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Abstract: The reprogramming of metabolism is a recognized cancer hallmark. It is well known
that different signaling pathways regulate and orchestrate this reprogramming that contributes
to cancer initiation and development. However, recent evidence is accumulating, suggesting that
several metabolites could play a relevant role in regulating signaling pathways. To assess the
potential role of metabolites in the regulation of signaling pathways, both metabolic and signaling
pathway activities of Breast invasive Carcinoma (BRCA) have been modeled using mechanistic
models. Gaussian Processes, powerful machine learning methods, were used in combination with
SHapley Additive exPlanations (SHAP), a recent methodology that conveys causality, to obtain
potential causal relationships between the production of metabolites and the regulation of signaling
pathways. A total of 317 metabolites were found to have a strong impact on signaling circuits. The
results presented here point to the existence of a complex crosstalk between signaling and metabolic
pathways more complex than previously was thought.

Keywords: metabolism; signaling pathway; crosstalk; machine learning; mathematical modeling;
artificial intelligence; breast cancer

1. Introduction

The link between metabolism and cancer has been well known since almost one
century ago [1], with the observation of enhanced aerobic glycolysis (also known as the
Warburg effect) [2]. Actually, the common proliferative phenotype of cancer cells relies on
the biosynthesis of cellular components and on the generation of energy, which are attained
by reprogramming metabolism [2,3]. Besides the Warburg effect, other alterations in the
synthesis of nucleotides, amino acids and lipids [4,5]; mutations in metabolic genes [6];
and accumulations of key metabolites [7] are also common in cancer. Consequently, re-
programming of cellular metabolism is an essential factor for cancer development and
progression [8], and is, therefore, a recognized neoplastic hallmark [8,9]. Such changes are
driven by modifications in the activity of key signaling pathways which are important reg-
ulators of metabolism [10]. It is well known that signaling controls the metabolism through
different oncogenic pathways [11] such as the Hippo pathway which promotes glycoly-
sis [12], the PI3K-AKT/mTOR Pathway that regulates diverse metabolic enzymes [13], and
the Myc Pathway that regulates the expression of genes associated with glucose, glutamine
and fatty acid metabolism [14], to cite just a few. Thus, in the conventional representation
of causality, signaling precedes metabolism in cancer [10,11]. However, there is increasing
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evidence that different types of metabolites, traditionally associated with bioenergetics or
biosynthesis, also play relevant role in non-metabolic signaling functions [15]. Nevertheless,
this aspect has been scarcely explored yet.

The profusion of detailed biological knowledge on signaling and metabolism, as
stored in pathway repositories such as KEGG [16], Reactome [17] or WikiPathways [18]
has provided a conceptual framework for the development of accurate models of pathway
activity, some of them involving the notion of causality. Conventional approaches such as
Constraint-Based Models (CBMs), which use maps of metabolic networks in combination
with gene activity inferred from transcriptomic profiles, have been applied to decipher
relationships between various aspects of the cellular metabolism and phenotypes [19].
CBMs have been used for the analysis of metabolism in different scenarios [20]. Other
strategies that use mechanistic models applied to metabolic pathways [21] have successfully
been applied to predict gene essentiality in cancer [22]. Other modeling strategies have
been used for the reconstruction of genome-scale metabolic networks [23]. In particular,
mechanistic models of signaling pathways have successfully been used to deconvolute
disease mechanisms behind different cancers [22,24] (including neuroblastoma [25,26] and
glioblastoma [27]), the mechanisms of drugs action [28] or gender-specific effects of drugs
in cancer [29]. It is worth noting that mechanistic models has been used to predict drugs
that could be efficient COVID-19 treatments [30] and the predictions were validated using
a cohort of almost 16,000 patients [31,32].

Here, a study on the crosstalk between metabolism and signaling has been carried
out in BRCA, using mechanistic models to simultaneously infer from gene expression
data the production of metabolites [21,22] and the activity of signaling pathways [24,33].
Importantly, the use of machine learning methods, such as Gaussian Processes (GP) [34]
along with the SHapley Additive exPlanations (SHAP) method [35] that allows exploring
causality, has allowed to relate the production of certain metabolites to the different activa-
tion statuses of several signaling circuits. The results obtained support a scenario of cross
talking between signaling and metabolism more complex than previously thought.

2. Results
2.1. Differential Metabolite Production

Gene expression data for BRCA and controls were downloaded from the TCGA portal
and processed as described in Materials and Methods Section 4. Metabolica [24], the
extended version of the Metabolizer method, was applied in a cancer versus normal tissue
comparison. A total of 149 metabolites showed a significant differential production rate. The
complete list of differentially produced metabolites (DPMs) is provided in Table S3. When
compared with the differential abundance of metabolites, as reported by the metabolomic
study [36], 31 (27%) of them were overlapping. This suggests that a considerable amount
of metabolite production predicted by the Metabolica [21] algorithm is not transient and
can be detected by experimental metabolic profiling.

2.2. Machine Learning Performance

As outlined in Methods, a 100-times repeated 5-fold cross-validation was carried out
in order to measure the viability of the model in terms of the R2 score and mean squared
error (MSE). As expected, not all tasks (circuit activities) can be predicted with reliability.
However, there are no clear signs of overfitting, as can be seen by inspecting the joint
distribution plot (Figure 1, left) of the mean task-wise R2 score over the train and test folds:
there is a clear linear trend between the task-wise average score of each training split and
its paired mean prediction over the test sets. Furthermore, there is a high-density area
around x ≥ 0.5, y ≤ 0.5, and to be conservative, we propose a test R2 score above 0.5 as the
threshold for annotating any given metabolite. On the other hand, the right-hand side of
Figure 1 shows the MSE, averaged for each signaling pathway, across the training and test
split iterations of the proposed cross-validation procedure. The 95% confidence intervals
for the MSE (represented as bars) show that the variability decreases as the predictive
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performance increases (less is better), for both the test and train fold sets. As with the R2

score, the error trend is clearly linear and close to the diagonal (identity).
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Figure 1. Machine learning method performance. Left: Joint distribution plot of the task-wise R2 for
the train and test folds. Right: MSE, averaged for each signaling pathway.

2.3. Cross-Talk between Metabolism and Signaling

Using the multi-task Gaussian process, a total of 317 metabolites were found to have
a strong impact on the activity of signaling circuits in BRCA (Table S2). These circuits
were annotated by Uniprot functions and cancer hallmarks as described in Materials and
Methods Section 4. The distribution of both annotations is depicted in Figure 2.

Since the activity of a number of signaling circuits can be predicted from the previous
production of metabolites, it is likely that such metabolites are the ultimate trigger for this
cross-talk. However, signaling and metabolic pathways share some genes (208 out of a total
of 3349 genes in signaling circuits and 1419 genes in metabolic circuits, see Table S4) and,
consequently, part of this cross-talk could be due simply to the simultaneous activation
of both circuits due to common genes. To distinguish between these two scenarios, the
distribution of common genes across relevant and non-relevant circuits was studied. Thus,
a Fisher exact test was used to detect if, when one metabolite predicts the behaviors
of one signaling circuit, there is significant enrichment of common genes between the
signaling circuit and the metabolic circuit corresponding to the metabolite. Then, a 2 × 2
contingency table was constructed for relevant (R2 score > 0.5) and non-relevant (R2 < 0.5)
predictions that have or have not common genes. As a result, signaling circuits predicted
and metabolic circuits corresponding to the most predictive metabolite do not show any
significant enrichment in common genes (p-value = 0.99). Actually, if the circuits analyzed
are expanded to those corresponding to the 20 best predictive metabolites, the scenario is the
same (p-value = 1). This discards common genes between metabolic and signaling pathways
as an explanation for this cross-talk, reinforcing the hypothesis that the metabolites detected
are triggers of signaling pathway activity.
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illustration shows how cellular functions and hallmarks can be regulated by metabolites via different
signaling circuits. A total of 317 metabolites displayed a relevant impact on signaling circuits. (B) The
distribution of the percentages of the Uniprot functions corresponding to the functional activity of
the signaling circuits over which the metabolites have a relevant impact. (C) Radar plot with the
percentages of cancer hallmarks defined by the functional activity of the corresponding signaling
circuits over which the metabolites have a relevant impact.

3. Discussion

The success of molecular targeted therapies in complex diseases relies on the complete
view of the architecture of cellular systems and the role of components that construct
this system of complex interactions. To date, mechanistic models of signaling pathways
have demonstrated their usefulness in understanding the disease mechanisms behind
different cancers [22,24] (including neuroblastoma [25,26] and glioblastoma [27]) cancer-
prone rare diseases [37], the intricate mechanisms of action of drugs [28] or to deconvolute
gender-specific effects of drugs in cancer [29]. Similarly, genome-scale models of cancer
metabolism have also been used in cancer studies [38,39]. For example, Constraint-based
flux Balance analysis Methods (CBM) [19] have been used for the characterization of
oncometabolites [40,41]. Other mechanistic approaches, such as the Metabolizer [21], or its
extended version used here, the Metabolica, focused on the changes in the integrity of sub-
pathways that lead to the production of different metabolites, no matter these are transient
and do not cumulate [21,22]. This allows detecting potential changes in metabolites that
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could play a relevant role and being not detected in conventional genome-scale modeling
strategies and not even in metabolomic experiments.

As in other whole-genome metabolomics studies, an exhaustive description of all the
findings is not feasible. Therefore, only relevant cancer-related metabolites will be com-
mented here. For example, the production of Adenylosuccinate, an indicator of breast and
other cancers [42] has been detected by Metabolica (p-value = 3.38× 10−15) but could not be
detected in the metabolomic profiles (Table S3). Another example is the significantly differ-
ent synthesis of 2-aminoadipate that is detected by this approach (p-value = 1.02 × 10−62),
but not using an experimental metabolomics approach (Table S3). This metabolite is a
potential modulator of glucose homeostasis; moreover, it has been identified as a marker
of tumor aggressiveness in glioblastoma [43] and is altered in TNBC cell lines after ad-
ministration of PARP inhibitor Veliparib [44]. In fact, it has been demonstrated that lysine
metabolism is a relevant process in cancer [45,46]. Other interesting findings are the differ-
ences in phenylalanine production (p-value = 8.36 × 10−20), a protective amino acid against
cancer [47] or capric acid (p-value = 2.21 × 10−12), a non-competitive AMPA receptor
antagonist, responsible for the mitochondrial proliferation, that has been associated with
overall breast cancer risk [48]. Moreover, many DNA precursors were found, including
adenine, 2′-deoxyguanosine, or hypoxanthine, probably due to the higher replicative re-
quirements of tumor growth, that may be indicative of cell proliferation and, therefore,
its production levels may be used as a surrogate marker of aggressiveness; interestingly,
nucleotide synthesis is reemerging as a metabolic vulnerability in cancer [49]. Indeed,
HPRT1, an enzyme that uses hypoxanthine metabolite to recycle purines (in order to be
more efficient in DNA and RNA synthesis), predicts clinical outcome and controls gene
expression in breast cancer [50]. Moreover, this mechanistic modeling method predicts a
differential production of Inosine (p-value = 2.17× 10−11), again not detected in the conven-
tional metabolomics experiment. This sensitivity in detecting metabolite production, even
in absence of accumulation, can constitute an interesting alternative approach to evaluate
immunotherapy response, since it has recently been demonstrated that inosine promotes
T-cell-mediated tumor-killing activity in vitro [51] and, moreover, modulates response to
checkpoint inhibitor immunotherapy [52]. There are also some natural nucleotides whose
analogous compounds are used as chemotherapeutic agents, such as 2′-deoxycytidine and
its analogue Decitabine, typically used in myelodysplastic syndromes (MDS), including
leukemia. These are probably a result of the high replication rates characteristic of tumor
cells [53].

As stated above, a complete and systematic description of the metabolic results is
beyond the scope of this manuscript; however, it is worth mentioning some of the most
relevant results found. It is interesting to note how the dysregulation of metabolites in
BRCA, such as succinate and kynurenine (Table S3), that are taking a key role in the initiation
of tumorigenesis and its progression were predicted correctly [54,55]. Furthermore, the
production of 5,6-dihydrouracil (Table S3), an intermediate product of breakdown process
of uracil into beta-alanine which is required for epithelial-mesenchymal transition [56],
was found significantly altered in BRCA (p-value = 0.003), while it was not detected in
the metabolomic profiles. This catabolic process is also called pyrimidine degradation
module and was found to be essential for cancer cell survival in some tumor types and
experimentally validated by us [22]. Some byproducts of lipid peroxidation reactions, such
as cholesterol and 7-beta-hydroxycholesterol, were also differentially present in BRCA
tumors. However, these reactions are enhanced by smoking, and dietary intake of meat,
eggs and animal fat, so the potential causality may be taken with caution [57]. Indeed,
current evidence suggests that oxysterols play a role in many cancers, including breast
cancer [58].

Several sugars are found among the most relevant metabolites, including: maltose,
fructose-6-phosphate, ribulose, xylulose and xylose, among others. It has been established
that cancer cells reprogram their glucose metabolism to overcome increased ROS (Reac-
tive Oxygen Species) [59,60]. In fact, ROS induce glycolysis upregulation in cancer cells,
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in a phenomenon known as the Warburg effect. Other metabolites found (glycerol and
glycerophosphoethanolamine) can also be the result of this shift towards glycolysis, an
inefficient metabolic pathway for energy metabolism, and a manifestation of the aforemen-
tioned Warburg effect found in cancer cells. Some authors hypothesized that the synthesis
of glycerol phosphate is activated and maintained under glucose and serum starvation
situations [61], since cancer cells more readily use glycolysis, even when sufficient oxy-
gen is available. This reliance on aerobic glycolysis, and, therefore, the Warburg effect,
promotes tumorigenesis and malignancy progression. [62]. Moreover, many polyamines
appear among the most relevant metabolites, the most common among them are putrescine,
spermine and spermidine, polycationic alkylamines commonly found in all living cells,
and playing an important role in cell growth, proliferation, differentiation, migration, gene
regulation, synthesis of proteins and nucleic acids, maintaining chromatin structure, reg-
ulating ion channels, maintaining membrane stability and scavenging free radicals [63].
Their involvement in several processes of cell growth and maintenance makes it obvious
to think that its deregulation will also play an important role in diseases such as cancer.
Indeed, an increase in intracellular polyamine concentrations has been found in cancer
cells, associated with tumorigenesis. According to our results, polyamine metabolism has
been found often dysregulated in cancers [64].

As previously commented, the influence of signaling over metabolism in cancer
development and progression is well known [10,11]. The results presented here throw light
over the less known role that metabolism may play over signaling [15]. When evaluating
the relevance of metabolites to individual circuits (see Table S2), a special focus has been
made in those relevant to BRCA, such as NF-KB, PPAR, ErbB, TNF, Estrogen signaling
and others relevant to cancer in general, such as MAPK, Ras, Wnt, p53, PI3K-Akt, mTor
signaling or Chemokines and inflammatory processes. For example, we have detected
1-methylnicotinamide (p-value 8.03 × 10−7, but also detected by metabolomics analysis),
functionally; MNA (methylnicotinamide) induces T-cells to secrete the tumor-promoting
cytokine tumor necrosis factor alpha, being an immune regulatory metabolite in ovarian
cancer [65].

Another interesting pathway is fatty acid synthesis, which occurs in the cytoplasm,
for which citrate (p-value 1.96 × 10−8) is the primary substrate; this pathway is activated
in cancer and it is a metabolic hallmark of cancer cells. Indeed, it has been shown that
extracellular citrate fuels cancer cell metabolism [66].

In addition to its canonical role as an amino acid for protein synthesis, asparagine
has been found to have non-metabolic roles in regulating tumor-associated signaling [67].
Besides asparagine, there is a high representation of amino acids (alanine, arginine, tyrosine,
glycine) within the list of differentially produced metabolites obtained with Metabolica,
supporting the hypothesis that amino acids can facilitate the survival and proliferation of
cancer cells under unfavorable situations, such as nutritional oxidative stress or starvation.
As a matter of fact, targeting amino acid metabolism is becoming a potential therapeutic
strategy for cancer patients [68].

Interestingly, Indolepyruvate (a byproduct of the tryptophan metabolism) is highly
relevant to several circuits in NF-KB, TNF and chemokines signaling pathways, revealing
a potential effect in BRCA tumors. Indolepiruvate has a role as a mechanism of innate
immune evasion in some organisms, for example, the parasite Trypanosoma brucei pro-
duces metabolite indolepyruvate that decreases HIF-1α and glycolysis in macrophages [69].
Hence, tumor cells can be using this to avoid immune response. Indeed, the role of Trp
metabolites and related enzymes in inflammation and cancer has been widely studied,
showing a link to tumorigenesis [70] and to the establishment of an immunosuppressive
microenvironment resulting in impaired immune response against tumor cells [71]. Be-
sides Indolepyruvate, other Trp- related metabolites have shown relevant impact in BRCA
pathways, such as 5-Hydroxy-N-formylkynurenine (Table S2). It is also worth highlighting
the impact of hippurate over PPAR signaling pathway in BRCA model (Table S2), since
circulating hippurate levels have been associated with pre-diagnosis risk to develop breast
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cancer in premenopausal women [72]; therefore, evaluating the production of hippurate
can be a powerful tool in breast cancer risk management.

Overall, a relevant impact has been found for several vitamins and antioxidants, such
as pantothenol, retinol, calciferol, tetrahydrofolate and carnitine (and derivatives), over
general cancer-related circuits (Table S2), supporting the association with cancer of those
and other molecules with antioxidant and immune boosting effects [72–74]. However,
further studies would be necessary to elucidate their specific role in cancer mechanisms.

Finally, it is interesting to note that this cross-talk between metabolism and signal-
ing is likely to be mediated uniquely by the metabolites. The results document how a
large number of common metabolites (almost 2/3) predict the activity of a large number
of signaling circuits. Precisely, mechanistic modeling has already shown how different
cancer types can show different strategies to activate or deactivate functionally related
pathways [22,24,29], as reflected by the different molecular mechanisms behind the cross-
talk between metabolism and signaling observed in BRCA. This suggests that metabolites
could constitute potentially promising therapeutic targets for specific interventions.

4. Materials and Methods
4.1. Samples and Data Processing

RNA-seq counts and simple somatic mutations data for a total of 1072 samples,
959 corresponding to BRCA tumor and 113 normal breast tissue, were downloaded from
The International Cancer Genome Consortium (ICGC) repository [75]. The trimmed mean
of M-values (TMM) method [76] was used for gene expression normalization. Normalized
samples were log-transformed and a truncation by quantile 0.99 was applied. The COMBAT
method [77] was used for batch effect correction. Finally, the data were re-scaled between
0 and 1.

The ANNOVAR tool [78] (v2017Jul16 with ljb26 database) was used for functional char-
acterization of non-synonymous genetic variants. The variants predicted as damaging by
at least three out of five in silico pathogenicity predictors were considered loss-of-function
(LoF) mutations. The in silico methods used were: SIFT [79], Polyphen2 [80], FATHMM [81],
MutationTaster [82] and MutationAssessor [83]. For each tumor sample, expression value
of the genes that were affected by the damaging variants were multiplicated by a decreasing
constant: 0.001, to simulate the effect of LoF in the enzyme (equivalent to a non-expressed
gene) [84,85].

Scaled and imputed metabolomics datasets of paired BRCA (65 tumor and 65 normal
breast tissue) samples were downloaded from the supplementary materials of a publi-
cation [36]. Additionally, quantile normalization was applied to these datasets using
preprocessCore Bioconductor package [42].

4.2. Estimation of Signaling Pathway Activity

The Hipathia mechanistic model, which models the activity of signaling pathways
from gene expression data [24], was used to estimate signaling activity. In particular,
a R/Bioconductor implementation (v2.14.0) was used [33]. Hipathia uses KEGG [16],
signaling pathways, which are decomposed into elementary signaling circuits, which can
be considered self-regulating functional units of the cell [24,33,86]. In Hipathia, circuits are
described as directed graphs that connect receptor proteins to effector proteins through a
chain of activations and inhibitions exerted by intermediate proteins. The mathematical
model estimates the transduction of the signal considering the level of activity of the protein
nodes (using gene expression as proxies) that compose the circuit. In this way, Hipathia
transforms gene expression measurements into signaling circuit activities, and, therefore,
functional profiles of cell activity [24].

4.3. Estimation of Metabolite Production

An extended version of the Metabolizer (v1.7.0) algorithm [21,22], Metabolica, was
used to estimate the potential production of metabolites from the measurement of the gene
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expression values corresponding to the enzymes involved in the reactions. Metabolica
requires the definition of sub-pathways in which the activity of the reactions of metabolite
synthesis are modeled. Breaking down a pathway into sub-pathways and estimating the
activity of a sub-pathway do not depend on a particular pathway repository, but require
essential information for metabolic reactions (substrate, product, and reversibility descrip-
tions). Here, the canonical pathways presented in the KEGG database [16] were used.
A total of 79 human metabolic pathways, containing 1901 reactions and 1270 metabolites
(Table S1), were downloaded. The KGML files were parsed using the KEGGgraph Biocon-
ductor package [87] (v1.58.3). The sub-pathway that produces a given metabolite is defined
by all the nodes which were visited inside its pathway using breadth-first search algorithm.
This process starts from the metabolite produced (so-called product) and continues iter-
atively in the direction of the edges which are arriving at the product and its connected
neighbor nodes. Figure 3 shows an example of a sub-pathway which is extracted from its
pathway as described above.
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Figure 3. Example of a sub-pathway. The production sub-pathway of 4-Androsten-16alpha-ol-
3,17-dione (blue node) starting from cholesterol and 20alpha,22beta-Dihydroxycholesterol (green
nodes). This sub-pathway (left) was dissected from the steroid hormone biosynthesis pathway (right).
The circles, rectangles and arrows are representing metabolites, metabolic reactions and reaction
reversibility, respectively.

Due to the highly interconnected nature of metabolic pathways and the numerous
feedback loops, the convergence of calculations is challenging when the propagation
algorithms are applied on metabolic hypergraphs. To deal with this issue, the feedback
loops which are not derived from the product were kept; however, all the feedback loops
(outdegree edges) of the product were removed. By this means, we also restrict the
consumption of the product by its producing pathway.

Similar to the signaling [24] or metabolic module [21] implementations, Metabolica
requires starting node(s) to initialize the propagation of metabolic flux along sub-pathways.
The definition of starting nodes is a two-step process: first, the metabolites with indegree of
zero and the metabolites at the farthest position in the sub-pathway (from the product) are
selected, and the propagation algorithm (see below) is run without any objective function.
In the second step, the nodes which were not visited in the previous run are included
in the list of starting nodes in order to guarantee that all the nodes can be visited in the
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further runs. All the decomposing steps were performed only one time and saved for
future analysis of the pathway.

For each reaction node ri of a sub-pathway, the metabolic flux propagation is computed
by the given formula according to the recursive rules depicted in Figure 4.
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wms,ri is the amount of substrate (ms) used by reaction (ri), wri,mp is the amount of
product (mp) produced by the reaction ri and mp is the final amount of product which
is produced by different reactions. N+ and N− denote the neighborhood of a node in
the direction of its outgoing and incoming edges, respectively. n is the total number of
wri,mp plus 1 for mp. Thus, the Equation (1) distributes the substrate proportionally with
the activities of its consuming reactions. The Equation (2) aims to elucidate the reaction
rate (limited by the minimum amount of the substrates used). The amount of metabolite
produced per unit time depends on the capacity of enzyme (saturation) and the amount of
substrate. This is the combination of Michaelis–Menten kinetics and systems-level analysis
of mechanisms regulating metabolic fluxes [88]. The Equation (3) updates mp node with
the amount of contributing product of the reaction ri without saturating this node and it
can also handle the loops appropriately. The loops in a sub-pathway need a high number
of iterations to stabilize the flux propagated. Thus, Metabolica iterates the flux that is in
a loop until it reaches the convergence state. Here, the convergence state is defined as
almost-zero flux change between iterations. Therefore, Metabolica repeats steps 1, 2 and 3
until the flux initiated in the initial nodes reaches the product in a sub-pathway and while
the flux which is propagated in a loop has not reached convergence. Metabolica input
values in the [0,1] interval and returns output values in the same interval. Such results are
non-dimensional values that, like gene expression values, can be interpreted in the context
of a class comparison.

4.4. Differential Activation and Metabolic Production Analysis

The mechanistic model implemented in Hipathia infers signaling circuit activities from
the expression levels of the genes corresponding to the proteins involved in the circuits.

Similarly, Metabolica estimates the production activity of the metabolites using the
reactions involved in the sub-pathways analyzed [21]. It is important to note that Metabolica
does not necessarily account for metabolite accumulation in the cell, which can be detected
in metabolomics experiments, but rather for metabolite production (no matter if it is further
consumed in another reaction and its existence is transient). Important metabolites can
have a transient presence in the cell but still play an important role in cancer.

Finally, a Student’s t-test for paired samples is used to assess the significance of
observed changes in metabolite concentrations or in metabolic production activity when
samples of two conditions are compared.

A False Discovery Rate (FDR) [89] is used to correct the effect of multiple testing in all
the comparisons.
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4.5. Machine Learning to Relate Metabolite Production to Signaling Activity

Relating the production of metabolites with the activity of signaling pathways involves
solving several Multi-Task regression problems, one for each signaling pathway and tumor
type (for machine learning tasks only tumor samples are used). Here, Gaussian Processes
(GP) [34] were used to find metabolites that have an impact on circuits. To implement the
final predictive model of a Sparse variational Multi-Task GP (SVGP), GPflow [90] (v 1.3.0),
a scalable Gaussian Process library on top of TensorFlow v2.11 [91], was used. In broad
terms, a SVGP constructs an approximation of the full GP model by selecting a small subset
of inducing points that serve as the support, i.e., a sparse representation, which is learned
by using a variational formula [92] that jointly infers both the support samples and the
kernel hyperparameters, is built. Note that variational approximations are less prone to
overfit the data [92], which is one of the major drawbacks of nonlinear learning methods,
especially in the high dimensional low sample size scenario.

The model assumes that the outputs (ns signaling circuit activities) can be expressed as
nl latent GPs of the inputs (nm metabolite production activities) mixed by W (a real valued
matrix of dimensions ns × nl). The covariance function of the GP is built using a linear
combination of the squared exponential (also known as radial basis function kernel) and
linear covariance functions. The kernel hyperparameters are forced to be shared across
all the inputs (as many latent GPs as output dimensions, nl = ns, are used), the inducing
variables are shared between all the inputs (ni = 50 inducing points are used) and W is
the identity matrix of dimension nl. Note that Sparse Variational Processes are known to
correctly scale across the data and output dimensions and all the computations are possible
due to the data generating processes (all outputs are observed for every input) [93].

To assess the quality of the model, a 100-times repeated 5-fold cross-validation schema
was performed in order to measure the generalization performance of the model. R2

scores (also known as the coefficient of determination) and mean squared errors (MSE)
were calculated for each circuit to evaluate the performance of each model. Note that
since the model hyperparameters are optimized as part of the GP modeling, R2 is indeed
measuring the suitability of the model building procedure which is in line with recent
recommendations for machine learning use in computational biology [94]. Here the R2

ranges from -infinite to 1 where 0 is the baseline prediction (predicting the mean of each
output). The R2 score for a given signaling circuit and its prediction is given by:

R2
(

s, ŝj
i

)
= 1−

∑n
i = 1

(
s, ŝj

i

)2

∑n
i = 1

(
si −mean

(
sj
))2

where n is the number of samples, j indexes the signaling circuit, i the samples, and ˆ refers
to the mean prediction of the gaussian process model. While the mean squared error (MSE)
is given by:

MSE
(

sj, ŝj
)

=
1
n

n−1

∑
i = 0

(
sj

i − ŝj
i

)2

Shapley values are a game theory approach to estimate the importance of any individ-
ual player as a part of a collaborative team [95], which could be used to better distribute the
outcome of any given team-based game. The attribution model complies with the following
properties: accuracy (additivity), consistency (symmetry) and nonexistence (null effect).
The SHAP (SHapley Additive exPlanations) method [35] reinterprets the Shapley values in
the context of machine learning interpretability by estimating the contribution that each
predicting feature (metabolite production activity) has over the model output (the activity
of signaling circuits). In this context, Shapley values explain how the prediction of any
given sample differs from the global average prediction, thus it allows for sample-wise
explanations (which are additive by construction). By averaging the absolute value of these
explanations across a set of samples a measure of the importance of any given metabolite is
obtained [96].
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Here, the kernel-SHAP method [35] (v0.24.0), a model-agnostic approach to approxi-
mate the feature contributions as Shapley values, is used. Due to the fact that the approx-
imations require a background set of samples [35] the dataset is split into training (80%)
and test (20%) sets. The GP model is fitted to the training samples, which are used as the
background for the kernel-SHAP, whereas the remaining samples are used for the feature
contribution estimations, avoiding the overconfidence which could happen if the SHAP
computations were performed using the same samples as the background. Note that, since
the GP model is vector-valued, one prediction for each output (circuit) is obtained. Thus,
the explanations are task-specific (the differences are computed for each output). At the
end, a ranked list of metabolites is obtained for each signaling circuit along with the R2

score of the training and testing splits.

4.6. Annotation of Circuit Activity with Cell Functionalities and Cancer Hallmarks

The functionality triggered by signaling circuits is assumed to correspond to the
functionality of the effector protein [24,33,86]. The effector proteins, which are found at
the end of each signaling circuit that trigger the cellular functions, were annotated by the
Uniprot protein functions [97] and cancer hallmarks [8]. The Cancer Hallmarks Analytics
Tool (CHAT) API was used for the hallmark annotation of the circuits via a text mining
approach [98].

Since signaling circuits trigger specific functionalities in the cell, metabolites that po-
tentially regulate these signaling circuits can be annotated with the functions corresponding
to these circuits. Table S1 lists the functions that the different metabolites would trigger
due to their potential regulation of the corresponding signaling circuits (see Table S2).

5. Conclusions

The results presented here reinforce the idea that, beyond the well-known influence of
signaling on the reprogramming of metabolism in cancer [10,11], a non-negligible effect of
metabolism over signaling activity seems to occur [15], suggesting the existence of a cross-
talk between metabolism and signaling of a bigger magnitude than previously thought.
Given all the above, an integral approach to study cancer origin and development must
consider simultaneously signaling and metabolism to effectively identify new processes
relevant in tumorigenesis and in cancer prognosis and treatment.
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