activity of
zonulin), zonulin and ZO-1 are related. Zonulin is a secreted protein, which binds to its
receptors to induce cytoskeletal reorganisation and TJ disruption. ZO-1 is a member of
the TJ system responsible for the cross-linking of transmembrane TJ proteins (e.g., claudin,
occludin) with the actin cytoskeleton. Overall, zonulin and ZO-1 are not identical—ZO-1 is
more of a target of zonulin, which explains why the expression of these proteins usually
changes in opposite ways (Table 3).

Similarly, numerous studies use the appellation ‘zonulin-1’ (595 hits in Google Scholar),
which is a non-existing protein, but a mixture of the denominations of zonulin and zonula
occludens 1 [14,69,89]. It can be assumed that the biological interpretation of the findings
from these studies is questionable, or at least confusing.

Similarly, the synonymy of larazotide acetate may be a source of confusion, as other
compounds are also known as AT-1001. Indeed, migalastat hydrochloride (Galafold),
a pharmacological chaperone drug approved by FDA for Fabry disease is also referred
to as AT-1001 in clinical trials [250,251]. Moreover, AT-1001 is also a synonym for an
α3β4 nicotinic acetylcholine receptor antagonist, a potential therapeutic agent for smoking
cessation [252].

5.2. Technical Issues: Zonulin as a Biomarker and Therapeutic Target

Much of our knowledge on zonulin is due to the work of Fasano and his colleagues,
including the effect of Zot derived from Vibrio cholerae on intestinal permeability, the
discovery of its human analogue zonulin, the identification as pre-haptoglobin 2, the
description of the regulation of zonulin release, the exploration of the underlying molecular
mechanisms, and biological outcomes of zonulin receptor activation. These studies and
their findings are reasonably coherent and follow a logical path; however, some results may
not be sufficiently supported by independent experiments. This is perhaps one possible
reason for the increasing number of controversies about zonulin in recent years.

Over the past decade, several studies have examined serum zonulin levels in various
diseases, and along with that, many of these publications have demonstrated that zonulin
cannot be used as a biomarker of increased intestinal permeability [253–256]. Emerging
evidence has revealed that the controversial results of these studies may be due to some
commercially available enzyme-linked immunosorbent assays (ELISAs) to specifically
detect zonulin [93,257–260].

These issues led to a series of short PostScript publications on the pages of Gut, a
prestigious journal of gastroenterology. Massier et al. explained that the controversial
results of commercial ELISAs may be due the fact that the first published sequence of
zonulin, against which the ELISAs were developed, does not cover all different zonulin
sequences [261]. This is supported by the fact that the sequence of proteins isolated with
anti-Zot antibodies and identified as zonulin by Fasano et al. [7,11] does not contain the
octapeptide sequence of larazotide acetate, which was initially used as a zonulin receptor
antagonist [262]. The peptide fragment in question is rather an immunoglobulin sequence,
which can be easily confirmed by a protein query using NCBI Protein BLAST. In addition,
Massier et al. point out that the measurement of zonulin levels in preclinical studies is
highly questionable, as pre-haptoglobin-2 is a human-specific protein and is not naturally
expressed in rodents [261].
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In his reply, Fasano provided some clarifications [263]. Briefly, the author pointed out
that zonulin is rather a family of structurally and functionally related proteins (zonulin
family peptides—ZFPs), including not only pre-haptoglobin-2 but also other mannose-
binding lectin-associated serine proteases (MASPs), such as properdin, coagulation factor
X, or CD5 antigen [264]. Indeed, in recent years, an increasing number of studies have
introduced the expression of ZFP or zonulin-related protein (ZRP) instead of zonulin or pre-
haptoglobin-2 [144,257,259,265]. Fasano concluded that despite the possible non-specificity
of commercial ELISAs, which should be clarified to improve their reliability, the overall
impact of the zonulin pathway on diseases associated with altered tissue permeability is
unequivocal. This perspective is consistent with the fact that zonulin or related proteins
(ZRPs, ZFPs) have been detected in human patients with haptoglobin 1-1 homozygous
genotype [35] and in various rodents (Table 3), which have been shown not to express
pre-haptoglobin-2. Moreover, treatment with zonulin receptor antagonist larazotide acetate
has also shown a protective effect in numerous preclinical studies in non-humanized mice
or rats as well (Table 5).

Choosing the appropriate zonulin ELISA kit is a challenge. The most commonly used
kit, manufactured by Cusabio, was developed to detect pre-haptoglobin-2, but its cross-
reactivity with properdin, pre-haptoglobin-1, or mature haptoglobins was not investigated.
However, the exact protein sequence of the immunogen epitope and that of the standard
protein provided to the product is not public. The specificity of Elabscience’s is also
questionable as both the full-length recombinant pre-haptoglobin-2, a part of mature
haptoglobin sequence, and Vibrio cholerae-derived Zot was assigned as the target of the
applied antibody. Immundiagnostik offers an ELISA intended for the determination of
ZFPs, based on a polyclonal antibody against zonulin sequence published by Wang [11],
which, as discussed above, was isolated by anti-Zot antibodies and does not overlap with
the known sequence of pre-haptoglobin-2. Clarifying these issues is essential for the proper
interpretation of measured data, and in addition, may clarify the possible role of other ZFP
members in the pathomechanism of various diseases.

6. Summary

In the present article, we summarized recent literary data on the potential role of
zonulin and its receptors in the MGBA-related diseases (Figure 1).

Luminal agents, including gliadin and microbiota components, may induce zonulin
release from the intestinal epithelial cells through CXCR3 receptor activation. It has been
shown that while Gram-negative bacteria mostly facilitate this process, some bacterial strains,
including Bifidobacterium and Lactobacillus spp. decrease intestinal zonulin production.

Free zonulin binds to its cell surface receptors, EGFR and PAR2, leading to cytoskeletal
rearrangement and TJ-disassembly of epithelial cells causing increased intestinal perme-
ability. Consequently, the impaired intestinal barrier facilitates the penetration of luminal
agents and promotes intestinal inflammation. The immunogenic substances and proinflam-
matory cytokines may also enter the bloodstream, affecting BBB and other tissues. Brain
endothelial cells also express zonulin receptors, thereby the circulating zonulin can directly
increase the permeability of BBB, facilitating neuroinflammation. This process may explain
the observation that CNS diseases are often associated with dysbiosis and increased serum
zonulin levels, which correlate with the deterioration of cognitive functions.

Several promising studies have shown that intestinal permeability can be normalized
pharmacologically by modulating zonulin receptors, such as larazotide acetate. In addition
to preserving the function of the intestinal barrier and thereby reducing the levels of
proinflammatory factors in the blood (which may have a neuroprotective effect in itself),
zonulin-antagonists, PAR2 modulators, or EGFR inhibitors may be useful tools to reduce
neuroinflammation by acting directly on the endothelial cells of BBB.

Although there are pharmaceutical challenges and technical issues to be solved, our
knowledge of zonulin suggests that it may play a crucial role both in intestinal and CNS
diseases and may serve as a potential therapeutic target.
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Figure 1. Zonulin as a potential therapeutic target in the disorders of the central nervous system. 
Luminal components, including gliadin and bacteria, induce zonulin production of the intestinal 
epithelial cells via CXCR3. Zonulin is a TJ modulator protein, which activates EGFR and PAR2 re-
ceptors and thereby induces actin and ZO-1 disassembly, leading to increased paracellular perme-
ability through TJ disruption. Immunogen fragments and proinflammatory cytokines enriched in 
the bloodstream induce neuroinflammation, which is further facilitated by circulatory zonulin re-
leased from the intestine. Inhibition of the zonulin pathway by using zonulin antagonists (e.g., 
larazotide acetate), EGFR inhibitors, or PAR2 modulators can preserve the barrier function of epi-
thelial and endothelial layers in the intestine and, presumably, also in the brain. Abbreviations: 
CXCR3: C-X-C chemokine receptor type 3; EGFR: epidermal growth factor receptor; JAM: junctional 
adhesion molecule; LPS: bacterial lipopolysaccharide; PAR2: proteinase activated receptor 2; TJ: tight 
junction; ZO-1: zonula occludens 1. 
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Figure 1. Zonulin as a potential therapeutic target in the disorders of the central nervous system.
Luminal components, including gliadin and bacteria, induce zonulin production of the intestinal
epithelial cells via CXCR3. Zonulin is a TJ modulator protein, which activates EGFR and PAR2 recep-
tors and thereby induces actin and ZO-1 disassembly, leading to increased paracellular permeability
through TJ disruption. Immunogen fragments and proinflammatory cytokines enriched in the blood-
stream induce neuroinflammation, which is further facilitated by circulatory zonulin released from
the intestine. Inhibition of the zonulin pathway by using zonulin antagonists (e.g., larazotide acetate),
EGFR inhibitors, or PAR2 modulators can preserve the barrier function of epithelial and endothelial
layers in the intestine and, presumably, also in the brain. Abbreviations: CXCR3: C-X-C chemokine
receptor type 3; EGFR: epidermal growth factor receptor; JAM: junctional adhesion molecule; LPS:
bacterial lipopolysaccharide; PAR2: proteinase activated receptor 2; TJ: tight junction; ZO-1: zonula
occludens 1.
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