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Abstract: Ionizing radiation (IR) is used to treat 50% of cancers. While the cytotoxic effects related to
DNA damage with IR have been known since the early 20th century, the role of the immune system
in the treatment response is still yet to be fully determined. IR can induce immunogenic cell death
(ICD), which activates innate and adaptive immunity against the cancer. It has also been widely
reported that an intact immune system is essential to IR efficacy. However, this response is typically
transient, and wound healing processes also become upregulated, dampening early immunological
efforts to overcome the disease. This immune suppression involves many complex cellular and
molecular mechanisms that ultimately result in the generation of radioresistance in many cases.
Understanding the mechanisms behind these responses is challenging as the effects are extensive
and often occur simultaneously within the tumor. Here, we describe the effects of IR on the immune
landscape of tumors. ICD, along with myeloid and lymphoid responses to IR, are discussed, with
the hope of shedding light on the complex immune stimulatory and immunosuppressive responses
involved with this cornerstone cancer treatment. Leveraging these immunological effects can provide
a platform for improving immunotherapy efficacy in the future.
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1. Introduction

Ionizing radiation (IR) is a prevalent non-surgical intervention for achieving cures in
cancer [1]. Approximately 50% of cancers are treated with some form of IR [2,3], and it is
estimated that this contributes to 40% of cures [4,5]. While the cytotoxic effects of IR on
cancer were first appreciated in the early 20th century, following Röntgen’s discovery of
X-rays in 1895 [6], the complex mechanisms by which the tumor microenvironment (TME)
is altered following IR are still being elucidated today [7–9].

Notably, the immune modulatory potential of IR has gained particular interest. Can-
cers exploit naturally occurring immunosuppressive mechanisms to facilitate their growth
and metastasis, and many reports show that IR is capable of reprogramming the TME to
alleviate this suppression and even achieve abscopal effects in rare cases [10]. Following
IR exposure, cancer cells undergo an immunogenic form of cell death which results in
antigen presenting cell (APC) activation and maturation, leading to eventual cytotoxic T
cell responses specific to the tumor [11]. Interestingly, multiple reports now describe that
an intact immune system is essential to the efficacy of IR [12–15].

While the large body of evidence for the immune stimulatory effects of IR is certainly
convincing, numerous reports also show that IR can induce a wound healing response
characterized by tumor-associated macrophage (TAM), myeloid-derived suppressor cell
(MDSC) and regulatory T cell (Treg) recruitment to tumors [16,17]. These cells dampen
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anti-tumor immune responses and initiate angiogenic processes, augmenting tumor growth
and expansion [18,19]. Moreover, a higher number of these cells correlate with poorer
prognosis in many cancers [20,21]. Hence, a dichotomy exists with this therapy where both
immune stimulatory and immunosuppressive effects occur, often simultaneously [16].

Navigating this literature can be challenging, as the immunological responses are
highly dynamic and can vary depending on the TME in question and the IR protocol
used [22–26]. Here, we provide an overview on the effects of IR on the immune components
of the TME. The influence of IR on immunogenic cell death (ICD) will be discussed, along
with the dynamic responses associated with both myeloid and lymphoid immune subsets,
providing a greater overall picture of the complex immune stimulative and suppressive
processes elicited by IR in tumors. Harnessing the immunological effects of IR is critical to
optimizing the efficacy of combination immunotherapies in the future.

2. Immunogenic Cell Death

Immediately following radiation, DNA is damaged via direct ionization or indirectly
through the action of free radicals (such as reactive oxygen species; ROS) generated when
radiation ionizes water molecules or biomolecules in cells. Cells are composed of 80% water,
and it has been estimated that the indirect effects of radiation account for 60% of the total
cellular damage accumulated [27]. This DNA damage occurs in the form of single-strand
and double-strand breaks that are sensed by ataxia telangiectasia mutated (ATM) and ATM-
and RAD3-related (ATR) kinases, which in turn activate DNA repair mechanisms in the
cells. However, if the damage accumulated exceeds cellular repair capabilities, the cells
will undergo cell death or senescence [28].

2.1. Senescence and Cell Death

In the case of senescence, the cell terminates division processes through p53/p21 and
p16/RB1 signaling [29]. The cell remains viable but undergoes arrest to prevent further
damage and outgrowth of mutated cells. For cell death, on the other hand, several death
pathways can occur depending on the extent of the damage. Lower, recoverable levels
of damage are associated with programmed mechanisms of death such as apoptosis and
autophagy, whereas higher levels evoke irreparable damage resulting in necrosis [30].
Typically, necrosis has been defined as immunogenic and apoptosis has been defined as
immune silent; however, it is now known that all forms of cell death possess some level of
immunogenicity [31]. ICD broadly refers to a form of cell death that involves the release
of damage-associated molecular patterns (DAMPs), chemokines, cytokines and tumor
antigens that prime APCs and instigate adaptive immune responses (Figure 1) [11]. IR
has been shown to induce these markers of ICD (calreticulin, high mobility group box 1
(HMGB1) and adenosine triphosphate (ATP)) in a dose-dependent manner (ranging from 0
to 100 Gy) [32,33].

2.2. Damage-Associated Molecular Patterns

Following IR-induced cellular damage, DAMPs such as calreticulin, heat shock protein-
70 (HSP70), HMGB1 and ATP, which are normally endogenous in nature, get released by
dying cells to facilitate phagocytosis [31,34]. Calreticulin and HSP70 are endoplasmic
reticulum (ER) molecular chaperones that translocate to the cell membrane following
cellular damage. Once expressed on the surface, they can bind to CD91 expressed on APCs
and act as an ‘eat me’ signal for the dying cell [35,36]. Additionally, the HSP family of
proteins may also present carried tumor antigens to APCs directly [37]. HMGB1 is a nuclear
protein that governs chromosomal structure and function. Although its main function
is to act as a DNA chaperone, it can be passively released during cell death and bind to
toll-like receptors (mainly TLR4) on APCs to augment phagocytosis and antigen processing
via MyD88 signaling [38,39]. ATP is somewhat different, as it requires autophagy for
its active release from dying cells [40]. Autophagy is a stress response that initiates the
molecular recycling of cellular organelles and cytoplasmic proteins under hostile conditions.
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Following extracellular release, ATP functions as a chemoattractant for dendritic cells (DC)
by binding to purinergic receptors [41,42]. Conversely, although DAMPs generation in the
tumor is an important immune activator, studies assessing correlations between the levels
and overall outcome have generated contested results [43,44]. It is likely that elevating
DAMPs alone is not enough to elicit measurable benefits to radiation, but many factors of
the tumor microenvironment (TME) are critical when considering this response.

2.3. Cytokine Release

The release of cytokines following IR is a massive field of research, with a large volume
of work being published on various cytokines including IFN-γ [45], IL-1β [46], TNF-
α [47], IL-6 [48] and TGF-β [49]. Among these, the Type-I interferons (IFN) have proven
particularly prominent in recent times. Type-I IFN is a family of pro-inflammatory cytokines
heavily involved in the response to viral infection. They are also pivotal for anti-tumor
immune responses following IR, primarily through DC cross-priming [50–52]. IR induces
Type-I IFN expression (IFN-α and IFN-β, in particular) through multiple endogenous
nucleic acid sensing pathways following the release of double-stranded DNA and RNA
into the cytosol of damaged cells [53]. Cyclic GMP-AMP synthase (cGAS) is an enzyme
that catalyzes the formation of cyclic GMP-AMP (cGAMP) when it recognizes cytosolic
DNA. cGAMP then binds to and activates STING (stimulator of interferon genes) in the
ER [54,55]. STING is an adaptor molecule, and its activation leads to downstream Type-I
IFN expression [56]. Notably, STING also activates NF-κB signaling, inducing a vast array
of proinflammatory cytokines such as TNF-α, IL-1β and IL-6 [57,58]. DNA and RNA are
also capable of triggering Type-I IFN release through endosomal TLRs (TLR9 for DNA;
TLR3, 7 and 8 for RNA) and their adaptor molecules MyD88 or TRIF [59,60]. Cytosolic RNA
can additionally be detected by RIG-I-like receptors (RLR) and induce IFN-β expression
via the mitochondrial adaptor protein MAVS [61]. Regardless of the pathway involved,
however, multiple reports have demonstrated that Type-I IFN production is essential
to IR efficacy. When this pathway is inhibited, tumor burden is similar to unirradiated
controls, and it has been shown that CD8+ T cell cytotoxic function in these tumors is
impaired [52,62–64].

2.4. Chemokine Release

IR leads to an influx of immune cells into the TME through chemokine gradients as a
form of damage control. Chemokines are produced by multiple cells in the TME and bind
to their cognate receptors in an autocrine or paracrine fashion [65]. CCL2 is upregulated
in tumors following IR, and this facilitates CCR2+ monocyte and Treg recruitment to
tumors [66,67]. Recent research points towards STING-dependent expression of CCL2,
suggesting this pathway is a double-edged sword in IR treatment [68]. On one hand,
there is Type-I IFN expression that fosters anti-tumor immunity; on the other, there is
an influx of immunosuppressive monocytes and Tregs that evoke radioresistance and
tumor growth [69]. Another chemokine ligand produced downstream of the cGAS-STING
pathway following IR is CCL5 [70]. CCL5 is also involved in trafficking monocytes to
the tumor utilizing the CCR5 receptor, in particular [70,71]. While the receptors for these
chemokines are also expressed on T cells, higher levels of CCL5 expression are typically
associated with poorer outcomes in cancer [72]. This suggests that the immunosuppressive
infiltrate dominates any potential anti-tumor immune responses driven by chemokine
signaling following IR. Overall, the broad topic of chemokine expression following radiation
is highly complex, influencing both pro- and anti-tumor immune cell types and varying
based on the tumor, IR dose and time-point measured [73–75]. It has been shown, however,
that inhibiting CCR2/CCR5 signaling can sensitize tumors to IR [71].
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Figure 1. Immunogenic cell death elicited by IR. ICD induced by IR is marked by the release of
DAMPs (HMGB1, double-stranded DNA and RNA, HSP70, ATP and calreticulin (CRT)), Type I
IFN (IFN-α and IFN-β) through cGAS-STING signaling and other cytokines (TNF-α, IL-1ß and IL-6)
and chemokines (CCL2 and CCL5) through STING-induced NF-κB activation. Broken lines indicate
movement and continuous lines represent the production of the given target.

3. Myeloid Responses to Radiation

As a consequence of IR-induced ICD, the released DAMPS, tumor antigens, cytokines
and chemokines recruit and differentiate various myeloid subsets in the TME. Myeloid
cells originate from hematopoietic stem cells in the bone marrow and circulate in the blood
and lymphatic system, ready to respond to tissue damage or infection [76]. They represent
a branch of leukocytes and consist of monocytes, macrophages, DCs and granulocytes [77].
These cells may already exist in high numbers in the tumor milieu, but they can also be
re-directed from the blood to the tumor site in response to IR [78]. Depending on the
tumor’s propensity for immune evasion, the myeloid cells may exhibit a pro- or anti-tumor
phenotype based on the cytokine and chemokine profile of the tumor, along with the
expression of immunosuppressive factors [79].

3.1. DCs and Other APCs

DCs are rare immune cells within tumors but the most potent APCs for initiating
adaptive immune responses. These cells sample the TME for antigens that get processed
endogenously and presented to CD8+ and CD4+ T cells in the tumor draining lymph node
to mount tumor-specific immune responses [80].

Tumor-residing and tumor-infiltrating DCs respond strongly to the release of DAMPs,
tumor antigens and Type-I IFN released into the TME following IR. As mentioned above,
ICD results in the release of many DAMPs that can bind to DCs directly though surface
receptors or present the tumor antigen through their chaperon functionality. ATP can bind
directly to the purinergic P2RX7 receptors on DCs and elicit inflammasome activation,
leading to pro-inflammatory cytokine induction [81]. Calreticulin and HSP70 bind to the
receptor CD91—among others—on DCs and elicit phagocytosis [82,83]. Triggering CD91
on APCs with these DAMPs has also been shown to activate NF-κB signaling and induce
pro-inflammatory cytokine and chemokine expression, leading to various CD4+ T cell
responses [84]. Both double-stranded nucleic acids and HMGB1 released from damaged
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cells trigger TLR signaling on APCs. Regardless of the TLR triggered, Type I IFN signaling
is activated, which induces APC maturation, migration to the tumor- draining lymph
node and antigen presentation [53,85]. Importantly, this Type-I response is also critical
for monocyte differentiation to DCs in the TME and the cross-presentation of the antigen
for CD8+ T cell activation [86–88]. IFN-α can bind to IFNα/β receptors on monocytes
and induce the expression of DC markers (CD80, CD86, CD40, MHC II), initiating a pro-
inflammatory phenotype in these cells [89–91]. Additionally, IFN-α could also prolong the
life of internalized antigens in DCs, encouraging greater levels of cross-presentation [92].
Therefore, IR plays an influential role with regard to DC activity in the TME: from DC
infiltration and differentiation to eliciting antigen uptake, cross-presentation and fostering
pro-inflammatory responses.

3.2. MDSCs and TAMs

MDSCs are a diverse population of immature myeloid cells that possess strong im-
munosuppressive functions. These cells generally accumulate at sites of chronic inflamma-
tion, where they mitigate sources of inflammation and promote angiogenesis as a wound
healing response [93]. This process can also be hijacked by tumors, however, to dampen
anti-tumor immune responses and promote cancer growth and metastasis [94]. TAMs also
serve as a source of immune evasion for tumors. Macrophages are large phagocytes that
internalize cellular debris and contribute to wound-healing responses. Macrophages can
be immunosuppressive or stimulatory depending on the context of their local environment,
and in cancer, this is typically an immunosuppressive phenotype [95]. Overall, higher
levels of MDSCs and TAMs are associated with a poor overall outcome across multiple
cancer types [96–98]. Notably, higher doses of IR (≥10 Gy/fraction or cumulative doses up
to 60 Gy) have been most associated with this chronic inflammatory/immunosuppressive
response [25,99].

As IR subjects tumors to tissue damage, it is no surprise that this coincides with MDSC
and TAM accumulation in the tumor [68,100]. IR induces upregulations of chemokines
that facilitate the recruitment of these cells to the TME, where they are differentiated to a
‘pro-tumor’ phenotype and exert an array of immunosuppressive functions [101]. Notably,
these cells are potent producers of the immunosuppressive cytokines IL-10 and TGF-β. IL-
10 inhibits APC activity by downregulating the expression of MHC II [102,103]. It also has
profound antagonistic effects on pro-inflammatory cytokine and chemokine signaling in the
TME, encouraging an anti-inflammatory milieu associated with aggressive tumors [96,104].
TGF-β plays a similar role in tumors, polarizing CD4+ T cells to immunosuppressive Tregs
and macrophages to an anti-inflammatory phenotype [105,106]. These pro-tumor TAMs
can secrete the enzyme arginase that depletes the amino acid L-arginine in the TME, a
key metabolite involved in T cell regulation [107,108]. In addition, MDSCs are sources
of reactive oxygen species (ROS) which also impair T cell responses [109,110]. Hence,
the influx of TAMs and MDSCs to the TME in response to IR-induced tissue damage can
counteract the initial innate and adaptive immune responses stimulated through Type-I IFN
signaling. This has also been shown to be a key mechanism involved in the development
of radioresistance [68]. Efforts to re-wire these cells to a more ‘anti-tumor’ phenotype have
shown promise in sensitizing cancer to IR [111].

3.3. Neutrophils

Neutrophils are the most abundant granulocyte and are typically the first line of de-
fense against infection and inflammation. Like TAMs, tumor-associated neutrophils (TANs)
can be ‘pro’ or ‘anti-tumor’ depending on the context of the TME. In most cases, however,
higher numbers are associated with a poor overall outcome [112,113]. They are also key
players in acquired radioresistance, associated with their prevalent wound-healing pheno-
type [114,115]. Neutrophils are among the first cells recruited to the tumor following IR. In
their anti-tumor phenotype, they produce ROS and elicit cancer cell apoptosis [116,117]. By
contrast, they can also promote tumor growth and angiogenesis via their wound-healing
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features. They are also a source of arginase, which, along with ROS, antagonizes T cell
activity [118]. CXCL1, 2 and 5 are readily produced by tumors and facilitate neutrophil
recruitment to tumors via their CXCR1/2 receptor [119]. Once there, immunosuppressive
cytokines such as TGF-β polarize TANs to a pro-tumor phenotype [120]. IR has been shown
to aggravate this pro-tumor phenotype. Notably, IR induced the formation of neutrophil
extracellular traps (NETs; web-like structures consisting of DNA and histones) that pro-
moted treatment resistance in preclinical models of bladder cancer [121]. Overall, IR drives
neutrophil recruitment to tumors that get polarized in the TME to a ‘pro-tumor’ phenotype
and promote radioresistance through wound-healing processes.

4. Lymphoid Responses to Radiation

Lymphoid cells also originate from hematopoietic stem cells in the bone marrow
and develop into T cells, B cells or NK (natural killer) cells. This maturation occurs in
the thymus for T cells, in the bone marrow and spleen for B cells and in the secondary
lymphoid tissues for NK cells [122–124]. There is also evidence to suggest that a subset of
DCs may derive from this lineage as well [125]. These cells represent branches of the innate
and adaptive immune system and are responsible for the cell-killing of cancer or infected
cells, regulating immune responses and antibody production [117,126].

4.1. T Cells

The release of tumor antigens and APC activation after IR are key events in the
activation of CD8+ and CD4+ T cells. It has been demonstrated that T cells are required
for IR efficacy [12,127,128]. CD8+ T cells are the most prominent anti-tumor immune cells
capable of directly killing cancer cells via the recognition of peptides on MHC I molecules
expressed on cancer cells and APCs [129]. CD4+ T cells are a heterogeneous subset of
immune stimulatory or immunosuppressive lymphocytes discriminated by their cytokine
secretion profiles. In their anti-tumor state, these cells can bind to peptides presented on
MHC II molecules expressed on APCs and promote CD8+ T cell cytotoxic function through
the secretion of activating cytokines such as IL-2 and IL-21 [130]. Recent research has shown
that stereotactic body radiation therapy (SBRT)—a form of ablative IR that consists of higher
doses over shorter fractions than conventional IR—can elicit the clonal expansion of T cell
receptors in cancer [131–133]. This indicates that the tumor antigens released by IR result in
a more precise T cell anti-tumor immune response, as the T cells with receptors specific to
tumor antigens experience an outgrowth. Indeed, this has provided a strong rationale for
combining SBRT (typically ≥5 Gy oligofractions [25,132,134,135]) with immunotherapies
to overcome immunosuppressive mechanisms in the TME and take full advantage of T
cell-specific responses in multiple cancers [136]. On top of this increased antigen release, IR
has also been shown to increase MHC I expression on cancer cells, providing a greater pool
of antigens for CD8+ T cells to sample [137]. Type-I IFN signaling has been suggested as the
regulator of IR-induced MHC I [138], and a recent study pointed towards nod-like receptor
C5 (NLRC5) signaling, a transactivator of MHC I [139]. Similarly, the proinflammatory
cytokine IFN-γ has also shown potential to upregulate MHC I following IR [45]. IFN-γ is
also responsible for CD8+ T cell trafficking to the TME following IR and maintaining their
cytotoxic capacity [13,45]. Moreover, inhibiting this cytokine abrogated the IR efficacy of
preclinical models of melanoma, colorectal and pancreatic cancer [13,45,111].

By contrast, IR has also been shown to suppress T cell anti-tumor immune responses
by various means. Notably, immune checkpoint proteins (PD-L1, in particular) become
upregulated in response to IR via Type I and Type II IFN signaling [140–142]. Immune
checkpoints are naturally occurring ‘breaks’ in immune responses that prevent the over-
stimulation of immune responses and damage to the host [143]. These breaks are hijacked
in cancer, however, as a mechanism of overcoming the host’s anti-tumor immune re-
sponse [144]. PD-L1 expressed on cancer cells can bind to its receptor (PD-1) on T cells and
terminate T cell receptor signaling, preventing adaptive immune responses [144]. Many
clinical trials are ongoing, combining IR with immune checkpoint inhibitors to counteract
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this problem [145,146]. On the same note, CD4+ T cells in the TME can be polarized to
immunosuppressive Tregs by MDSCs and TAMs and exert similar functions on adap-
tive immunity [147]. Tregs also act as breaks on the immune system through immune
checkpoint expression (CTLA-4 and PD-1), along with immunosuppressive cytokine (IL-10
and TGF-β) and metabolite (adenosine) secretion that affect a wide range of anti-tumor
immune responses [148]. Trials are ongoing to target multiple pathways involved in Treg
modulation to anti-tumor immunity and improve IR efficacy [149,150].

4.2. NK Cells

NK cells are innate lymphocytes that do not need to encounter an antigen to mount
cytotoxic responses. They lack expression of a T cell receptor but have alternative activating
receptors (e.g., NKG2D and NKp80) that, once ligated, can result in the direct killing of the
cell or pathogen [151]. This is particularly useful in cancer, as they do not require multiple
signals prior to eliciting their cytotoxic and immune stimulatory effects [152]. A recent study
in pancreatic cancer patients showed that IR induced elevated tumor levels of NK cells
through the chemokine CXCL8 that binds to CXCR1 and CXCR2 in human NK cells. This
upregulation was found to be dependent on NF-κB signaling and was positively correlated
with IR and cetuximab treatment responses [153]. Preclinical models of oral squamous cell
carcinoma also showed that NK cell prevalence was increased in tumors following IR and
were associated with a more activated phenotype, upregulating activation receptors and
cytokine expression. It was found that these cells were critical to the efficacy of IR and ATR
inhibition in this model [154]. Multiple clinical studies have shown that the circulatory
numbers and activation of NK cells increase for months post-IR [155,156]. Despite this,
there are reports describing no change to intratumoral NK cell density and even reduced
sensitivity to NK cell-mediated cytotoxicity following IR [111,157,158]. NK cells have
recently been shown to express the immune checkpoint PD-1, making it potentially sensitive
to IR-induced overexpression of PD-L1 on cancer cells [159]. Curiously, while the loss of
MHC I expression is a positive cytotoxic signal for NK cells, the lack of MHC I expression
in tumors has not been shown to correlate with enhanced NK cytotoxicity. These findings
suggest that alternative immunosuppressive mechanisms may abrogate NK activity in
tumors [160–162]. Hence, the literature is conflicting regarding NK cell activity in tumors
following IR. While some reports describe increased infiltration and activity after IR, which
may predict treatment outcomes, the immune landscape of the TME plays a considerable
role in NK cell functionality.

4.3. B Cells

B cells are central players to the humoral immune system. After maturing in the
bone marrow, these cells circulate through secondary lymphoid tissues in search of cognate
antigen and secondary signals that evoke phenotypic changes in the cell producing memory
B or plasma cells. These cells are responsible for antibody production and regulating T cell
and NK cell function [163,164]. This regulation occurs through antigen presentation and
antibody and cytokine production [165,166]. In mouse models, up to one-third of the cells in
tumor-draining lymph nodes are B cells, emphasizing their role in adaptive immunity [167].
The levels of B cell and plasma cell gene signatures have been shown to correlate with
better overall survival in numerous cancers [166]. By contrast, B cells are also known to
be heavily immunosuppressive [168,169]. Regulatory B cells (Bregs) and IL-10-producing
B cells (B10s) antagonize anti-tumor immunity through similar Treg-related mechanisms:
IL-10, TGF-β and PD-L1 expression [170,171]. IR (SBRT, in particular) has been shown to
increase B cell numbers up to 14 days post-treatment in subcutaneous colon tumors. The
same was also observed for T cells and macrophages in this model [172]. Interestingly,
depleting B cells in preclinical models of head and neck squamous cell carcinoma resulted
in a loss of local control following treatment with IR and anti-PD-L1, suggesting a positive
role in treatment response in this case. This same study demonstrated that IR induced
B cell maturation and increases in tumor antigen-specific B cells [173]. Besides this, little
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work has been published on the effects of IR on B cells. We know that B cells facilitate T cell
and NK cell function in tumors and that their numbers may increase in tumors following
IR. However, future work is required to decipher changes to B cell receptor sequencing and
cytokine and immune checkpoint expression following IR.

5. Enhancing Anti-Tumor Immune Responses with IR

In rare cases, IR has demonstrated potential for systemic immune responses, attenuat-
ing the growth of distal tumors not directly subjected to the treatment. A meta-analysis
published in 2016 counted a total of 46 abscopal effects reported in the literature between
1969 and 2014 [174]. The adaptive immune system is likely responsible for this infrequent
phenomenon, as immune memory generated by antigens presented from the treated site can
also be expressed elsewhere [22]. This is in line with the finding that the most immunogenic
cancers harbor the greatest mutational burden; in other words, more mutations correspond
to a greater number of tumor antigens for the adaptive immune response to take advantage
of [175–177]. This has led to a huge surge in interest in the Type-I IFN response induced by
IR, as the ability of this pathway to drive antigen presentation has found new significance in
light of targeting metastatic disease [10,178]. Two exciting treatment avenues have emerged
as a result of this effect: (1) combining immunotherapies with IR and (2) targeting both the
primary and metastatic tumors with IR.

5.1. IR and Immunotherapy

Combining IR with immunotherapies in an attempt to achieve abscopal effects has
gained huge momentum in the last decade. Throughout this text, we have described
immunosuppressive mechanisms that are currently being targeted in the clinic to enhance
the anti-tumor immune response generated by IR. Clinical trials with this combination
therapy are reviewed extensively elsewhere but include immune checkpoint inhibitors
(PD-1, PD-L1, TIGIT and CTLA-4), cytokines (IL-2), DC maturation agonists (GM-CSF)
and T cell activation agonists (anti-CD27 and anti-CD40) [179]. Notably, the IR doses used
vary greatly across these trials (2–8 Gy fractions of 24–66 Gy total dose). Multiple reports
of clinical abscopal effects are now being described across an array of cancers with this
regime, providing a potential treatment option for advanced cancers that, until now, had
no options but palliative care [178,180,181].

5.2. RadScopal Effect

Expanding on this treatment, it has been suggested that IR delivered directly to a
metastatic lesion may enhance the abscopal effects generated with immunotherapies and
IR to the primary tumor [182,183]. Targeting metastatic disease may release antigens not
associated with primary tumors, enhancing effector responses systemically. This has been
referred to as the ‘RadScopal effect’ and is currently being trialed in multiple cancers [184].
With this treatment, the primary tumor is treated with the conventional IR regime alongside
immune checkpoint inhibitors. In an effort to boost this response, secondary lesions are also
targeted with low-dose fractions (1–2 Gy) [185]. These low-dose interventions are thought
to increase T cell and DC infiltration to the lesions without inducing a complementary
myeloid influx associated with the above-mentioned wound-healing response [186]. The
regime has been proven capable of curing metastatic models in vivo, and several clinical
studies have noted strong growth reductions to both treated and untreated metastatic
sites [182,185–187]. This innovative multi-site IR treatment provides tentative hope for
treating metastatic disease in the future.

6. Conclusions

The effects of IR on the immune landscape of tumors are comprehensive and dynamic
(Figure 2 and Table 1). ICD induced by IR provides a platform for myeloid and lymphoid
cell subsets to infiltrate the tumor and evoke a range of pro-tumor and anti-tumor effects.
Leveraging these responses to force an anti-tumor immune response is key to improving
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treatment responses in the future and reaching IR’s full therapeutic potential. To this end,
combination immunotherapies and the innovative targeting of secondary legions with IR
have broadened the potential disease stage that can be targeted effectively, providing hope
for an advanced disease that has no current treatment options.
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Figure 2. Key immune stimulatory and immunosuppressive events associated with IR treatment
in cancer. Following IR, ICD results in the release of DAMPs, cytokines, chemokines and tumor
antigens which activate APCs and induce the mass infiltration of myeloid and lymphoid cells. Three
key immunological events occur following ICD which dictate the treatment response: (1) APCs
internalize, process and present tumor antigens released by damaged tumor cells and migrate to
the tumor draining lymph node to present these antigens to CD4+ and CD8+ T cells. (2) CD8+

T cells with receptors specific to the tumor antigen localize to the tumor and kill cancers via the
cytolytic enzymes perforin and granzyme B, along with the cytotoxic cytokines IFN-γ and TNF-α.
(3) Immunosuppressive macrophages and MDSCs suppress APC function through a variety of means,
including IL-10 expression, which depletes MHC II on their surface, TGF-β, which polarizes CD4+ T
cells to Tregs, Arginase, which degrades L-argining, a valuable metabolite for T cell function, and
ROS, which also impair T cell function. Neutrophils also utilize arginase and ROS to mitigate T
cell function.

Table 1. Highlighting the effects of IR on various immune cell types. Different immune cell types from
the tumor microenvironment are listed, along with examples of reported effects of IR on their function.

Cell Type Influenced Cancer Model Radiation Dose Response Observed Ref.
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Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 10 of 19 
 

 

ROS, which also impair T cell function. Neutrophils also utilize arginase and ROS to mitigate T cell 
function. 

Table 1. Highlighting the effects of IR on various immune cell types. Different immune cell types 
from the tumor microenvironment are listed, along with examples of reported effects of IR on their 
function. 

Cell Type Influenced Cancer Model Radiation Dose Response Observed Ref. 

APC 

 

Murine pancreatic 
cancer tumor 

4 × 6 Gy fractions 

Increases in calreticulin and HMGB1 
corresponded with elevated tumor-
antigen presentation and increased 

CD8+ T cell inflitration into the tumor 

[34] 

Murine colorectal tumor 20 Gy × 1 fraction 

STING-dependent increases in antigen 
presentation by dendritic cells 

facilitate CD8+ T cell anti-tumor 
immune responses 

[54] 

Murine melanoma 
tumor 

10 Gy × 1 fraction 
Depletion of dendritic cells prevented 
IR efficacy by preventing CD8+ T cell 

infiltration into the tumor 
[128] 

MDSC/Macrophage 

 

Murine colorectal tumor 20 Gy × 1 fraction 

Monocytic MDSC increases in the 
tumor and mediates radioresistence 
by inhibiting CD4+ and CD8+ T cell 

function 

[68] 

Murine prostate tumor 
25 Gy × 1 fraction or 4 

Gy × 15 fractions 

Increases in arginase, iNOS and COX-
2 expression on intratumoral 

macrophages 
[99] 

Murine melonoma 
tumor 

15 Gy × 1 fraction or 5 
Gy × 3 fractions 

Increase in macrophage infiltration to 
the tumor 

[100] 

Neutrophil 

 

Murine soft tissue 
sarcoma 

20 Gy × 1 fraction 
Depleting neutrophils prior to IR 

improved treatment efficacy 
[114] 

Murine prostate, 
lymphoma and 

mammary tumors 

15 Gy × 1 fraction 
(prostate and 

mammary cancers) 
and 1.3 Gy × 1 fraction 

for lymphoma 

Increase in neutrophil infiltration into 
tumors which mediate tumor cell 

apoptosis via ROS production 
[116] 

Murine lung tumor 8 Gy × 3 fractions 

Increase in neutrophil inflitration into 
tumors, which promotes the 

mesenchymal-to-epithelial transition 
in cancer cells via ROS production 

[117] 

Murine bladder tumor 
2 Gy × 1 fraction, 5 Gy 
× 2 fractions or 10 Gy × 

1 fraction 

Increased production of neutrophil 
extracellular traps that mediate 

radioresistence by inhibiting CD8+ T 
cell tumor infiltration 

[121] 

T cell 

 

Murine melanoma 
tumor 

10 Gy × 1 fraction 
Depleting CD8+ T cells abrogates 

treatment efficacy 
[128] 

Murine colon tumor 15 Gy in 1 fraction 
Depleting CD8+ T cells abrogates 

treatment efficacy 
[13] 

Human pancreatic 
cancer patients 

5 Gy × 5 fractions 
T cell clonal expansion in a subset of 

patients 
[132] 

Human renal cell 
carcinoma patients 

15 Gy × 1 fraction T cell clonal expansion [131] 

Murine pancreatic
cancer tumor 4 × 6 Gy fractions

Increases in calreticulin and HMGB1
corresponded with elevated

tumor-antigen presentation and increased
CD8+ T cell inflitration into the tumor

[34]

Murine colorectal
tumor 20 Gy × 1 fraction

STING-dependent increases in antigen
presentation by dendritic cells facilitate

CD8+ T cell anti-tumor immune responses
[54]

Murine melanoma
tumor 10 Gy × 1 fraction

Depletion of dendritic cells prevented IR
efficacy by preventing CD8+ T cell

infiltration into the tumor
[128]



Int. J. Mol. Sci. 2023, 24, 7359 10 of 18

Table 1. Cont.

Cell Type Influenced Cancer Model Radiation Dose Response Observed Ref.
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