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Abstract: Pulmonary arterial hypertension (PAH) is a pulmonary vascular disease characterized
by the progressive elevation of pulmonary arterial pressures. It is becoming increasingly apparent
that inflammation contributes to the pathogenesis and progression of PAH. Several viruses are
known to cause PAH, such as severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), human
endogenous retrovirus K(HERV-K), and human immunodeficiency virus (HIV), in part due to acute
and chronic inflammation. In this review, we discuss the connections between HERV-K, HIV, SARS-
CoV-2, and PAH, to stimulate research regarding new therapeutic options and provide new targets
for the treatment of the disease.

Keywords: human endogenous retrovirus K; pulmonary arterial hypertension; human
immunodeficiency virus; SARS-CoV-2; inflammation

1. Introduction

Pulmonary arterial hypertension (PAH) is a pathophysiological syndrome charac-
terized by a progressive increase in pulmonary vascular resistance and pulmonary ar-
terial pressure, resulting in right heart dysfunction and ultimately leading to death [1].
The hallmarks of the disease include pulmonary vasoconstriction, the proliferation of
pulmonary artery endothelial cells (PAECs), smooth muscle cells (PASMCs), the thicken-
ing of pulmonary vascular intima and adventitia, and peripheral inflammation [2]. The
histopathological features of PAH are intimal hyperplasia, hypertrophy, and the epi mem-
brane hyperplasia of arterioles with varying degrees of inflammatory reactions [3]. The
exact pathophysiology of virus-associated PAH is currently unknown, but as with a limited
understanding of the diseases, it is considered multifactorial. Human immunodeficiency
virus (HIV), human endogenous retrovirus K (HERV-K), and severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2) also lead to the release of proinflammatory factors,
such as interleukin-6 (IL-6), IL-1β, and tumor necrosis factor α (TNF-α) [4–7]. Studies have
shown that approximately 0.5% of HIV-infected individuals develop PAH, which is 100 to
1000 times higher than the prevalence of PAH in HIV-uninfected individuals [8]. As one of
the most active members of the HERV genera, the upregulation of HERV-K can initiate and
maintain immune system activation and contribute to PAH-related vascular changes, such
as stimulating perivascular macrophages [6]. In addition, SARS-CoV-2 patients are at risk
for cardiac and/or pulmonary complications due to pulmonary hypertension (PH) [9]. HIV,
HERV-K, and SARS-CoV-2 may constitute a regulatory circuit. HERV-K not only affects
the structure of HIV but also influences its infectivity primarily through the Envelope
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(Env) protein. HERV-K can regulate the expression of the HIV Gag protein, which affects
the release of HIV virions [10]. SARS-CoV-2 can activate HERV-K [11] and HIV infection
reduces immune cell function and increases the risk of acquiring SARS-CoV-2 [12]. In
addition, factors such as hypoxia, complement system activation, hemodynamic stress, and
viral protein-mediated ECs death may also contribute to the onset and progression of PAH
during SARS-CoV-2 infection. Studies from New York have shown that any increased right
ventricular load (hypoxemia, hypotension, etc.) in SARS-CoV-2 infection may lead to higher
mortality in patients with more severe PH and right ventricular dysfunction [13]. Therefore,
it is believed that HIV/HERV-K/SARS-CoV-2 may be involved in the development of PAH
with a counterregulatory loop. In this review, we discuss the current understanding of
the regulatory loops between HERV-K, HIV, SARS-CoV-2, and PAH. Our goal is to spur
discussion exploring new directions for the treatment of PAH and provide new targets for
the treatment of the disease.

2. HIV: A Cause of PAH

HIV is a member of the lentivirus genus, which includes retroviruses with complex
genomes that exhibit conical capsid core particles [14]. Like all retroviruses, the genome
of HIV is encoded by RNA, which is reverse transcribed into viral DNA by viral reverse
transcriptase (RT) after entering new host cells [15]. Infection with HIV results in systemic
T-cell destruction and reduced immunity [16]. HIV invades the human immune system,
primarily through CD4+ T lymphocytes, monocytes, and macrophages. To enter the
cell, the HIV protein Env binds to the primary cell receptor CD4+, which in turn binds
to the cellular cognate receptor [17]. The hallmark of HIV infection is the depletion of
CD4+T lymphocytes, eventually leading to defective cell-mediated immunity, which is
significant enough and may lead to various opportunistic infections [18,19]. With the advent
of modern antiretroviral therapy (ART) regimens, HIV-infected patients are suffering
from non-AIDS-related comorbidities at a higher rate [20], including cardiopulmonary
vascular diseases [21]. HIV infection is considered an independent risk factor for PAH [22].
The pathogenesis of HIV-associated PAH is complex but fundamentally driven by HIV-
associated proteins [23,24] HIV-1 transmembrane glycol protein 120 (gp120) is a key protein
responsible for HIV entry into target cells. Nef is expressed during the early stages of
HIV infection and has been detected in the plexiform lesions of the SHIV Nef rhesus
monkey model [25]. Nef plays a key role in HIV immune evasion by downregulating
the expression level of CD4+ and disrupting the presentation of viral antigens by down-
regulating type I major histocompatibility complex [26]. Moreover, the HIV-Nef protein
persists in the lungs of HIV-Aviremic patients and induces EC death [27–30]. Nef can induce
EC death after transferring from Nef-containing peripheral blood mononuclear cells to the
endothelium via exosomes [29–31]. The ensuing impairment in endothelium-mediated
vasodilation could act as an integral mediator in promoting PAH progression. In addition,
some cardiopulmonary vascular regulators contribute to the progression of HIV-PAH.
Endothelin-1 (ET-1), which is secreted by PAECs, can induce vascular smooth muscle cell
(SMCs) proliferation, and ECs apoptosis, as well as activate macrophages [32–35]. Both
increased ET-1 concentrations and inflammatory damage seems to promote apoptosis and
cause PAH-related ECs growth and proliferation [36,37]. High levels of ET-1 are a risk
factor for PAH [38] through dysregulated homeostasis [39–41]. Moreover, ET-1 promotes
IL-6 production in macrophages [42] forming a paracrine amplification loop. Thus, in
individuals with HIV, excessive ET-1 production can impair lung endothelial function and
promote the development of PAH [41]. Studies have shown that the regulation of host gene
transcription by HIV may mimic hereditary PAH by genetically altering the expression
of bone morphogenetic protein receptor type 2 (BMPR2). The loss of BMPR2-dependent
signaling is one of the main drivers of the pathogenesis of PAH [43,44]. IL-6 can negatively
regulate the expression of BMPR2, causing the excessive proliferation of PASMCs [45,46].
Furthermore, it was found that Tat can inhibit the transcription of BMPR2 in macrophages,
contributing to abnormal pulmonary vascular function and cell proliferation [47].
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Moreover, the sterile alpha motif (SAM) domain and histidine-aspartate (HD) domain-
containing protein 1 (SAMHD1) is part of the human immune system and is highly ex-
pressed in the lungs of patients with PAH [6]. It was found that SAMHD1 is a target
antigen in the PAH lung immune complex and that elevated SAMHD1 in PAH lung cells
and circulating classical dendritic cells [6]. Antibodies against SAMHD 1 are ubiquitous in
tertiary lymphoid tissues stimulated by certain autoimmune diseases. SAMHD1 depletes
cellular deoxynucleotide triphosphates (dNTPs) and prevents HIV-1 reverse transcription
and inhibits HIV replication [48,49]. These associated mechanisms should be considered
for treatment targets for patients with both PAH with HIV infection.

3. Role of SARS-CoV-2

SARS-CoV-2 is a recently discovered novel coronavirus that has caused significant
morbidity and mortality and has been the focus of significant research since its emer-
gence [50]. Its genome consists of 14 open reading frames (ORFs) arranged from 5′ to
3′: replicate (ORF1a/ORF1b), spike (S), envelope (E), membrane (M), and nucleocapsid
(N). Among them, the spike (S) protein is a key surface glycoprotein that mediates the
interaction between SARS-CoV-2 and its host cell receptors [51]. SARS-CoV-2 mainly at-
tacks the angiotensin-converting enzyme 2 (ACE2) receptor expressed outside the airway
epithelial cells, thereby enabling the rapid replication of SARS-CoV-2 in the lungs and
causing respiratory disease [52].

3.1. SARS-CoV-2 and PAH

SARS-CoV-2 has been reported to cause cardiopulmonary complications [53], such as
myocarditis, pulmonary embolism, as well as acute respiratory distress syndrome [54–56].
PAH patients have a high risk of rapid deterioration once infected with SARS-CoV-2 [57].
Suzuki et al. found pulmonary vascular wall thickening in the autopsies of patients
with SARS-CoV-2, which is one of the hallmark signs of PAH [58]. Although research
continues, it appears clear that PAH and SARS-CoV-2 shares pathological and physiological
similarities. In the early stages of PAH, inflammatory cells can adhere to ECs and secrete
proinflammatory mediators, leading to endothelial damage. At later stages, inflammatory
cells secrete growth factors and chemokines that promote SMC migration, proliferation,
and fibrosis [59]. The rapid replication of SARS-CoV-2 in the lung leads to the depletion
of T lymphocytes, the inhibition of interferon signaling, and the production of many
pro-inflammatory mediators and chemokines, resulting in the endothelial dysfunction
and dysregulation of the immune system [60–62]. ACE-2 plays a major role in PAH and
SARS-CoV-2, but it is unclear whether ACE-2 reduction in PAH will promote or suppress
SARS-CoV-2-induced lung injury [63]. SARS-CoV-2 enters human cells by binding to
ACE-2 receptors which are expressed in various lung cells, leading to the activation of
known PAH pathways [64]. The reduction in ACE-2 in PAH may prevent SARS-CoV-2
viral entry into the lung [63]. Patients with PAH with severe hemodynamic features have
been found to achieve good outcomes without heart failure [65]. This may be because the
decreased ACE 2 expression in patients with PAH may play a protective role in the early
stages of infection from viral entry [66], alternatively, PAH-associated vasodilator therapy
limits the impact of virus-induced endothelial dysfunction [9,67]. Given the propensity of
SARS-CoV-2 to infect the endothelium, it has also been proposed that the altered function of
the endothelium and immune system in PAH may limit viral replication and suppress the
harmful cytokine responses induced by SARS-CoV-2 [68,69]. These findings suggest that
EC dysfunction and inflammation, a common feature of PAH and SARS-CoV-2, may lead
to pulmonary vasoconstriction, thereby increasing pulmonary vascular resistance (PVR).

PAH may be a potential sequela of SARS-CoV-2 infection, particularly in patients with
systemic hypertension [70,71]. Studies have shown that SARS-CoV-2 is active in promoting
lung micro thrombosis, and vascular leakage, including inflammation, DNA damage, and
mitochondrial dysfunction [72,73]. These observations in deceased patients infected with
SARS-CoV-2, SARS-CoV-1, and H1N1 influenza viruses suggest that the thickening of
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pulmonary vascular walls is a unique feature of SARS-CoV-2 infection [74]. These changes
may reflect the tissue response of the lungs to hypoxia, suggesting that patients recovering
from SARS-CoV-2 infection may be susceptible to PH and right-sided heart failure [58].
Based on these studies, PAH can be considered a major risk factor for SARS-CoV-2 infection.
Increased susceptibility to PAH may only occur in those who survive severe COVID-19,
or in those who develop mild or no symptoms of SARS-CoV-2 infection. The results
of an Italian study showed that the incidence of COVID-19 in patients with PAH was
comparable to that of the general population but consistent with other chronic diseases
and a higher risk of death [75]. Researchers reported a severe case of SARS-CoV-2 infection
without the underlying conditions for PAH who developed PAH two months after being
discharged [70]. Therefore, there may be many pathological compatibles between SARS-
CoV-2 infection and PAH. Further evidence is needed to further elucidate the relationship
between PAH and SARS-CoV-2.

Because PAH patients’ lung function has been impaired, their pulmonary blood vessels
have become narrowed, and if they are infected with the SARS-CoV-2 virus, it may lead to
a more serious condition. It is generally accepted that the COVID-19 prognosis for patients
with PAH is determined by a combination of underlying PAH disease characteristics and
risk stratification and other factors such as age, functional status, and comorbidities [65,76].

Over the past three years, several variants of SARS-CoV-2 have emerged, including
alpha, beta, gamma, delta, and Omicron variants [77]. The role and mechanism of these
variants of SARS-CoV-2 in PH are not fully understood but may contribute to pulmonary
vascular remodeling, lung tissue inflammation, immune escape, and right ventricular
hypertrophy. Further studies need to be conducted in the future.

In conclusion, although there are currently no large-scale studies on the relationship
between SARS-CoV-2 infection and PAH, SARS-CoV-2 infection may negatively affect
patients with PAH, worsening their symptoms of vascular lung disease.

3.2. SARS-CoV-2 and HIV

Studies have found a dysregulated inflammatory response in the lungs of patients with
severe SARS-CoV-2, leading to a cytokine storm that may cause multiorgan damage [52].
The total number of CD4 + T cells decreases sharply during SARS-CoV-2 infection, leading
to immune dysfunction in the body [61,78]. Interestingly, both HIV-1 and SARS-CoV-2
infection leaded to decreased CD4 T cell counts [79]. SARS-CoV-2 and HIV-coinfection have
been found worldwide. The reduction in CD4+ T cell counts in HIV patients correlates
with the severity of SARS-CoV-2 infection [80]. The proinflammatory milieu of HIV and
SARS-CoV-2 is remarkably similar, which may increase the risk of SARS-CoV-2 infection
in HIV patients. SARS-CoV-2 infection is associated with increased susceptibility to other
respiratory infections, leading to urgent concerns about how to tailor therapy for HIV
patients coinfected with SARS-CoV-2 [81].

4. HERV-K

HERV derives gene sequences that account for 8% of the human genome. It is be-
lieved that they were acquired through the multiple integrations of now-extinct exogenous
retroviruses over the past 100 million years [82–84]. With an enhanced understanding of
the functional sequences in the HERV genome and its interrelation with multiple diseases,
HERVs have become a major focus of research. High levels of integrated HERV activate
the immune system and are often associated with severe disease [85]. When exogenous
retroviruses infect humans, they can integrate, in some cases permanently, into the human
genome [86]. HERVs share high nucleotide similarity with exogenous retroviruses, and the
interaction leads to the enhancement and restriction of exogenous retrovirus infection [87].
At the same time, there is substantial evidence that HERV protein expression is increased
by proinflammatory cytokines [88,89]. Proinflammatory cytokines can induce HERV-K
transcriptional activity [90] and HERVs may play an important role in inflammatory vas-
cular disease. HERVs are roughly divided into three categories: Class I comprises γ-retro
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viruses, including HERV-H and HERV-W; Class II comprises β-retroviruses, including
HERV-K; Class III comprises foamy viruses, such as HERV-L, HERV-S, and HERV-U [91,92].
HERV-K is the most active and intact group of endogenous retroviruses within the genome
of primates [93,94]. HERV-K genome consists of four essential genes (gag, pro, pol, and
env) flanked by long terminal repeat (LTR) sequences. The gag gene encodes viral core
proteins such as the matrix, capsid, and nucleocapsid [95], the pro gene encodes protease
involved in the viral life cycle, the pol gene encodes reverse transcriptase and integrase,
and the env gene encodes envelope protein and accessory protein Rec or Np9 by alternative
splicing caused by a 292-bp deletion at the boundary of the pol and env genes [96]. LTRs
are organized as U3-R-U5 forward repeat units, and four functional domains are included:
long-distance adjustment unit, enhancer unit, core promoter unit, and Tat response element.
These domains regulate the expression levels of various viral structural and non-structural
proteins [97] (Figure 1).
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provirus has LTR, primer binding site (PBS), polypurine trait (PPT), and four main ORFs: (1) gag,
which encodes structural proteins: matrix (MA), capsid (CA), and nucleocapsid (NC); (2) protease
(pro), which also encodes the enzyme dUTPase; (3) polymerase (pol), which reverse transcriptase
(RT), RNase H and integrase (IN) and (4) envelope (env), which has three different domains: the
signal peptide (SP), surface (SU), and transmembrane (TM).

4.1. HERV-K and PAH

The upregulation of HERV-K can initiate and maintain the activation of the immune
system and cause vascular changes such as PAH [6]. The deoxy uridine triphosphate
nucleoside hydrolase (dUTPase) domain has been found in almost all HERV-K viruses [98].
PAH was induced in a rat model by experimentally using HERV-K dUTPase. These rats had
a reduced pulmonary artery acceleration time, increased right ventricular systolic blood
pressure, and right ventricular hypertrophy, demonstrating that HERV-K dUTPase can
induce hemodynamic changes in PAH in an IL-6-independent manner [99]. Furthermore,
dUTPase increased the sensitivity of PAECs to apoptosis [6]. HERV-K env and dUTPase
RNA are elevated in PAH patients compared to unaffected individuals. HERV-K dUTPase
can also induce hemodynamic and vascular changes in PAH and increase the sensitivity
of PAECs to apoptosis in a manner independent from IL-6 [6]. In addition, HERV-K is
expressed at high levels in CD68 + macrophages around blood vessels in PAH tissues. This
induces a paracrine effect near vascular cells and B cells, further promoting a PAH-like
phenotype in the vasculature [6]. Therefore, elevated HERV-K can promote PAH in patients.
Interestingly, SAMHD1 is an innate immune factor that inhibits HIV replication, and its
immune complexes are present in the lungs of PAH patients [6]. An elevated SAMHD1
causes the HERV-K gene product HERV-K envelope and dUTPase in PAH lungs to be
elevated. In contrast, perivascular immune complexes containing the antiviral protein
SAMHD1 are caused by elevated endogenous retroviral HERV-K products expressed
in PAH perivascular macrophages and circulating monocytes. Therefore, HERV-K may
co-regulate PAH with HIV.



Int. J. Mol. Sci. 2023, 24, 7472 6 of 15

4.2. SARS-CoV-2 Promotes HERV-K Activation

HERV-K expression is upregulated in SARS-CoV-2 infection and is closely associated
with the dysregulation of the inflammatory response in vivo [11]. Chertow et al. showed
that SARS-CoV-2 promotes HERV-K activation and that a high expression of HERV-K
correlates with disease severity and early mortality [100]. Guo et al. also found that in
the cyclic GMP–AMP synthase (cGAS) stimulator of the interferon genes (STING) (cGAS-
STING) pathway, the high expression of HERV-K gag, env, and pol genes can induce the
secretion of interferon in SARS-CoV-2 patients and the high expression of HERV-K increases
with age or clinical classification. HERV-K may act as an endogenous regulator involved in
the interaction between SARS-CoV-2 and TOST [101]. Therefore, studying HERV-K-related
immune response mechanisms may help reduce the occurrence of inflammatory responses,
which has important implications for the treatment of SARS-CoV-2.

4.3. The Relationship between HERV-K and HIV

In recent years, the relationship between HIV and HERV-K has been a subject of great
interest [102]. Usually, most HERVs are epigenetically silenced or silenced by a mutation,
however, under certain conditions, including irradiation, chemical exposures, or exogenous
viral factors such as HIV, they may be activated [103]. Increasing the expression of HERV-K
proteins may be related to AIDS-associated cancer [104]. However, endogenous retroviral
peptides can directly regulate the body’s immune response. Anti-HERV-K cellular immune
response in HIV-1-infected patients and HERV-K-specific T-cell clones eliminate HIV-1-
infected cells in vitro [105–107]. This suggests that the detection of HERV viral proteins
may affect innate immune system function [108,109]. Based on the variant of its envelope
glycoprotein, HIV is subdivided into HIV-1 and HIV-2 [110]. The impact of HIV-1 infection
on HERV-K is reflected in changes in mRNA expression levels, which then modify the
expression of HERV-K env mRNA, resulting in the complete N-glycosylation of the HERV-
K Env transmembrane units (TM) on the cell surface [111]. The progression of HIV-1
infection to AIDS is characterized by the increased presence of opportunistic infections
as CD4+ counts decline [112]. Chronic viruses such as the Epstein–Barr virus induce the
transcription of the env gene of HERV-K [113], suggesting that other viruses might also
activate HERV transcription. Studies have speculated that the increased expression of
HERV-K in PBMC in HIV-infected patients may be due to the indirect effects of HIV-1
infection [114]. It is also speculated that immune activation in HIV-1 infection may be
an indirect mechanism leading to HERV-K expression [115]. The HIV-associated increase in
HERV-K expression may be due to HIV-encoded proteins such as Tat and Vif that promote
HERV-K gene expression. Both HIV-1 Tat and Vif are independent factors that can increase
the expression of HERV-K gag RNA [114]. Only a few HERV-K proviruses are capable of
independent replication [116], with studies demonstrating that Tat significantly activates
the expression of multiple unique HERV-K proviruses [117]. HERV-K-specific CD8+ T cells
obtained from human subjects eliminate HIV-1-infected cells in a Vif-dependent manner
in vitro, resulting in the inhibition of viral replication [106]. Interestingly, HERV-K forms
particles on the plasma membrane such as HIV-1 [118], and the formation of such particles
is driven by HERV-K Gag. HERV-K gag consists of four domains: matrix (MA); capsid (CA);
nucleocapsid (NC); p15; and short peptide sequences SP1, QP1, and QP2 [86]. Similarly,
HIV-1 gag has four main domains: MA, CA, NC, and p6, with two spacer peptides SP1
and SP2 [119]. MA is necessary for HIV-1 Gag to target and bind PM. The NC domain can
promote Gag multimerization during virus assembly [120]. The p6 domain contains the
Pro-Thr-Ala-Pro (PTAP) domain, which recruits the cellular endosomal sorting complex
required for transport (ESCRT) complexes to promote virion release. After undergoing
viral particle release and viral Pro digestion, these domains produce individual mature
Gag proteins. HERV-K Gag and HIV-1 Gag co-localize on the plasma membrane and can
co-assemble into virions [121]. There is a competitive relationship between the two Gag
proteins on the plasma membrane. HERV-K Gag will interfere with the binding of HIV-1
Gag to the plasma membrane and the release of HIV-1 alters the final permeability of
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the hetero multimer [121]. The assembly of HERV-K Gag reduces the HIV-1 released and
interferes with the early stages of HIV-1 replication [120]. Monde et al. speculated that
the interaction between HIV-1 Gag, and HERV-K Gag may interfere with the maturation
of HIV-1 particles and the formation of viral cores [121]. In HIV-1-infected cells, HERV-
K Gag is effectively assembled and processed into retrovirus-like particles under the
mediation of viral Pro, indicating that the HIV protein expression can promote the release
of HERV virus particles [122]. HIV-1 Gag can assist the release of HERV-K Gag virus
particles, but HERV-K has no effect on HIV-1 Gag with the mutant PTAP that has virus
release defects [121]. Although the mechanism by which HERV-K inhibits HIV-1 release
is not well understood, HERV-K Gag certainly interferes with HIV-1 assembly through
heterologous multimerization with HIV-1 Gag. In tissue culture models, it was shown
that the overexpression of HERV-K Gag has been shown to reduce the release efficiency of
HIV-1 and to impair HIV-1 infectivity [121]. Thus, it appears that HERV-K Gag can inhibit
the formation of mature HIV-1 particles by co-assembly with HIV-1 Gag, regulate HIV-1
replication, and inhibit HIV-1 release efficiency and infectivity [120].

The constructed HERV-K consensus sequence (HERV-K con) can promote HIV in-
fection by antagonizing the restriction factor tether [123]. In co-transfection experiments,
plasmids encoding the functional Env protein of HERV-K con or HERV-K18 are used to
assist in the assembly and release of HIV particles lacking Env [124]. However, there are
functional differences between HERV-K Env sequences. Studies have shown that Env
produced by endogenous proviruses K108 and K109 reduces HIV Gag protein levels and
inhibits HIV release [10]. HERV-K108 is one of the best-studied HERV-Ks. Studies have
shown that HERV-K108 Env consistently interferes with HIV-1 production [10] by inhibiting
HIV-1 replication, but the protein encoded by the env sequence does not affect HIV-1 RNA
metabolism. The furin Pro is a major protein invertase in the exogenous pathway that
catalyzes the Arg-Xaa-Arg/Lys-Arg carboxy-terminal peptide bond (Xaa is any amino acid)
in the original protein to produce a mature protein. Digesting viral glycoproteins is critical
for viral particle maturation and infectivity [125]. Studies have shown that the inefficient
action of HERV-K Env blocks HIV-1 replication, but the mechanism of action is unclear. It
is known that this is not due to cytotoxicity, and the effect of HERV-K108 Env on HIV-1 is
independent of cell type [10].

5. The Potential Mechanism of SARS-CoV-2/HERV-K/HIV in PAH

HIV and SARS-CoV-2 infection may both lead to a cytokine storm [126,127]. Mean-
while, HIV and SARS-CoV-2 infections are characterized by an increased incidence of
thrombosis [128,129]. Current evidence suggests that like HIV, SARS-CoV-2 can invade ECs
via ACE2, and stimulate the overproduction and release of inflammatory cytokines, which
subsequently damage and activate ECs. These mechanisms appear to lead to the formation
of emboli, leading to occlusion of the microvascular and pulmonary capillary network,
contributing to the pathophysiology of acute respiratory distress syndrome (ARDS) in
SARS-CoV-2 [128,130]. Interestingly, HIV-1 and SARS-CoV-2 infection can lead to the
up-regulation of HERV-K, further leading to the increased synthesis of proinflammatory
cytokines [11]. Both HIV-1 and HERV-K can promote the initiation and progression of
inflammation. Inflammatory cells cause endothelial damage through the release of proin-
flammatory mediators, as well as secrete growth factors and chemokines. These promote
the migration, proliferation, and fibrosis of fibroblasts and SMC, which can ultimately lead
to the development of PAH. Thus, many pathological connections may exist between SARS-
Cov-2, HERV-k, HIV, and PAH (Figure 2). These viruses may also affect the progression of
PAH by affecting the release and migration of immune cells and inflammatory mediators
(Table 1). We speculate that inflammation is a common feature of these diseases and that
these inflammatory cells could be targeted for the treatment of coinfected patients.
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Figure 2. HERV-K, HIV, and SARS-CoV-2 may cause PAH by triggering inflammation. HIV invasion
can lead to cellular immune deficiencies and enhance IL-6 secretion, which could increase the
permeability of endothelial cells (ECs). Similarly, the invasion of SARS-Cov-2 into the lungs can
lead to the dysregulation of the immune response, and the release of pro-inflammatory mediators
such as IL-6, TNF-α, and other pro-inflammatory mediators causing endothelial damage. HIV and
SARS-Cov-2 infections upregulate HERV-K protein expression, resulting in the increased synthesis of
pro-inflammatory factors. Eventually, a storm of inflammatory factors formed through the immune
response and the release of pro-inflammatory mediators can cause damage to ECs, and the migration,
proliferation, and fibrosis of smooth muscle cells, thereby promoting the occurrence and development
of PAH (picture created with biorender.com (accessed on20 September 2022)).

Table 1. Connection with virus and PAH.
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6. Medical Therapy in PAH

Currently, therapies for patients with PAH include phosphodiesterase type 5 inhibitors,
soluble guanylate cyclase stimulators, endothelin receptor antagonists, prostacyclin analogs,
and prostacyclin receptor agonists [131]. Compared with single-agent targeted therapy,
combination drug therapy is a better option for patients and can improve morbidity, al-
though none influences mortality. HIV-related PAH treatments include sildenafil, bosentan,
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and prostacyclin analogs [132–134]. The coadministration of ritonavir and sildenafil has
been successfully used in case reports [135]. According to the 2022 ESC/ERS Guidelines for
the Diagnosis and Treatment of PAH, the treatment of HIV-PAH should follow the guide-
lines for the treatment of idiopathic PAH with HAART [136]. Currently, drug candidates
for the treatment of SARS-CoV-2 patients include but are not limited to, redeliver, aziridine,
dalbavancin, and pulmonary vasodilators [137–140]. It was recently discovered that soluble
guanylate cyclase stimulators enhance the nitric oxide (NO) pathway as a classical pathway
for the treatment of PAH, which may play a positive role in the treatment of SARS-CoV-2.
Portable inhaled NO delivery systems are available for the treatment of patients with
idiopathic PAH who developed COVID-19 pneumonia [141]. Additionally, clinical trials
evaluating the potential benefit of inhaled NO in the treatment of COVID-19 pneumonia
are ongoing [142].

7. Conclusions

We reviewed the available evidence suggesting that HERV-K, SARS-CoV-2, and HIV
may play a regulatory role in the progression of PAH. HIV-1 infection causes the upregu-
lation of HERV-K, which triggers and sustains the activation of the immune system and
the development of inflammation, leading to the hallmark vascular changes seen in PAH.
HERV-K affects the replication and release of HIV-1 through direct and indirect factors.
SARS-CoV-2 activates HERV-K. SARS-CoV-2, HIV-1, and HERV-K can all promote the
development and progression of inflammation, thereby causing endothelial damage and
promoting the incidence and progression of PAH. Inflammation may be a common mech-
anism between these viruses and PAH, and similar inter-regulation may exist in other
mechanisms, but further study is needed.
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PAH Pulmonary arterial hypertension
SARS-CoV-2 Severe acute respiratory syndrome coronavirus 2
HERV-K Human endogenous retrovirus K
HIV Human immunodeficiency virus
PAECs Pulmonary artery endothelial cells
PASMCs Pulmonary artery smooth muscle cells
HERVs Human endogenous retroviruses
PH Pulmonary hypertension
SMCs Smooth muscle cells
ECs Endothelial cells
RT Reverse transcriptase
gp120 Glycoprotein 120
Env Envelope
ART Antiretroviral therapy
TNF-α Tumor necrosis factor α
IL-6 Interleukin 6
BMPR2 Bone morphogenetic protein receptor type 2
SAM Sterile alpha motif
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HD Histidine–aspartate
SAMHD1 SAM domain and HD domain-containing protein 1
dNTPs Deoxynucleotide triphosphates
gp120 Glycoprotein 120
ET-1 Endothelin 1
ORFs Open reading frames
ACE2 Angiotensin-convertingenzyme2
S Spike
E Envelope
M Membrane
N Nucleocapsid
PVR Pulmonary vascular resistance
PLWH People living with HIV
dUTPase Deoxyuridine triphosphate nucleoside Hydrolase
LTR Long-terminal repeat
cGAS-STING Cyclic GMP–AMP synthase–stimulator of Interferon genes
TM Transmembrane units
MA Matrix
CA Capsid
NC Nucleocapsid
PBMCs Peripheral blood mononuclear cells
PTAP Pro-Thr-Ala-Pro
ESCORT Endosomal sorting complex required for transport
ARDS Acute respiratory distress syndrome
NO Nitric oxide
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