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Abstract: Proteins are essential macromolecules that carry out a plethora of biological functions. The
thermal stability of proteins is an important property that affects their function and determines their
suitability for various applications. However, current experimental approaches, primarily thermal
proteome profiling, are expensive, labor-intensive, and have limited proteome and species coverage.
To close the gap between available experimental data and sequence information, a novel protein ther-
mal stability predictor called DeepSTABp has been developed. DeepSTABp uses a transformer-based
protein language model for sequence embedding and state-of-the-art feature extraction in combi-
nation with other deep learning techniques for end-to-end protein melting temperature prediction.
DeepSTABp can predict the thermal stability of a wide range of proteins, making it a powerful and ef-
ficient tool for large-scale prediction. The model captures the structural and biological properties that
impact protein stability, and it allows for the identification of the structural features that contribute to
protein stability. DeepSTABp is available to the public via a user-friendly web interface, making it
accessible to researchers in various fields.

Keywords: imbalanced dataset; protein language model; protein stability prediction; protein structure
analysis; protein melting point; thermal proteome profiling

1. Introduction

Protein stability refers to the ability of a protein to maintain its structural and functional
integrity under various environmental conditions [1–3]. While different environmental
factors can affect protein stability, thermal stability is an important property of proteins, as
many biological processes occur at specific temperatures. Proteins that are less thermally
stable are more prone to aggregate at physiological temperatures leading to loss of activity,
dysfunction or even the formation of toxic protein aggregates [1,4]. Thermal stability can be
influenced by a number of factors including amino acid composition, protein–protein inter-
action, post-translational modifications, and the presence of ligands or other molecules [4,5].
Understanding the thermal stability of a protein can be important for various applications,
such as biotechnology and food science, where proteins are often exposed to changes in
temperature during cultivation, processing, and storage [4–6]. The thermal stability of a
protein can be measured by its denaturation or melting temperature (Tm), which is the
temperature at which 50% of the protein loses its native structure and activity or alternative
defined as the area under the melting curve. In the past, measuring the stability of proteins
required extensive work and resulted in limited data. However, with the advancement of
mass spectrometry-based thermal proteome profiling (TPP), it is now possible to simulta-
neously monitor the thermal stability of thousands of expressed proteins in a variety of
settings such as in vitro, in situ, or in vivo. TPP is based on the principle that when proteins
are exposed to heat, they denature and become insoluble. The proteins that remain in the
soluble fraction at different temperatures are quantified by protein mass spectrometry and
combined across the temperatures to generate individual melting profiles [7,8].
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Making use of a mass spectrometry-based proteomic approach, an atlas of the thermal
stability could be compiled that comprises 48,000 proteins across different species ranging
from archaea to humans and covering melting temperatures of 30–90 ◦C [9]. This meltome
atlas has proven to be an invaluable resource for biological research and drug discovery.
However, due to technical limitations, cost, and the labor-intensive nature of the experi-
mental approach, the proteome and species amenable to thermal profiling are limited [7–9].
As a result, predicting protein thermal stability has become a modern solution when exper-
imental data is incomplete or when assessing thermal stability is not easy. There two major
classes of protein stability predictors which either directly predict the stability of a protein
or forecast how sequence changes affect a given stability [10–13]. In order to be able to
augment TPP experimental data, we are focusing on the direct prediction of the protein Tm.
For this purpose, several prediction methods have been developed that utilize a variety of
features describing proteins based on their amino acid composition, physicochemical and
surface properties, statistical and sequence potentials, and other protein characteristics.

In the past, building stability prediction models faced the challenge of limited data
availability [13–16]. However, the current challenge has shifted towards larger training
datasets that are biased by dominant species, resulting in the underrepresentation of crucial
properties and protein characteristics. Additionally, reductionistic or predefined feature
selection negatively impacts model performance because stability is a complex property
with multiple contributing features. Further, available algorithms for thermal stability
prediction based on cell-wide analysis of protein stability TPP experiment differ regarding
the definition of the learning problem. DeepTP [17] and BertThermo [18] approaches
construct a classification problem to distinguish between thermostable and thermolabile
proteins, but do not intend to predict Tm values. Although classification-based predictors
have demonstrated outstanding performance, they simplify the prediction task by reducing
the number of output classes to a discrete set, whereas regression-based analysis captures
the continuous nature of Tm values. However, defining the task as a regression problem
also presents additional challenges, such as non-uniformity of recorded datasets and gaps
in the modelled domain.

To address these challenges, we present a novel machine learning architecture, Deep-
STABp, for the reliable regression-based prediction of cellular thermal protein stability.
DeepSTABp is based on a transformer-based protein language model for amino acid se-
quence embedding and state-of-the-art feature extraction. It combines different popular
deep learning techniques into a standalone end-to-end protein Tm predictor. Our model
incorporates experimental conditions used in the TPP experiment, the protein amino acid
sequence, and the organism growth temperature. By using an appropriate sampling strat-
egy, we trained the model for large-scale prediction and achieved significantly better results
than current approaches such as ProTstab2 [13,16], which has been the leading method for
Tm value prediction so far. Further, we can show that the resulting augmented TPP dataset
captures structural and biological properties and allows us to dissect the structural features
that impact protein stability.

2. Results
2.1. Data Driven Design of the DeepSTABp Model

Assessment of the thermal stability of proteins was long hindered by limited available
experimental methodologies. In recent years, the rise of mass spectrometry-based thermal
proteome profiling (TPP) has allowed for the creation of proteome-wide snapshots of
protein melting points (Tms) [7]. Extensive efforts have resulted in the detection of tens
of thousands of protein melting characteristics from a wide variety of organisms across
a broad range of growth temperatures [9]. However, our analysis of existing datasets
revealed that many of the proteins of said organisms remain unaccounted for (Figure 1).
Evaluation of these results not only motivated but also guided the design of a novel protein
melting point predictor which we termed DeepSTABp (Figure 2).
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Figure 1. Melting temperature coverage (A) and relationship with the optimal growth temperature
(B). (A) Comparison between the number of proteins measured in the meltome atlas and the number
of proteins attributed to an organism according to the reference proteome. (B) Relationship between
the melting temperature (Tm) and the optimal growth temperature of the twelve organisms covered
in the analyzed TPP datasets. Ranges of the optimal growth temperature for each organism are
indicated with error bars. Marked points denote the temperatures that were used for the optimal
growth temperature feature during model training and evaluation.
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Figure 2. Schematic overview of the deep learning architecture DeepSTABp trained to predict protein
melting temperatures. The proposed model is based on four different artificial network blocks. The
first three blocks are responsible of creating an embedding of the protein query based on the input
features, (1) type of experimental condition used in the thermal proteome profiling experiment,
(2) the protein amino acid sequence and (3) the organism growth temperature. While Blocks 1 and
3 use small multilayer perceptrons (MLP), Block 3 consists of the pretrained transformer-based
model ProtTrans-XL, followed by a mean pooling layer. The output vectors of the first blocks are
concatenated and then used as inputs for a (4) final MLP block, whose output is the predicted
protein Tm.



Int. J. Mol. Sci. 2023, 24, 7444 4 of 15

The following three design decisions were directly informed by the analysis of the
dataset: (i) In similar fashion to previously published Tm predictors, we decided to incor-
porate protein primary structure information into the model [13,16]. However, we did not
rely on classical methods of protein feature extraction but instead decided to utilize the
transformer-based protein language model ProtTrans as one of DeepSTABp’s central build-
ing blocks. This allowed our model to be trained on protein sequence embeddings provided
by ProtTrans which were optimized through the analysis of millions of protein sequences,
overcoming the limitations of our TPP dataset, which only consists of 35,112 unique protein
sequences (see Section 4). (ii) Protein stability is not only determined by protein sequence
but also other organism-specific factors related to the cellular environment, such as pH,
presence of ions, chaperones or PTMs, to name just a few [1]. In order to account for
such factors and backed by the observed correlation between organism-specific growth
temperature and average protein melting point in TPP datasets, the model was extended by
an MLP block (Figures 1B and 2). (iii) Additionally, our assessment of available datasets led
to the introduction of a third neuronal network block which allows one to account for the
experimentally observed differences in protein complex behavior in TPP datasets acquired
from cell lysates and whole-cell measurements [9] (Figure 2).

2.2. Evaluation and Comparison of Prediction Performance

The analysis of available TPP data made apparent that protein Tms do not follow a
uniform distribution on an organism level. Rather, protein Tms distributions possess non-
uniform shapes, ranging from only slightly skewed Gaussian-like distribution centered at
organism-specific Tms, to multimodal distributions [9]. Since it has been previously shown
that the training of neuronal networks is prone to be negatively affected by non-uniform
distributed training datasets, we decided to measure the effect of different sampling strate-
gies termed “naïve”, “uniform sampling” and “extended uniform sampling” with respect
to model performance (Table 1, [19–22]).

Table 1. Assessment of model performance during model training and testing. During training, we
monitored model performance with respect to different sampling strategies used during dataset
assembly. With “extended uniform sampling” yielding the best results, we built DeepSTABp and
evaluated its performance in direct comparison to ProTstab2.

Metrics

Training (DeepSTABp) Testing

Naïve Uniform
Sampling

Extended Uniform
Sampling DeepSTABp ProTstab2

R2 0.86 0.89 0.93 0.80 0.57
PCC 0.93 0.96 0.97 0.90 0.76

MAE (◦C) 3.20 2.43 1.81 3.22 4.95
MSE (◦C) 17.84 9.70 5.54 18.46 41.59

RMSE (◦C) 4.22 3.11 2.35 4.30 6.45

TO assess model performance, we computed 5 common metrics for the evaluation of
regression models: The coefficient of determination (R2), the Sample Pearson correlation
coefficient (PCC), the mean average error (MAE), the mean squared error (MSE), and
the root mean squared error (RMSE). When evaluating prediction results for the training
dataset, all metrics indicate that model performance is indeed impacted by the choice of
the training dataset, with the best result achieved consistently when using the EUS upon
dataset assembly.

Finally, we evaluated DeepSTABp’s performance with respect to generalizability
and in comparisons of Tm predictions of the current state-of the-art predictor ProTstab2,
which emerged out of a thorough comparative evaluation of different machine learning
frameworks and has been shown to provide best-in-class performance [13]. The resulting
data indicates that DeepSTABp generalizes well when applied on the previously unseen
datasets and does not suffer from substantial overfitting. Moreover, our model outperforms
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ProTstab2 substantially in all evaluation metrics during training and when applied to a
previously unseen test dataset (Table 1). Visualizing the distributions of Tm differences
between predicted and experimentally determined melting temperatures, it becomes ap-
parent that both models show a bell-like shape, however DeepSTABp’s predictions show a
lower overall error as indicated by a strongly reduced interquartile range, spanning only
an interval of ~4.9 ◦C compared to ProTstab2s with ~8.0 ◦C (Figure 3B).
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Figure 3. Prediction performance on the test dataset. Visualized are the predicted melting temperature
of DeepSTABp against experimentally determined melting temperatures (A) and a direct comparison
of the prediction performance of DeepSTABp and the current state-of-the-art predictor ProTstab2
shown as difference between predicted and experimentally determined melting temperatures (B).

2.3. Capture and Representation of Biological Features

Although regression evaluation metrics are a valuable means of measuring the perfor-
mance of a model’s predictions, it can be challenging to determine the extent of biological
information conveyed by the achieved level of prediction quality. In order to determine
whether patterns observed in the analysis of TPP data can be replicated with the attained
level of prediction accuracy, we calculated the variation in Tm for protein complexes an-
notated in the EMBL complex portal measured via TPP from Homo sapiens (571 protein
complexes) and E. coli (82 protein complexes) versus a randomly sampled sets of proteins
of respective organisms [23,24] (Figure 4).

Indeed, our results show that the coefficients of variation estimated from measured
and predicted Tms possess similar distributions along proteins reportedly present in protein
complexes. This observation is also in good agreement with previously conducted TPP studies
where it was demonstrated that proteins present in the same protein complex show similar
thermal proximity coaggregation profiles [23]. This comparison indicates that the precision of
DeepSTABp predictions allows them to resolve biological meaningful properties.
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Figure 4. Variation of measured and predicted melting temperatures (Tms) of protein complexes and
randomly grouped proteins of E. coli (A) and Homo sapiens (B). The calculated coefficient of variation
based on analysis of measured and predicted Tms show a solid agreement for both organisms. As
previously described in the analysis of thermal proteome profiling data, both reflect the tendency
that proteins present in protein complexes show a lower variation in thermostability when compared
to randomly grouped proteins.

2.4. Future Applications of DeepSTABp

The assessment of available proteomic data revealed that a substantial portion of
proteomes are still not covered by TPP. Thus, the use of artificial intelligence to bridge this
gap and increase the available information by predictions rather than experimental mea-
surements remains an attractive endeavor. Here, we examined whether the Tm predictions
of our model for Homo sapiens allow for the identification of differences in the distributions
of aggregated protein structure elements that change relative to predicted temperature
stability (Figure 5).

The analysis revealed that protein-wise aggregates of protein secondary structure
elements “AlphaHelix”, “BetaSheet”, “PiHelix”, “Turn”, “NoStructure” and “Accessible
Protein Surface” show different patterns when related to predicted Tms. While proteins
with low (red) to high (blue) content of alpha helixes are found across the whole Tm range
of the human proteome, other properties show more inhomogeneous shapes. In the case of
“PiHelix” and “Accessible Protein Surface”, we see an antiparallel pattern. While proteins
with highest amounts of pi-helices are more frequently found at higher melting points,
the opposite is true for the latter. Both observations fit well with previous reports, as
pi-helices and protein packing density were indeed linked to an improvement in thermal
stability [25–28].

In conclusion, the results indicate that the combination of in silico methods, namely
the Tm predictions by DeepSTABp and protein structure prediction-based inference of
protein features allows for the identification of patterns which were previously linked to
protein stability by experimental studies.
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Figure 5. Analysis of dependencies between protein melting temperature and the secondary structure
elements AlphaHelix (A), BetaSheet (B), PiHelix (C), Turn (D), NoStructure (E), and the Accessible
Protein Surface (F). After binning each protein according to its Tm, each protein was classified
according to its value in the respective property into quartiles. Quartile one (grey), quartile two
(purple), quartile three (dark pink), and quartile four (red). Observed distributions of protein-wise
aggregates show distinct shapes with small (AlphaHelix) to large differences (e.g., Accessible Protein
Surface) in the quartile-wise distributions.

2.5. Web-Interface of DeepSTABp

The utilization of DeepSTABp to predict protein Tms for research purposes does not
necessitate any installation procedures or substantial computational resources. Rather, users
may acquire protein-specific predictions through a user-friendly web interface accessible
at https://csb-deepstabp.bio.rptu.de (accessed on 4 April 2023) (Figure 6). The process
consists of three primary steps: (i) the provisioning of a protein sequence or protein database
in the FASTA format, (ii) selection of a growth temperature and (iii) setting the ‘lysate’
or ‘cell’ flag. Predicted Tms are supplied to the user in a human and machine-readable
text file. The web service allows to process protein sequences of arbitrary length and is
suitable for genome-wide studies. The source code of the webservice is openly accessible
(https://github.com/CSBiology/deepStabP (accessed on 12 April 2023)) and provided
as docker images, which renders the tool readily deployable within on-premise solutions.
Alternatively, DeepSTABp can also be run on a desktop pc. The average execution time for
a protein sequence of 1000 amino acids is on average 17 s on an AMD RyzenTm 9 6900HS
or half a second using an NVIDIA GeForce RTX 3070 Ti.

https://csb-deepstabp.bio.rptu.de
https://github.com/CSBiology/deepStabP
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3. Discussion

Protein stability plays a crucial role in a variety of biological processes and biotech-
nological applications. The thermodynamic stability of a protein determines its folding,
assembly and function, and therefore, changes in stability can have significant effects on
protein properties and are frequently observed to be disease related. Hence, studying
protein stability is an essential aspect of protein biochemistry and structural biology. Due
to the sparsity of experimental data, computational tools are necessary to predict protein
stability given in the form of melting temperatures.

The deep learning-based predictor DeepSTABp presented in this study employs a
protein language model to embed amino acid sequences and advanced feature-extraction
techniques. It integrates various deep learning methods into a self-contained protein Tm
predictor. In contrast to other predictors like SCooP, DeepTP, and BertThermo essentially
classifying thermostable and non-thermostable proteins, Prostab2 and DeepSTABp both
employ a regression model to predict continuous Tm values [13,15–18]. Through proper
sampling techniques, we trained the model for extensive prediction tasks and achieved
superior results compared to the current state-of-the-art method, ProTstab2, by reducing
the mean average prediction error by around 35 percent (Table 1, MAE). DeepSTABp relies
on a pretrained protein language model that allows for unbiased, nonreductive feature
extraction from protein amino acid sequence. It has been shown that the size of the train-
ing dataset correlates with predictive power of the language model effectively learning
structure-relevant features that would be not possible to extract from the TPP dataset
alone according to size limitations [29]. Further, our model incorporates the experimental
conditions used in the TPP experiment and the organism growth temperature, leading to
improvement of the prediction quality. The beneficial effect of incorporating growth tem-
perature into our model suggests that there are organism-specific confounder variables like
proteins or metabolites acting as chaperones or compatible solutes, respectively, influencing
thermostability [30–33].

Our prediction has enriched the TPP dataset, enabling us to unravel the structural
and biological determinants of protein stability. Of particular interest is the observation
that proteins exhibiting low surface accessibility tend to be found at higher temperatures,
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which fit with previous reports of protein packing density positively influencing thermal
stability [25–27].

The high-quality predictions of DeepSTABp have enabled us to investigate the bi-
ologically relevant formation of protein complexes, replicating the known evolutionary
phenomenon whereby proteins within complexes exhibit similar Tm values. This high-
lights the potential for future models to incorporate information about protein complexes
in order to enhance prediction accuracy. Going forward, we plan to incorporate additional
experimental data to refine our model. Although our protein Tm prediction performance
has been excellent overall, we acknowledge the model’s limitation in accurately predicting
the effect of single point mutations on global protein stability. This is a common issue faced
in protein property prediction that needs to be addressed and analyzed in the future [34].
However, the modular design of DeepSTABp allows for the exchange of the transformer
block and the addition of new building blocks. Therefore, further research in the area of
global protein property prediction can be integrated effortlessly to overcome this limitation.

In summary, our DeepSTABp algorithm is characterized by its high speed and reliabil-
ity, making it well-suited for the analysis of proteins from diverse organisms and large-scale
protein datasets. Our testing encompassed proteomes from a broad range of species, span-
ning from archaea to humans, and encompassing melting temperatures available in the
meltome atlas. To support the in silico exploration of protein thermostability, we have
made the DeepSTABp model available to other researchers through a user-friendly web
interface (https://csb-deepstabp.bio.rptu.de (accessed on 4 April 2023)).

4. Materials and Methods
4.1. Tm Dataset Assembly and Extraction of Protein Melting Points

Datasets used for model training and evaluation in this study were derived from high-
throughput mass spectrometry-based thermo-proteome profiling (TPP) assays. To achieve
an extensive and homogenous collection of experimentally determined protein melting
temperatures (Tms), we reanalyzed obtained melting curves and determined individual
protein melting points by fitting the following non-linear model:

Fsoluable(T) =
1 − a

1 + e−m( 1
T −

1
Tmid

)
+ a (1)

with a being the asymptote, m being the slope, and Tmid denoting the mid-temperature
of the fitted curve [35]. The Tm was obtained by finding the temperature where the
fitted function reaches a value of 0.5. In order to retrieve only reliable, high quality Tms,
only model estimates with an R2 score > 0.9 and temperature variance across biological
replicates < 2 degrees were retained in the final data set.

The vast majority (21,885 ids) of protein Tms was derived from the meltome atlas [9],
which not only provides a collection of TPP datasets derived from a multitude of different
organisms but also consists of TPP studies involving the heat treatment of cells and proteins
lysates. Since the originally available dataset lacked the preparation of S. cerevisiae cells
and Homo sapiens lysates, we extended the atlas with data from recently published stud-
ies [23,36]. The final dataset consisted of 35,112 proteins originating from Escherichia coli,
Saccharomyces cerevisiae, Oleispira antarctica, Arabidopsis thaliana, Drosophila melanogaster,
Caenorhabditis elegans, Mus musculus, Homo sapiens, Thermus thermophilius and Picrophilus torridus.
Protein sequences were acquired from Uniprot [37]. Prior to model training, the assembled
dataset was randomly split into training (90%) and validation (10%) data sets. In order to
allow for a fair comparison to the previously published predictor Prostab2, we additionally
created a test dataset which resembled the test dataset used in their respective study and
excluded said proteins from training procedures.

https://csb-deepstabp.bio.rptu.de
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4.2. Dataset Augmentation

We created 3 distinct training datasets by tuning the “naïve” dataset through 2 different
sampling strategies, which we will refer to as “uniform sampling” (US) and “extended
uniform sampling” (EUS). The US sampling strategy is carried out independently for each
organism in the training data set. It uses a simulated continuous uniform distribution
limited to the minimum and maximum Tm of the respective organism. Each Tm in the
original dataset is then replaced by a random draw out of the simulated distribution. The
EUS strategy samples a total of 10,000 training items for each organism. All datasets
are made publicly available in accordance to the FAIR principles and provided within
the Annotated Research Context (ARC) available at: https://git.nfdi4plants.org/f_jung/
deepstabp (accessed on 12 April 2023).

4.3. Amino Acid Sequence Embedding Using Protein Language Models

To obtain a feature space spanned by numerical variables, protein sequences are of-
ten preprocessed by feature extraction routines that generate numerical embeddings of
amino acid sequences. For the development of our algorithm, we chose to deploy the
transformer-based protein language model ProtT5-XL-UniRef50 released as part of the
ProtTrans project (available at: https://github.com/agemagician/ProtTrans (last accessed
on 5 March 2023)). This model has been shown to be an efficient and competitive fea-
ture extractor, which allowed for the construction of state-of-the-art predictors achieving
best-in-class performance in tasks like protein localization or membrane prediction [29,38].
Regarding Tm prediction, we could show that its deployment led to an improved predic-
tion performance in comparison to feature extraction as utilized in the ProTstab2 model
(Supplementary Figure S1)

4.4. DeepSTABp

In this study, we treated Tm prediction as a regression problem with the goal of de-
riving a model that relates a feature space spanned by the variables, protein sequence,
growth optimum and experimental design to the dependent variable, the melting tem-
perature of a protein. To achieve this, the DeepSTABp algorithm (Figure 2) combines
different popular deep learning architectures into a single stand-alone end-to-end pro-
tein Tm predictor. The final model was made available in the ONNX format and re-
leased alongside the source code for model training and evaluation in accordance with
the FAIR principles and provided as an annotated research context (ARC) available at:
https://git.nfdi4plants.org/f_jung/deepstabp (accessed on 12 April 2023).

The model architecture is split into four blocks. The first block was included to
incorporate whether TPP experiments were carried out following the heating of intact cells
or cell lysate, respectively, as this factor has been previously shown to affect measured Tm
values of certain proteins [9,23]. It consists of two separate, fully connected layers with 20
and 10 neurons, respectively. The second block is concerned with sequence embedding (see:
amino acid sequence embedding using protein language models). It uses the pretrained
ProtT5-XL-UniRef50 model, a transformer-based network architecture which creates a
1024 entry long feature vector for each amino acid in the input sequence. As a final step,
this block contains a mean pooling layer which allows the final model to process sequences
of arbitrary length [9].

These networks are accompanied by a third block, an independent neural network that
also consists of a sequence of 2 fully connected layers with 20 and 10 neurons, respectively.
This block uses frequently reported growth temperatures of the organisms of interest as
an input which allows the model to learn how factors that are independent of protein
sequence influence a proteins Tm (see dataset assembly and extraction of protein melting
points, Figure 2 [39–45,45–50]). Finally, the outputs of the first third blocks are concatenated
and used as the input of the fourth block, which consists of a sequence of five dense, fully
connected layers with 4098, 512, 256, 128, and 1 neurons, respectively. Neurons of the
fully connected layers were modeled as scaled exponential linear units (SELUs) in order to

https://git.nfdi4plants.org/f_jung/deepstabp
https://git.nfdi4plants.org/f_jung/deepstabp
https://github.com/agemagician/ProtTrans
https://git.nfdi4plants.org/f_jung/deepstabp
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minimize the risk of vanishing gradients during model training [51]. This was followed
by layer normalization to ensure that all features were on the same scale, which prevents
exploding gradients and speeds up the training [52]. To minimize the chance of overfitting,
all MLP blocks were trained using the “dropout” technique, which randomly (p = 0.2)
mutes the influence of single neurons with respect to the computation of gradients and thus
parameter tuning during the training phase [53]. The optimization of the network weights
of the final model was carried out using the Adam optimizer with a flexible learning rate
which was adjusted after 10 epochs without significant changes in model performance.
The choice of optimal network and training parameters was guided by hyperparameter
tuning using a tree-structured Parzen estimator (TPE) sampling [54] algorithm. As final
parameters we chose an epoch size of 100, a batch size of 25, and a starting learning rate
of 0.01.

4.5. Model Evaluation Metrices

To validate the performances of models during training and testing and to allow for
a fair comparison to alternative approaches, different commonly used evaluation metrics
were computed. Each metric measures the discrepancy between vectors of N experimentally
determined Tms (y) and predicted Tms (ŷ). In summary, we computed five different metrics:

The mean average error (MAE):

MAE(y, ŷ) =
1
N

N

∑
i=1

∣∣yi − ŷi
∣∣ (2)

The mean squared error (MSE):

MSE(y, ŷ) =
1
N

N

∑
i=1

(yi − ŷi)
2 (3)

The root mean squared error (RMSE):

RMSE(y, ŷ) =
√

MSE(y, ŷ) (4)

Sample Pearson correlation coefficient (PCC):

PCC(y, ŷ) =
n∑N

i=1 yiŷi − ∑N
i=1 yi∑

N
i=1 ŷi√

n∑N
i=1 y2

i −
(

∑N
i=1 yi

)2
√

n∑N
i=1 ŷ2

i −
(

∑N
i=1 ŷi

)2
(5)

And the coefficient of determination (R2):

R2(y, ŷ) = 1 − ∑N
i (yi − ŷi)

2

∑N
i

(
yi −

−
y
)2 (6)

4.6. Variation of Measured and Predicted Tms of Protein Complexes

Since it was previously reported that proteins present in complexes possess similar
thermal proximity coaggregation profiles, we aimed to analyze whether this is observation
is reflected by Tms determined experimentally and through prediction by DeepSTABp [23].
To annotate which proteins were present in protein complexes, we retrieved a collection of
curated protein complexes for E. coli and Homo sapiens from the EMBL-Complex Portal [24].
For each of the selected organisms, we iterated our final Tm dataset and grouped proteins



Int. J. Mol. Sci. 2023, 24, 7444 12 of 15

according to the collected complex annotation. To measure the Tm similarity within each
group, we computed the coefficient of variation (cv) as follows:

cv(y) =

√
1
N ∑N

i=1

(
yi −

−
y
)2

−
y

(7)

with y being the collection of grouped protein Tms, N being the number of proteins present

in the group and
−
y being the average within-group Tm. As a control, we took a total of

10 random samples per protein in each protein complex group and computed the cv thereof.

4.7. Relating Predicted Tms to Secondary Structure Elements

Protein structure predictions for Homo sapiens were retrieved from the AlphaFold
Protein Structure Database [55,56]. The resulting PDB file for each protein containing
the coordinates of each AA in a three-dimensional space were then used as the input
for the DSSP program to assign secondary structure elements of each protein [57,58].
Following the assignment of protein secondary structure properties to each residue by
DSSP, we aggregated the properties “AlphaHelix”, “BetaSheet”, “PiHelix”, “Turn” and
“NoStructure” protein-wise by expressing their abundance relative to the peptide length. As
the importance of protein packing was previously related to protein stability, we calculated
a feature termed “Accessible Protein Surface”, by summing up the “Accessible Surface”
determined by DSSP for each amino acid residue. In order to relate said features to
predicted protein Tms for Homo sapiens, we chose to first sort each protein into a Tm bin
with the bin size determined using Silverman’s rule for Gaussian kernel density estimation
applied to the whole dataset [59]. Subsequently, we computed the quartiles of each protein
property using the complete dataset. For each Tm bin, we counted the number of proteins
in the bin belonging to a quartile, yielding 4 Tm distributions per protein feature.

4.8. Software

Model training and evaluation was implemented in the Python programming lan-
guage (v.3.10.8) using the PyTorch (v.1.13.0), PyTorch Lightning (v.1.7.7), pandas (v.1.5.1),
NumPy (v.1.23.4), and Transformers (v.4.24.0) library [60–64]. The Optuna library (v.3.0.5)
was utilized for conducting hyperparameter tuning [65]. Statistical calculation regarding
secondary structure elements was conducted using the open-source library FSharpstats
(v.0.4.7) and BioFSharp (v.2.0.0) [59,66]. Data visualization was achieved using the Plotly
and Plotly.NET library (v.3.0.0) [67,68]. Feature extraction was conducted with protr [69].

Supplementary Materials: The supporting information can be downloaded at: https://www.mdpi.
com/article/10.3390/ijms24087444/s1.
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