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Abstract: MKK4 (mitogen-activated protein kinase kinase 4; also referred to as MEK4) is a dual-
specificity protein kinase that phosphorylates and regulates both JNK (c-Jun N-terminal kinase)
and p38 MAPK (p38 mitogen-activated protein kinase) signaling pathways and therefore has a
great impact on cell proliferation, differentiation and apoptosis. Overexpression of MKK4 has been
associated with aggressive cancer types, including metastatic prostate and ovarian cancer and triple-
negative breast cancer. In addition, MKK4 has been identified as a key regulator in liver regeneration.
Therefore, MKK4 is a promising target both for cancer therapeutics and for the treatment of liver-
associated diseases, offering an alternative to liver transplantation. The recent reports on new
inhibitors, as well as the formation of a startup company investigating an inhibitor in clinical trials,
show the importance and interest of MKK4 in drug discovery. In this review, we highlight the
significance of MKK4 in cancer development and other diseases, as well as its unique role in liver
regeneration. Furthermore, we present the most recent progress in MKK4 drug discovery and future
challenges in the development of MKK4-targeting drugs.

Keywords: MKK4; MEK4; MAP2K4; MAPK; kinase inhibitors; drug design; cancer; liver regeneration;
liver failure; clinical trials

1. Introduction

Kinases have been one of the main challenges of drug discovery in the past 20 years as
they regulate nearly all aspects of cell life and alterations that cause cancer or other diseases
in a wide range [1,2]. To date, more than 70 kinase inhibitors have been approved, of which
a majority are effective against various cancers and only a few against other diseases such
as rheumatoid arthritis [2]. However, less than half of the human kinome, which consists
of approximately 500 kinases, is targeted by clinical candidates [3,4].

The mitogen-activated protein kinase (MAPK) pathway refers to a series of multistep
signal transduction pathways involved in the regulation of embryogenesis, cell differentia-
tion, cell growth and programmed cell death, among others [5]. Usually, mitogens (proteins
that stimulate cell division), growth factors, osmotic stress, heat shock and proinflamma-
tory cytokines can activate the pathway that involves at least three sets of kinases [6]:
a MAP-kinase-kinase-kinase (MAP3K, also MAPKKK), a MAP-kinase-kinase (MAP2K,
also MAP-KK, MEK, MKK) and a MAP-kinase (MAPK), which are activated in this series
through phosphorylation using adenosine triphosphate (ATP) [5]. While great efforts
have been made in drug discovery to target the pathway further downstream like p38
mitogen-activated protein kinase (p38 MAPK), c-Jun N-terminal kinase (JNK), extracellular-
signal-regulated kinase (ERK) or further upstream, e.g., Ras, Raf and epidermal growth
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factor receptor (EGFR), less attention has been paid to the “middle” MKKs. With MKK1
(MEK1) and MKK2 (MEK2), only two of the seven isoforms of the MKK (MAP2K) family
have been extensively studied, with several clinical trials underway [7–10]. However, less
effort has been spent on developing inhibitors that target MKK3-7 [11]. The recent entry
of MKK4 inhibitor HRX-0215 (structure not disclosed) into clinical trial I (EUDRA-CT
No. 2021-000193-28) is the first application under clinical conditions of an inhibitor of the
under-explored MKK family [12].

2. Classification, Structure and Biological Function of MKK4

Human MKK4, also referred to as MAP2K4, or MAPK/ERK-Kinase 4 (MEK4), JNK ki-
nase 1 (JNKK1), SAPK/ERK kinase-1 (SEK1), consists of 399 amino acids [13–16]. There are
three MKK4 structures publicly available (3aln [17], 3alo [17] and 3vut [18]) displaying that
the kinase contains 11 subdomains that fold into a small, N-terminal lobe (composed of five
β-sheets and one α-helix) and a larger mainly α-helical C-terminal lobe connected through
a flexible hinge region (depicted in Figure 1). The ATP binding site is located in the cleft
formed between the two lobes and is surrounded by conserved residues [19]. Notably, the
entrance to the ATP binding pocket is open towards the solvent and most likely accessible
to the substrate or an inhibitor. MKK4 contains the common MKK-phosphorylation-motif
S-X-A-K-T (Ser257 and Thr261) located in the T-loop of the kinase domain between subdo-
mains VII and VIII [17–20]. Both hydroxy residues are required to be phosphorylated for
full activation of the kinase, as mutation of these residues abolished MKK4’s activity [21].
It has been shown that Ser257 phosphorylation is essential and Thr261 phosphorylation
is required for full MKK4 activation [22]. Human non-phosphorylated MKK4 does not
show activity [23]. Recent molecular dynamics (MD) simulations suggested that inactive
autoinhibited MKK4 exists as a dimer that is destabilized by phosphorylation and therefore
activated [24]. MKK4 shares about 50% of its sequence identity with MKK7, the most
familiar kinase [19]. Additionally, MKK7 was found to have a similar binding pocket
as MKK4, indicating a similar binding mode to small molecule inhibitors [25,26]. There-
fore, MKK7 always needs to be considered as off-target. A conserved cysteine (Cys246 in
MKK4) upstream of the DFG moiety of all MKKs has been validated for covalent warhead
strategies [26,27], as will be discussed in a later section.

During cell response to stress, heat shock, growth factors and proinflammatory cy-
tokines, MKK4 is phosphorylated and activated by the majority of MAP3Ks, including
ASK, MEKK, MLK and TAK [28]. While the close relative MKK7 is a specific activator of
JNKs, MKK4 can phosphorylate both JNKs and p38 MAPKs [14,15,29–32]. A recent study
has even marked cross-communication between MKK4 and nuclear factor kappa B (NF-κB)
pathways by MKK4’s ability to modulate the processing of NF-κB2, and highlighted the
possibility to treat NF-κB-caused diseases by MKK4 inhibition [33]. Interactions between
MKK4 and MAP3Ks occur via its domain for versatile docking (DVD) at the C-terminus
and are mandatory for the activation of MKK4 [34,35]. The docking domain type docking
site located at the N-terminal region of MKK4 is responsible for binding its substrates
JNK and p38 MAPK [36]. MKK4, together with MKK7, dual phosphorylates the T-P-Y
motif of JNKs and, unlike MKK7, is also able to phosphorylate the T-G-Y motif of p38
MAPK [37]. While MKK4 prefers the tyrosine residue (Y185) of JNK, MKK7 prefers the
threonine (T183) [32,38]. Phosphorylation by MKK7 is essential for JNK activation, while
phosphorylation by MKK4 is required for JNK’s full activation [39]. p38 MAPK phosphory-
lation residues Thr180 and Tyr182 are equally phosphorylated by MKK4, which classifies
MKK4 as a dual-specificity protein kinase [39,40]. The roles of p38 MAPK and JNK are
pleiotropic and generally involved in processes such as cell proliferation, apoptosis and
differentiation [41,42].

In adult mice, MKK4 is ubiquitously expressed [43]. However, in murine embryonic
development, the expression pattern differs. Transcription of MAP2K4 (the gene encoding
MKK4) is restricted to the CNS until embryonic day 10 [44]. Starting from embryonic
day 10, MAP2K4 mRNA is found in high levels in the developing liver while the liver
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cells undergo differentiation up to embryonic day 16 when the transcript levels rapidly
drop [44]. MAP2K4(−/−) homozygous mice have a high number of proliferating hep-
atoblasts that cannot differentiate into hepatocytes and undergo apoptosis, leading to
death [45], demonstrating MKK4’s significance in embryonic liver cell differentiation.

MKK4, along with MKK7, is crucial for the development of the central and peripheral
nervous system (CNS and PNS) as they take part in cell migration, positioning of neuronal
cells and commissural fibers development [46,47]. MKK4 appears to be responsible for
maintaining the basal activity in neurites and mediates JNK dendritic outgrowth and the
creation of neural circuits in the brain [46]. A recent study has demonstrated the impact of
the MKK4/MKK7/JNK signaling pathway for controlling the positioning, morphology
and differentiation of a hippocampal subpopulation in mice [48]. MKK4, next to MKK7, is
important for both retinal development and the injury response following axonal damage,
as well as for maintaining retinal ganglion cell survival [49].

There have been conflicting reports on the role of MKK4 in the immune system. Earlier
studies attribute a central role to MKK4 for cell survival signaling in T-cell development
and proliferation [50,51], whereas new reports observed neither evidence for proliferative
defects in MKK4-deficient T-cells nor a negative T-cell response to viral infections [52,53].
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Figure 1. X-ray crystal structure of MKK4 monomer A in a complex with adenylyl-imidodiphosphate
(PDB: 3aln) [17]. The general structure of protein kinases is clearly visible, with the N-terminal
domain at the top (N lobe) dominated by β-sheets and the C-terminal domain at the bottom (C lobe),
composed mainly of α-helices. Important structures are colored: hinge region (blue), glycine-rich
loop (green), Mg2+-binding loop with DFG motif (magenta), catalytic loop with HRD motif (red)
and the disordered activation loop, which contains the activation helix but is not shown due to
presumably high flexibility (orange). Disordered secondary structures are shown in dashed lines in
the protein. Image generated using ChimeraX [54].
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3. MKK4 Inhibitors
3.1. Role of MKK4 Inhibitors in Cancer Therapies

MKK4’s role in tumor development is controversial as it can both act as a tumor
suppressor and a tumor promoter. MKK4 is encoded by MAP2K4 located on chromosomal
segment 17p11.2, which can be lost with 7–10% in human epithelial cancers, particularly
ovarian and breast cancers [55,56], and was therefore initially presumed to be a tumor
suppressor. Additionally, MKK4 has been linked to its suppressing function in pancre-
atic ductal adenocarcinoma, a cancer type with one of the poorest survival rates of less
than 9% [57,58]. Additionally, a human kinome mutation screen of 356 tumors identified
MAP2K4 loss-of-function (LOF) mutations in 11 tumors, supporting MKK4’s suppressive
role [59–61]. Homozygous deletion of MAP2K4 is often accompanied by mutations of TP53
(encoding major tumor suppressor p53) and KRAS (encoding common tumor promoter
K-Ras) in lung adenocarcinomas [62]. However, tumor-promoting roles of MKK4 have
been observed in ovarian, prostate, pancreatic and triple-negative breast cancer [43,63–66].
MKK4 promotes prostate and ovarian cancer metastasis [66,67]. Prostate cancer is the most
commonly diagnosed cancer type in men in the United States (268,490 estimated new cases
in 2022) and the second most common form of cancer death (34,500 estimated deaths in
2022), comprising great significance [68,69]. While the 5-year relative survival rate is well
above 99% for localized and regional prostate cancer, the survival rate dramatically drops
to 32% for advanced cancer stages [69]. MKK4 has been validated as a target for prostate
cancer given the fact that MKK4 inhibition could prevent cell invasion and metastasis
in preclinical studies [67,70,71]. Additionally, it has been demonstrated that microRNAs
directly targeting MKK4 are downregulated in prostate cancer tissues and cell lines, making
MKK4 a promising target for prostate cancer therapy [72]. Furthermore, ultraviolet B (UVB)
radiation was shown to activate p38 MAPK and JNK pathways and it can lead to skin
cancer [73]. Hence, MKK4 inhibition effectively shuts down these pathways [74]. Moreover,
the concurrent inhibition of MKK4/JNK and PI3K/Akt pathways in non-small cell lung
cancer line H1299 showed antiproliferative effects [75].

Taken together, depending on the genetic setting of the tumor, MKK4 can act as
tumor-suppressive or tumor-promoting, a common characteristic of many kinases [76]. In
particular, high-impact tumors with low survival rates, such as pancreatic, triple-negative
breast cancer and metastatic prostate cancer, make MKK4 an interesting target for small
molecules. To date, only a few MKK4 inhibitors have been developed. In the beginning,
mostly natural products with protective effects were studied and this effect was attributed
to MKK4 suppression. Only recently, modern medicinal chemistry methods have been
applied to develop selective and active structures for MKK4. An overview of all known
structures is described below.

3.1.1. 9-H-pyrimido [4,5-b]ind-6-ol-scaffold

In 2003/2004, Bayer published a dual MKK4 and MKK7 inhibitor with a 9-H-pyrimido
[4,5-b]ind-6-ol-based scaffold [77,78]. Based on the fact that MKK7 and MKK4 are the only
two known kinases of the MKK family that activate JNK, and MKK4 also phosphorylates
p38 MAPK [28,79], the project focused on the development of a specific MKK7 and/or
MKK4 inhibitor. The objective was to interfere with the synthesis of pro-inflammatory
cytokines and the activation of several immune cells to target inflammatory and immunoreg-
ulatory diseases on the one hand, but also to get involved in JNK activation and its role in
tumor cell survival [64,80]. Compound 1 (Figure 2) showed the highest activity. An IC50
value of <1 µM was reported for both MKK4 and MKK7.
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3.1.2. 7,3′,4′-Trihydroxyisoflavone (THIF)

7,3′,4′-THIF (2, Figure 3) is a major metabolite of Daidzein (3, Figure 3), a natural
isoflavone found in certain beans, legumes and sprouts [81,82]. Isoflavones [83] and
soy extracts [84] have been reported to have a photoprotective effect in skin tissue and,
therefore, both components were investigated for their effect on ultraviolet B (UVB)-induced
skin cancer. At first, 7,3′,4′-THIF and Daidzein were tested for their inhibitory effect on
UVB-induced cyclooxygenase 2 (COX-2) expression in JB6 P+ cells (murine skin cells).
While 7,3′,4′-THIF had an inhibitory effect on the expression, Daidzein had no effect. In
mouse skin models, a lack of COX-2 was identified as protection against UVB-induced
skin cancer while overexpression led to tumor-promoting activity [85]. Furthermore,
7,3′,4′-THIF significantly reduces the NF-κB transcription activity which is part of the
down-regulation of UVB-induced COX-2 expression [86]. In comparison, it was also
more effective than Daidzein. Moreover, data revealed that 7,3′,4′-THIF suppresses the
UVB-induced phosphorylation of JNK and p38 MAPK in JB6 P+ cells. As JNK and p38
MAPK are both components of a stress-activated protein kinase signaling pathway [13],
the upstream regulatory proteins were further investigated. It was verified that 7,3′,4′-
THIF inhibited MKK4 and Cot (MAP3K8), a kinase that guides the activation of JNK,
NF-κB and p38 MAPK. In vitro kinase assays unveiled the inhibition of MKK4 and Cot and
demonstrated no effect on either MKK3 and MKK6 or p38α MAPK and JNK. These results
led to the assumption that the effect on the COX-2 expression was caused mostly by the
ATP-competitive MKK4 and Cot inhibition through 7,3′,4′-THIF. Therefore, it underlines
the potential of MKK4 inhibition in the treatment of UVB-induced skin cancer [74].
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3.1.3. Genistein

Genistein (4, Figure 4) is the major isoflavone in soybeans and was investigated for its
potential for cancer treatment by MKK4 inhibition [70,87]. The consumption of Genistein
through soy is associated with lower rates of metastatic prostate cancer [88–90]. Therefore,
the steps of the metastatic cascade were examined more closely. The cell invasion is the
initial, necessary step in cancer metastasis, and transforming growth factor-β (TGF-β) was
shown to increase it. For a better understanding, the downstream processes of TGF-β
were further investigated. TGF-β activates MKK4, which upon activation phosphorylates
downstream effector proteins, including p38 MAPK. p38 MAPK phosphorylates MAPK-
activated protein kinase 2 (MAPKAPK2), which itself phosphorylates heat shock protein 27
(HSP27). This finally leads to the expression of matrix metalloproteinase-2 (MMP-2) and
the increase in cell invasion [91,92]. In further investigations, MKK4 was found to be the
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target for Genistein in the treatment of prostate cancer cells with an IC50 value of 400 nM.
In a phase II clinical study, higher expression of MKK4 was associated with higher MMP-2
expression and cell invasion, giving evidence for the anti-invasive activity of Genistein
in prostate cancer treatment. Ultimately, the clinical study had limitations and it could
not be proven that Genistein binds to MKK4’s active site, even though it was predicted
through computer-simulated structural modeling that Genistein directly inhibits MKK4
activity [70]. However, Genistein has been studied extensively, especially for its role as a
cancer therapeutic, with 75 studies to date investigating or including Genistein (according
to clinicaltrials.gov), along with a phase II clinical trial investigating Genistein treatment
for metastatic prostate cancer [93]. It has been identified as an inhibitor for multiple targets,
such as the epidermal growth factor receptor (EGFR) [94,95], cyclin-dependent kinases
(CDK) [96,97], polo-like kinase 1 (PLK1) [98–100] and estrogen receptor (ER) [101].
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3.1.4. Dehydroglyasperin C

Dehydroglyasperin C (DGC) (5, Figure 5) is a natural product that raised awareness
for being the major flavonoid compound in ethanolic licorice extract [102]. There are many
reports on the bioactivity of licorice extract, which include antioxidant, anti-inflammatory,
anti-carcinogenic, hepatoprotective and antimicrobial activity [103–108]. Mechanistic stud-
ies of DGC revealed that the inhibition of 12-O-tetradecanoylphorbol-13-acetate (TPA)—a
potent tumor promoter [109,110]—induced phosphorylation of p38 MAPK, JNK and Akt, a
major substrate of phosphoinositide 3-kinase (PI3K) [111]. A pull-down assay with DGC-
conjugated sepharose beads disclosed direct physical binding of DGC to the upstream
regulators MKK4 and PI3K. ATP titration indicated an ATP-competitive mechanism of
inhibition of DGC to both kinases [111]. DGC was able to inhibit tumor promoter-induced
neoplastic transformation in cells and could also suppress UVB-induced COX-2 expression
by inhibiting the MKK4 and PI3K pathways. The authors highlighted the importance of
multi-target kinase inhibitor approaches to cancer therapies, as highly selective inhibitors
are thought to contribute to drug resistance in cancer patients [111].
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3.1.5. HWY336

The protoberberine derivative HWY336 (6, Figure 6) was identified as a dual MKK4
and MKK7 inhibitor in a library screen of 80 protoberberine derivatives. IC50 values of
6 µM on MKK4 and 10 µM on MKK7 in vitro were reported. Protoberberine alkaloids
are present in many plant families, including poppies, barberries and laurels [112], and
can show anti-tumor activity in vivo [113,114]. Therefore, a library screen was performed
with MKK1, MKK2, MKK3, MKK4, MKK6, MKK7 and MAPKs (JNKs, p38 MAPKs, ERKs),
finding HWY336 as a selective dual MKK4/MKK7 inhibitor [115].
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Subsequently, human embryonic kidney 293 (HEK293T) cells that were treated with
D-sorbitol, to activate JNK, were incubated with HWY336 in increasing concentrations.
The phosphorylation of JNKs was reduced after 3 h of incubation with 9 µM HWY336
and disappeared after 4 h of treatment with 12 µM HWY336. These experiments and the
performed wash experiments indicate that the inhibition is directed to MKK4, is reversible
and is non-covalent.

For a better understanding of the inhibitory selectivity, molecular docking and phylo-
genetic analysis based on sequence homology was performed. The structural model sup-
ported the hypothesis that HWY336 is a non-ATP competitive inhibitor of MKK4/MKK7.
It also led to the assumption that HWY336 inhibits the phosphorylation of MKK4/MKK7
inside the activation loop or hinders the substrate to access the kinase [115].

3.1.6. 3-Arylindazoles

Due to MKK4’s role in prostate cancer metastasis, it has become a target of interest
for therapeutic inhibition. To discover new and especially selective inhibitors, a high-
throughput screen with a library of 50,000 diverse compounds was carried out. Hereafter,
the work was focused on a small hit compound with an indazole core (7, Figure 7) with an
IC50 value of 190 nM towards MKK4 [116]. After the confirmation of the ATP-competitive
mechanism of inhibition through ATP titration and a fluorescence thermal shift (FTS) assay,
which neither showed a preference for the binding of the active or the inactive forms of
MKK4, the MKK4 selective inhibition within the MKK family was investigated. 7 has a
30- to 60-fold selectivity to MKK1 with an IC50 value of 12 µM which marks the highest
inhibition in the MKK family after MKK4. The modeling of 7 with MKK4 led to predictions
of key interactions. Hydrogen bond interactions in the hinge region with the residues
Leu180 and Met181, as well as electrostatic interaction of the carboxylate of 7 and Lys187,
were observed. Furthermore, there appeared to be a hydrophobic back pocket that could
be occupied starting from the 5- and 6- positions of the indazole core. Based on this, 6-
fluoro-3-arylindazole (8, Figure 7) was obtained and showed selectivity within the MKK
family and IC50 values of 41 nM. Subsequently, a kinase screen with another 50 kinases was
performed at 10 µM. 13 inhibited 12 of the 57 kinases, while 7 only inhibited 5 kinases [116].
Further investigation of the temporary lead structure 8 was carried out with two different
approaches: the synthesis of noncovalent and covalent inhibitors.

For the noncovalent approach, replacing the carboxylic acid of 8 with the bioisos-
teric sulfonamide gave compound 9 (Figure 7) with improved activity and membrane
permeability. The primary para-substituted sulfonamide yielded an IC50 value of 61 nM.
Based on 9, various analogs were investigated and led to 10 (Figure 7) with an IC50 value
of 83 nM. The selectivity of 9 and 10 were examined. 9 and 10 were first tested in their
selectivity profile within the MKK family. Even though 9 proved a better selectivity profile
in the MKK family, 10 was tested against 97 kinases at a concentration of 10 µM. Out of
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97 of these kinases, 28 were hit by at least 80% inhibition, including tyrosin-like kinases
(TK), tyrosine kinase-like kinases (TKL), serine/threonine kinases (STE), cyclin-dependent
kinases, mitogen-activated protein kinases, glycogen synthase kinases and CDK-like ki-
nases [117]. In other studies, the co-treatment of 9 and 10 with an MKK1/2 inhibitor (U0126)
in pancreatic cancer cell proliferation was examined.
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Computational modeling also suggested a covalent approach and several proposed
covalent inhibitors were generated. Using 8 as a starting point, different electrophilic
warheads were added to the ortho-position of the aryl ring while the carboxylic acid was
removed. However, none of the compounds were able to bind covalently and did not show
activity in the noncovalent control.
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3.1.7. BSJ-04-122

Inhibition of MKK4 and MKK7 was investigated in the triple-negative breast cancer
line MDA-MB-231 as the genetic knockdown of MKK4 in MDA-MB-231 resulted in a
suppressed tumor growth in a mouse xenograft model [63]. The kinase inhibitor SM1-71
(11, Figure 8) was used to target a conserved cysteine located before the DFG motif that
can be found across the whole MKK family [27]. To improve kinase selectivity, further
analogs of 11 were synthesized, resulting in BSJ-04-122 (12, Figure 8) with an IC50 value
of 4 nM on MKK4. The inhibition of 12 was also tested for MKK7 activity using two
different assays, resulting in sub-micromolar IC50 values, while a reversible saturated
analog (not shown) showed values above 10 µM. The covalent binding was confirmed
with liquid chromatography-mass spectrometry (LC-MS) showing a molecular weight
shift according to the adduct of MKK4 and 12. Chymotrypsin digestion followed by MS
analysis of the protein fragments revealed that Cys247 in MKK4 and Cys261 in MKK7 were
covalently connected to BSJ-04.122. Upon treatment of cells with 12, a competition-based
pulldown assay showed that kinases MKK1/2/3/5/6 were not engaged, which suggested
high selectivity among the MKK family. Docking experiments of 12 with MKK4 (3aln [17])
predicted the formation of two hinge hydrogen bonds through pyrrolopyrimidine with
Met181 and Glu170 and an additional hydrogen bond between the acrylamide and the
Ser233 backbone carbonyl. The conformation of 3-aminophenyl acrylamide is in proximity
to Cys246 for covalent binding, while docking with MKK2 (1S9I [118]), despite its high
similarity with MKK4, shows an extended hinge with an inserted extra residue, Glu152.
Additionally, MKK2 contains Asp151 and His149, which are charged, while MKK4 inherits
neutral residues Leu180 and Ser182. Therefore, not only are the hydrophobic interactions
of 12 with MKK4 stronger, but Lys187 also forms a cation–π interaction with the phenyl
ring. MKK7 was found to have a similar ATP-binding pocket to MKK4, indicating a
similar binding mode. Ultimately, 12 was investigated to determine whether it induces cell
growth inhibition of triple-negative breast cancer cell lines. Surprisingly, concentrations
ranging from 4 nM to 10 µM did not affect the proliferation rate. In a combinatorial therapy
approach, a combination of 12 and JNK inhibitor JNK-IN-8 demonstrated an enhanced
antiproliferative effect in cells [26].

3.2. Role of MKK4 Inhibitors in Liver Regeneration

In the previous section, MKK4’s significance in the differentiation of early-stage
hepatocytes for the development of embryonic livers was described. The abundance of
MAP2K4 resulted in rapid apoptosis of the primordial liver and ultimately led to the death
of mice embryos. Contrariwise, an in vivo RNAi screen has identified MKK4 as a key
enzyme in liver regeneration [119]. As illustrated in Figure 9, MKK4 silencing by shRNA
led to increased signaling through apoptosis signal-regulating kinase 1 (ASK1), a MAP3
kinase and MKK7, thus yielding higher phosphorylation of JNK1. Thereby, through the
phosphorylation of ETS transcription factor 1 (ELK1) and the activation of transcription
factor 2 (ATF2), the substrates of JNK1 are intensified, which resulted in faster cell-cycle
entry and progression of hepatocytes during liver regeneration [119]. Moreover, resting,
non-regenerating livers with MKK4 silencing were shown to be resistant to Fas-induced
apoptosis. Although increased proliferation and resistance to apoptosis are characteristics
of cancer, in mice with stable intrahepatic MKK4-knockdown, no tumors could be observed,
indicating that the absence of MKK4 is not a strong tumor-initiating factor and making
MKK4 a promising target for transient pharmacological inhibition and a liver regeneration
therapeutic [119].
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In the EU and U.S., more than 250,000 patients per year suffer from acute liver disease
and 700,000 patients suffer from chronic liver disease [120]. There are approximately
2 million or 3.5% of worldwide deaths per year, with hepatocellular carcinoma being the
most common primary liver cancer, which is considered the fifth most common cancer and
is the third leading cause of cancer-related death in the U.S. [121]. With liver transplantation
as the only curative option for the treatment of acute liver failure and end-stage chronic
liver failure, only a limited number of donor livers are available and the need for new
therapies such as MKK4 inhibition is eminent [119]. MKK7 and JNK1 are to be considered
anti-targets. Since their activity is responsible for liver regeneration [119,122], these must
not be targeted by the inhibitors. In recent years, the development of selective MKK4
inhibitors serving liver therapy purposes has risen [119,123–125].
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Figure 9. Overview of the inhibited MKK4 signaling pathway. Red arrow shows the downregulation
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Green arrows show increased activation of the MAP kinase cascade due to an absence of MKK4
activity. Adapted from Wuestefeld et al. [119].

3.2.1. Azaindoles

Following a target-hopping strategy from FDA-approved B-RafV600E (serine/threonine-
protein kinase B-Raf) inhibitor Vemurafenib, which showed off-target activity towards
MKK4, a multi-parameter optimization process emphasizing a distinct SAR (structure–
activity relationship) was performed, leading to compounds 13, 14 and 15 (Figure 10). To
determine affinities towards MKK4 and off-targets, commercially available KINOMEscan
technology was used, and binding affinities are given as percentage of control (POC) values.
In the assay, the compounds compete with a proprietary immobilized multikinase inhibitor
for the binding site of the DNA-tagged kinase. The readout is via quantitative PCR and the
POC is calculated from the DMSO (dimethyl sulfoxide) control [126]. A POC of 0 is equal
to a complete displacement of the ligand from the kinase (complete binding) and a POC
of 100 is equal to no binding of the compound to the kinase. Starting from Vemurafenib
(POCMKK4 = 14 @ 0.1 µM; POCB-Raf = 16 @ 0.1 µM), this demonstrated the design of new
inhibitors with a high affinity to MKK4 (POCMKK4 = 2.2, 0.2 and 0.35 @ 0.1 µM), with selec-
tivity over the off-targets MKK7, JNK1, B-Raf, MAP4K5 and ZAK in the range of factors 40
to 190, being the first-in-class inhibitors targeting MKK4 for hepatocyte proliferation [123].
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3.2.2. Pyrazolopyridines

Further exploration of the core structure led to changing the azaindole to pyrazolopy-
ridine. SAR experiments resulted in compound 16 (Figure 11). It contains an acetylated
sulfonamide instead of Vemurafenib chlorine. It showed the highest activity towards MKK4
(IC50 = 29 nM, POCMKK4 = 0.35 @ 100 nM). However, the selectivity was poor towards B-Raf,
showing even higher activity (POCB-Raf = 0 @ 0.1 µM). In compound 17, the alkyl side chain
was replaced by a benzyl, dramatically shifting the selectivity from B-Raf (POCB-Raf = 76 @
0.1 µM) to MKK4 (POCMKK4 = 0.4 @ 0.1 µM) with an IC50 value of 146 nM. KD values of 17
showed remarkable selectivity towards the off- and anti-targets by factors of >100, >250,
>600 and almost 3000 against JNK1, B-Raf, MAP4K5, MKK7 and ZAK, respectively. 17 was
screened against a panel of 97 kinases at 1 µM, a concentration that is 500 times higher than
17s Kd value for MKK4. Only two kinases (AURKB and SNARK) showed a POC value of
<35%, demonstrating the high kinome selectivity of 17 [124].
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3.2.3. Carbolines

By replacing the azaindole/pyrazolopyridine scaffold with α-carboline as a new
scaffold, highly potent inhibitors with an extraordinary and robust selectivity profile driven
by the intrinsic selectivity of the α-carboline were obtained [125]. Activity towards the
previously named off-targets could be minimized to a non-relevant level making this type
of inhibitor unique in the class of known MKK4 inhibitors, as it allows a broad range
of activity-increasing and pharmacokinetic-improving modifications without detrimental
selectivity effects. Modifications on the azaindole/pyrazolopyridine scaffold had to balance
potency and selectivity well. The increased steric demand and its rigidized structure proved
to be a very robust selectivity-inducing structural element without affecting potency. All
carboline-containing compounds showed good activity and selectivity. 18 (Figure 12A)
was selected to be screened against 320 kinases at a concentration of 100 nM resulting in
a selectivity factor of S(20) = 0.103 [125,127]. A further study based on this new scaffold
was recently published, dealing with a fluorescence-labeled carboline derivative. We were
able to detain a linker attached to a bulky fluorophore while retaining MKK4 affinity
and selectivity (Figure 12B) [128]. Since the available MKK4 crystal structures do not
consider the lipophilic back pocket, docking into our molecular dynamics (MD)-simulated
structure of MKK4 [24] was crucial for the success of the design and implementation of the
fluorophore. The binding mode was similar to the related structure of Vemurafenib in the
crystal structure of its original target B-Raf (4rzv, 3og7) [129], where the azaindole nitrogens
form two hydrogen bonds to the hinge region, while the para-chlorophenyl protrudes
from the ATP-binding pocket into the solvent-exposed region. The NH of the sulfonamide
interacts with the DFG motif of B-Raf and forms hydrogen bonds with the aspartate, while
the isopropyl chain occupies the lipophilic back pocket. Therefore, chlorophenyl was used
for detaining the linker-connected fluorophore, providing a potent fluorescent ligand for
competitive high-throughput screening [128].
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3.3. Role of MKK4 Inhibitors in Other Diseases

To date, little is known about MKK4’s influence on other diseases, but reports have
risen in the past few years. MKK4 is a negative regulator of the TGF-β1 (transforming
growth factor-β1) signaling pathway associated with remodeling and arrhythmogenesis
with age, and has been suggested as a potential therapeutic target for the treatment of atrial
fibrillation [130]. It has been demonstrated that a specific microRNA directly targeting
MKK4 is downregulated in osteoarthritis development. Therefore, MKK4 levels were
increased in osteoarthritis cartilage leading to downstream activation of matrix-degrading
enzymes, making it a promising target for osteoarthritis therapy [131]. MKK4 was investi-
gated in neuroprotection studies [132] and has been implicated in neurological conditions,
including stroke, Parkinson’s, Huntington’s and Alzheimer’s disease [132]. In addition, it
was possible to show that MKK4 suppression rescues neuronal cells from cell death using
prenylated quinoline carboxylic acids (PQA) [133].

Prenylated Quinoline Carboxylic Acids

Ppc-1 (19, Figure 13) is a secondary metabolite synthesized by a cellular slime mold
and acts as a neuroprotective agent on glutamate-induced cell death in hippocampal cell
cultures with an IC50 value of 239 nM [133]. Further derivatization by the authors led to
compound PQA-11 (20, Figure 13) with a saturated isopentyl chain, enhancing activity
with an IC50 value of 127 nM. In addition, PQA-11 inhibited neurotoxin-induced cell
death. MKK4 was identified as the target of PQA-11 being responsible for JNK activation
and ultimately caspase-3 activation, leading to diminished apoptosis. The effect was
confirmed with MKK4 siRNA in vitro. The quartz crystal microbalance (QCM) method was
used to verify the direct interaction of PQA-11 with MKK4 in a concentration-dependent
manner. Notably, no interaction was observed with a constitutively active type of MKK4,
suggesting the binding of PQA-11 to inactive MKK4. It has been proposed that sphingosine
is involved in JNK pathway activation [134]. Studying the interaction of sphingosine
on MKK4 revealed that it induced autophosphorylation of MKK4, which is inhibited by
PQA-11 in a concentration-dependent manner. Through QCM-, assay- and docking-based
data, the authors present a new mode of inhibition, in which the inhibitor PQA-11 displaces
sphingosine from a binding pocket competitively. Since MKK4 requires sphingosine
binding for autophosphorylation, a reduction in activity can be achieved by using PQA-11
as a lead structure for the further development of neuroprotective drugs and the treatment
of neurodegenerative diseases such as Alzheimer’s or Parkinson’s disease.
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4. Conclusions

MKK4 is a dual-specificity kinase that regulates cellular signaling pathways by acti-
vating JNK and p38 MAPK. Recently, even a cross-communication between MKK4 and
NFκB was reported, opening the possibility to tune this pathway and related pathologies
by MKK4 inhibition.

Research into the function of MKK4 and diseases associated with it has led to increas-
ing interest in drug development, especially in recent years. Previous approaches used
natural products as active ingredients with activity on MKK4 to study and validate the
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kinase as a pharmacological target. Thus, MKK4 was identified not only in certain cancer
types but also as being responsible for transformation into cell invasion and metastasis in
high-impact cancer types, such as prostate and ovarian cancer. This laid the foundation for
the targeted development of selective MKK4 inhibitors, which quickly achieved success
with nanomolar inhibitory small molecules that bind not only reversibly but also covalently.
However, more challenges lie ahead in the field of cancer therapy. The effectiveness of the
inhibitors still needs to be demonstrated in suitable in vivo models.

The identification of MKK4 as a key regulator in liver regeneration has generated great
interest as it offers a solution to the current lack of alternatives to liver therapies such as
transplantation. Notably, unlike in cancer therapies, where inhibitors are often developed
as dual-specific against MKK4 and MKK7, high selectivity towards MKK7 is essential in
liver regeneration. Recently, several structures serving this purpose have been published
and the entry of inhibitor HRX-0215 (structure not disclosed) into clinical trials marked a
milestone in the drug development of MKK4, as it is the first clinically studied inhibitor to
target one of the “non-classical” MKKs (MKK3-7).

MKK4 has also been shown to be a target in other conditions, including osteoarthritis,
atrial fibrillation and neurodegenerative diseases such as Alzheimer’s and Parkinson’s
disease. It has been shown to prevent cells from apoptosis, autodegradation and senescence.
Although studies on in vivo models are still required to prove the efficacy, MKK4 inhibitors
show great potential to be used as therapy, which highlights the need for novel MKK4
therapeutic agents.

In summary, MKK4 has been validated for certain cancer diseases and liver regen-
eration therapies. While dual-inhibitor specificity towards MKK7 can be beneficial for a
complete MKK4/MKK7/JNK pathway shut down in cancer cells, high MKK4 selectivity
is mandatory in liver regeneration. While the first small molecules inhibited MKK4 only
nonselectively in the µM range, mostly originating from natural products, several highly
selective inhibitors, effective at nanomolar concentrations, have recently been published
that even involve covalent strategies and have a clinical candidate in the pipeline.

However, there are still challenges ahead. These include further investigation of the
role of MKK4 in other diseases, especially in neuroprotection, and a possible application of
an MKK4 inhibitor for neurodegenerative diseases. So far, the binding modes of inhibitors
have been established only by homology models. For rational drug design, a crystal
structure that represents the binding mode at high resolution would be a breakthrough.
Most structures are thought to be ATP-competitive type 1 kinase inhibitors. Since the
ATP binding pockets are often conserved, obtaining selectivity is problematic. In addition,
these inhibitors must overcome high endogenous ATP levels to be effective intracellularly.
Accordingly, covalent or allosteric inhibitors are promising options, which have also been
discussed in previous sections. Particularly, resolving the molecular mechanism of the
latter would help transform lead structures into drug candidates.
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