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Abstract: Irinotecan (SN-38) is a potent and broad-spectrum anticancer drug that targets DNA topoi-
somerase I (Top1). It exerts its cytotoxic effects by binding to the Top1-DNA complex and preventing
the re-ligation of the DNA strand, leading to the formation of lethal DNA breaks. Following the
initial response to irinotecan, secondary resistance is acquired relatively rapidly, compromising its
efficacy. There are several mechanisms contributing to the resistance, which affect the irinotecan
metabolism or the target protein. In addition, we have demonstrated a major resistance mechanism
associated with the elimination of hundreds of thousands of Top1 binding sites on DNA that can
arise from the repair of prior Top1-dependent DNA cleavages. Here, we outline the major mecha-
nisms of irinotecan resistance and highlight recent advancements in the field. We discuss the impact
of resistance mechanisms on clinical outcomes and the potential strategies to overcome resistance
to irinotecan. The elucidation of the underlying mechanisms of irinotecan resistance can provide
valuable insights for the development of effective therapeutic strategies.

Keywords: irinotecan; drug resistance; topoisomerase I; dose escalation; chemotherapy; DNA repair;
DNA damage response

1. Introduction

Irinotecan (CPT-11) is a chemotherapeutic agent that causes cancer cell killing by poison-
ing topoisomerase I (Top1) in the cell. It is a semisynthetic analog of camptothecin, which was
originally isolated from the Chinese/Tibetan ornamental tree Camptotheca acuminata [1–3].
Resistance model-based studies uncovered several mechanisms of cellular resistance to
this agent and, accordingly, multiple approaches were tested in clinical trials to circumvent
the resistance [4–6]. Beside primary resistance, the major clinical problem is development
of secondary resistance in the course of the drug treatment, which is often observed with
DNA-damaging chemotherapeutic drugs, such as irinotecan [7–9] or doxorubicin [6,10,11].
It is commonly understood that the development of drug resistance in cancer cells is defined
by the change in expression or function of the target protein [8,12], changes in the ability of
cells to undergo cell death [13–15], or changes in drug metabolism [16–19].

Importantly, both in experimental and clinical settings, secondary resistance usu-
ally develops gradually in the course of multiple exposures to the drug. It is unclear
why changes in transcriptome [9,12,16,18–21], metabolism [12,22,23], or mutations in
drug targets [7,12,24–30] do not appear abruptly but require multiple drug administra-
tions [12,14,16,31,32]. This puzzling requirement suggests a distinct mode of resistance that
may require a gradual accumulation of a large number of mutations or epigenetic events.
Each of these events may have a minor effect on the drug response, but cumulatively they
provide significant resistance. Here, we discuss novel evidence for the existence of such a
mechanism in the development of resistance to irinotecan.

2. Irinotecan’s Mode of Action

One of the classes of drugs that are frequently used in cancer therapy is inhibitors of
DNA supercoil relaxing topoisomerases, including Top1 and Top2. Type I topoisomerases
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(Top1) cause relaxation of super helical DNA by generating a transient single-strand
nick, followed by DNA relaxation and re-ligation. The enzyme subtypes perform very
specialized functions, e.g., Class IA can only relax negative supercoiled DNA, whereas Class
IB can introduce positive supercoils, relaxing and separating DNA molecules in daughter
chromosomes after DNA replication. Top1 plays major role in transcription and replication
and is highly active in pericentromeric and centromeric regions of the genome [33–39]. In
contrast, type II topoisomerases (Top2) mediate ATP-dependent cleavage of both strands
of the DNA double helix, followed by crossing of the DNA double-strand (ds) through
the transiently opened gap [40]. Mammalian cells have two Top2 isoenzymes, Top2α
and Top2β [35]. Top2α is associated with DNA replication and, as a consequence, cell
proliferation, while Top2β may play a role in transcription [39,41].

Major Top1 or Top2 inhibitors function by stabilizing the transient complexes formed
between these enzymes and DNA [37,42]. Stabilization of these otherwise fleeting “cleav-
able complexes” can lead to formation of double-strand breaks (DSBs) when the DNA
replication forks collide with the topoisomerase-DNA complexes [37,42]. Similarly, the
inhibitor-stabilized Top1 or Top2 “cleavable complexes” located on the transcribed template
strand can also result in the formation of DSBs when RNA polymerase molecules collide
with them within the transcribed DNA regions [40]. DSBs are recognized by the cell as
lethal lesions and can trigger apoptosis [43,44]. These cytotoxic effects are responsible for
the anti-cancer activity of topoisomerase inhibitors.

A most widely used Top1 inhibitor, irinotecan is a prodrug that, upon activation,
generates an active compound, SN-38 [2,45–48]. Upon treatment of cancer cells, SN-38
binds to Top1 and stabilizes Top1-DNA complexes [2,49] (Figure 1). The SN-38 molecule
stacks against the base pairs flanking the Top1-induced cleavage site and poisons the
enzyme [2,49]. This conversion suppresses the 3′-OH free end and makes it unavailable for
re-ligation. Inhibition of re-ligation of nicked DNA strands leads to single strand breaks,
which have a high probability of conversion to highly toxic DSB. As the drug works not
only during transcription [50], but also during replication, these DNA-Top1-SN38 covalent
adjuncts could lead to replication fork stalling and the arrest of DNA replication.
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Figure 1. The mechanism of DNA generation breaks upon irinotecan exposure. Normal function of 
Top1: ① supercoiled sensing and nick development by Top1 leads to ② relaxation, then ③ Top1 
re-ligates the nicked backbone and leaves the site. In the case of irinotecan exposure, Top1 gets co-
valently crosslinked to DNA, then ④ ligation of 3′-OH free end is blocked, which could translate 
into ⑤ double strand break and facilitate cytotoxicity.  

Figure 1. The mechanism of DNA generation breaks upon irinotecan exposure. Normal function
of Top1: 1© supercoiled sensing and nick development by Top1 leads to 2© relaxation, then 3© Top1
re-ligates the nicked backbone and leaves the site. In the case of irinotecan exposure, Top1 gets
covalently crosslinked to DNA, then 4© ligation of 3′-OH free end is blocked, which could translate
into 5© double strand break and facilitate cytotoxicity.

High-intensity transcription and replication enhances the supercoiling of DNA to
levels that can impede or halt these processes. As a potent transcription amplifier and repli-
cation accelerator, the proto-oncogene MYC must manage this interfering torsional change.
In a recent study, a direct association of MYC with Top1 and Top2 was demonstrated [51].
Beyond recruiting topoisomerases, MYC directly stimulated their activities. These MYC
complexes with Top1 and Top2 increased their activities at promoters, coding regions, and
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enhancers [51]. Such enhancement of the activity of Top1 and its recruitment to DNA may
create additional cleavage sites upon the drug treatment. In line with this suggestion, it was
demonstrated that the overexpression of MYC enhances the sensitivity of colon cancer cells
to the parental drug, camptothecin [51,52]. At the same time, MYC can activate the DNA
damage response, which results in induction of the DSB repair system [51]. This in turn
could reduce the response to irinotecan, since DSB repair plays a critical role in survival of
cells treated with irinotecan.

3. Clinical Use of Irinotecan

In the USA, irinotecan has been approved for use against colorectal cancer in combina-
tion with 5-fluorouracil (5-FU) and leucovorin (FOLFIRI regimen). With therapy regimens
like FOLFIRI, the median survival rate of a patient with metastatic colorectal cancer has
improved from 8 months to 24 months [47]. Irinotecan is also used in combination with
Capecitabine (pro-drug of 5-FU) (XELIRI regimen). Currently, both regimens are considered
first-line therapy for cancer treatment. Several studies have been conducted to assess the
effects of these combinations, and they have demonstrated that they are equally effective,
with certain variations in median survival rates [1,53–59]. The usage of these schemes
is defined by several factors such as geographical regions, patient genetics, individual
response rate, oncologist’s preference, and socio-economic factors.

Another promising combination of irinotecan is with antibodies against EGFR, such
as Cetuximab, for treatment of patients with wild-type K-Ras colorectal cancers and certain
other cancer types, with 5-FU/leucovorin as a first-line treatment [60]. It is important to note
that initial studies suggested that patients with colorectal tumors characterized by high mi-
crosatellite instability (MSI) might respond better to irinotecan-based chemotherapy [61,62].
However, subsequent data did not support a predictive value of MSI status in relation to
treatment response [63,64].

4. Irinotecan Analogs and Derivatives with Improved Properties

Beside irinotecan, there are several camptothecin derivatives poised to become phar-
macological agents in various cancer treatment protocols. Among them, exatecan shows
a great promise; it is 6 times more active than SN-38 and 28 times more active than
topotecan [65,66]. In a recent study, the therapeutic effects of exatecan mesylate in its salt
form (DX-8951f) were compared to effects of other FDA-approved camptothecin deriva-
tives, such as irinotecan and topotecan, using human tumor xenografts in nude mice [67,68].
A total of sixteen human cancer lines were examined, of which six were colon cancer. Under
the treatment conditions, the tumor growth inhibition rate (IR) of exatecan was superior to
that of irinotecan or topotecan [66]. Importantly, irinotecan could be rendered ineffective
due to the multidrug resistance pump-mediated efflux [68–74]. Exatecan, however, may
overcome this resistance because it has a low affinity to MDR transporters [66]. Despite
these favorable characteristics, exatecan remains in phase III clinical trials and has not
yet been clinically approved because of its significant myelotoxicity [75]. Furthermore,
as with other Top1 inhibitors, exatecan demonstrates a gastrointestinal and bone marrow
toxicity [75]. Accordingly, an exatecan derivative, deruxtecan (Dxd), has been developed,
which represents a conjugate with trastuzumab, a Her2-targeting antibody. Having similar
inhibitory effects, deruxtecan has lower myelotoxicity than exatecan [76]. It has a greater
safety, and has been approved by the FDA for the treatment of breast cancer or gastric or
gastroesophageal adenocarcinoma [76,77].

Dxd and other developed conjugates of irinotecan derivatives with antibodies (TOP1-
ADC) provide a series of advantages. Monoclonal antibody-mediated active targeting
offers both selectivity and extremely high affinity because of specific antibody–antigen
binding, which can distinguish tumor versus healthy cells based on antigen expression
levels [66,78]. Consequently, TOP1-ADC is an effective approach to enhance the anti-tumor
activity of both the monoclonal antibody and the Top1 inhibitor. Moreover, conjugation
of the cytotoxic agent to the large, hydrophilic antibody restricts the penetration of the



Int. J. Mol. Sci. 2023, 24, 7233 4 of 15

cytotoxic compound across the cellular membranes of antigen-negative normal cells, further
lessening off-target side effects [65,79–81].

5. Irinotecan Activation and Detoxification

Upon administration through intravenous injection, a fraction of irinotecan is con-
verted in the blood to active form SN-38 by carboxylesterases, which could lead to circula-
tory or digestive complications [82]. Nevertheless, the major portion of the drug reaches the
liver for detoxification. Irinotecan uptake and transport into the liver is facilitated by multi-
ple pumps, including OATP1B1 (SLCO1B1), ABCB1, MRP1 (ABCC1), MRP2 (ABCC2), and
MXR (ABCG2) [83,84]. In the liver, inactive form irinotecan is converted to an active form
SN-38 by the low affinity carboxylesterases CES1 and CES2 with a relatively low efficiency
(<3%) [27,85]. In an alternative pathway, irinotecan could be oxidized, resulting in the inac-
tive metabolites APC (7-ethyl-10-[4-N-(5-aminopentanoic acid)-1-piperidino] carbonyloxy-
camptothecin) and NPC (7-ethyl-10-[4-(1-piperidino)-1-amino] carbonyloxycamptothecin)
(Figure 2). NPC can also be metabolized into active SN-38 by CES1 and CES2. Further,
SN-38 could undergo glucuronide conjugation by UGT1A1 (UDP-glucuronosyltransferase)
and enter the detoxification pathway (Figure 2) [83,85,86]. SN-38 glucuronide (SN-38G)
is excreted in the gut and is hydrolyzed by β-glucuronidase. Alternatively, SN-38 can
be oxidized and inactivated by the P450 CYP3A. Components that are produced from
irinotecan metabolism are highly pH sensitive, and hence, at any point these metabolites
could become active or inactive [87]. Irinotecan resistance can be attributed to one or many
intermediate points in this metabolic pathway, as discussed below.
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6. Systems That Control Irinotecan Resistance
6.1. Glucuronidation and Irinotecan Resistance

High sensitivity to irinotecan associates with genetic variance in the UGT1A, CYP3A,
and ABC gene families which play a major role in the metabolism of the drug [23,49,88].
Since SN-38 is glucuronidated by a family of UGT1A enzymes [28], colon, lung, and
breast cancer cells that have high expression levels of UGT1A demonstrate resistance to
SN-38. Furthermore, meta-data-based pharmacogenetic study of colorectal cancer pa-
tients established strong associations between germline variants of UGT1 and clinical
outcomes, and have strongly supported the role of the UGT1A enzyme pathway in medi-
ating the response to SN-38 [89,90]. The best example pertains to the clinically actionable
marker UGT1A1*28, which is associated with reduced UGT1A1 activity and irinotecan-
induced severe neutropenia [16,90] (Figure 2). Subsequently, in 2005, the US Food and
Drug Administration (FDA) issued a recommendation for UGT1A1*28 testing of potential
irinotecan users [91].

Members of the drug transporting system responsible for irinotecan influx from blood
to hepatocytes, such as SLCO1B1, may also be involved in severe toxicity to irinotecan
(Figure 2). The presence of a genetic variant of SLCO1B1 (521T > C) was correlated with
higher toxicity in metastatic colorectal cancer patients treated with irinotecan as the first
line of treatment [47,49,92]. It was hypothesized that the 521T > C variant somehow alters
the membrane permeability of the drug and enhances the transport of the drug inside
the cells [92].

6.2. Cytochrome P450 and Irinotecan Resistance

Another critical pathway that orchestrates response to irinotecan is P450 enzymes.
Irinotecan is metabolized by intrahepatic cytochromes P450, i.e., CYP3A4 and CYP3A5,
into inactive metabolites—APC and NPC [48,93] (Figure 2). In contrast to APC, NPC can
be converted to SN-38 by CES1 and CES2 in the liver [94]. Further, the CYP3A5*3 poly-
morphism, which leads to reduced enzyme activity, has been associated with significantly
longer progression-free survival in patients with metastatic colorectal cancer (CRC) [95,96].
Furthermore, there was a statistically significant correlation between CYP3A5 expression
and tumor response to irinotecan therapy, suggesting a tumor-autonomous resistance to
the treatment through increased CYP3A5-mediated metabolism [95].

6.3. MDR Pumps and Irinotecan Resistance

A very important factor that defines the development of resistance is ATP-binding
cassette (ABC) transporters, such as the multi-drug resistance 1 P-glycoprotein gene
(ABCB1) and the multi-drug resistance-associated protein 2 gene (ABCC2) (Figure 2),
which facilitate the efflux of irinotecan and its metabolites [91,97]. Overexpression of
ABCG2 is even more significant in irinotecan resistance [21,73,98]. Cell-based assays
showed that higher resistance was observed for SN-38 (approximately 50-fold), irinotecan
(17–48-fold), and topotecan (approximately 40-fold) in ABCG2-overexpressing cells com-
pared to ABCB1-overexpressing cells [32,99,100]. To counter the resistance provided by the
ABCG2 transporter, SN38-loaded pegylated (polyethylene glycol) PLGA [poly(lactic-co-
glycolic acid)]-verapamil nanoparticles (NPs) were developed. Because of the verapamil
component, the compound inhibits MDR pumps and, in addition, it reduces expression
of ABCG2 [21,73,98,98,101]. In conclusion, sufficient uptake of SN38-PEG-PLGA-Ver NPs
and a significant decrease in expression of ABCG2 were achieved, indicating a successful
approach towards counteracting resistance associated with drug efflux.

6.4. Xenobiotic Receptors and Irinotecan Resistance

The xenobiotic receptors PXR/SXR and the retinoic receptor RXR that regulate ex-
pression of UGT1A1, CYP3A4 and ABC transporters significantly contribute to irinotecan
resistance [102–104]. For example, cDNA-mediated expression of PXR in cultured colon
cancer cells LS174T made the cells resistant to SN-38 by enhancing the glucuronidation
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of SN-38 to SN-38G [103,105]. Conversely, shRNA-mediated downregulation of PXR de-
creased the SN-38G/SN-38 ratios, in accordance with UGT1A1 downregulation [105]. In a
feedback loop, SN-38 activates PXR in human colon cancer cell lines and induces CYP3A4,
CYP3A5, UGT1A1, and the ABC transporter, ABCC2 [103,105]. This resistance was re-
versed by PXR repression [17]. Similarly, endogenous SXR is activated in response to
SN-38 [71] and binds to the promoter of the CYP3A4 gene to induce its expression. Further
using ChIP, it was demonstrated that SXR translocates into the nucleus and associates with
RXR upon SN-38 treatment. RNA interference experiments confirmed SXR involvement in
CYP3A4 expression and identified CYP3A5 and ABCC2 as SXR target genes. Consequently,
cells overexpressing SXR show reduced sensitivity to irinotecan treatment [71]. Therefore,
activation of PXR/SXR results in induction of various drug-metabolizing enzymes and
drug transporters, all of which play a role in the disposition and excretion of irinotecan,
SN-38, and SN-38G, though detailed mechanisms of this regulation remain unclear.

6.5. Cancer Cell Stemness and Irinotecan Resistance

An important factor in resistance to irinotecan-containing therapies is cancer cell
stemness. Cancer stem cells (CSC) have self-renewing capabilities due to the expression
of a series of transcription factors, such as NANOG, OCT4, or SOX2. Generally, CSC
demonstrate drug resistance due to a number of properties, including low rate of division,
thus spending the majority of time in G0 [106], high levels of expression of cytochrome
p450 isoforms [48], high levels of MDR pumps [21,48,107], and other factors.

Indeed, expression of CD133, a marker for stemness of CRC, was found to correlate
with the resistance. Such CD133+ tumorigenic cells in colon cancer represent approxi-
mately 2.5% of the total tumor cells [108]. These cells are able to initiate tumor formation
in mice and spheroids in 3D culture. These cells demonstrated high resistance to irinote-
can [109,110]. Furthermore, losing expression of CD133 in adherent culture correlated
with the loss of the resistance [109,110]. One factor of the resistance was probably high
expression of CYP3A4 [18]. Another possible contributor to the resistance was elevated
levels of ABC transporters [111], coupled with an increased mitochondrial ATP output. For
example, ABCG2 is overexpressed in colon CSCs [112], and was reported to be a major
driver of drug resistance of these cells. Furthermore, overexpression of ABCG2 could
potentially be a general marker of CSC [98,101,113,114].

6.6. Autophagy and Irinotecan Response

DNA breaks following irinotecan treatment can activate apoptosis via p53 and other
mechanisms [43,53,115]. In parallel, they activate a protective autophagy that has a tu-
mor promoter effect, since it provides tumor cells with energy and amino acids required
for survival and proliferation [116,117]. Activation of autophagy by irinotecan involves
the JNK- and p38-MAPK signaling pathways and generation of reactive oxygen species
(ROS) [117,118]. Autophagy was identified as an important mechanism of resistance to
irinotecan treatment in cancers and cancer cells [116,117,119]. Clinical data further support
the role of autophagy in the irinotecan resistance. Indeed, in CRC patients undergoing
irinotecan chemotherapy, overexpression of autophagy-associated proteins, such as Beclin-
1, associates with low survival [116,118,120–122]. Furthermore, a series of preclinical
studies demonstrated that autophagy inhibitors, such as chloroquine/3-methyladenine,
can reverse CRC resistance to irinotecan [117,122–124]. Moreover, in a recent study, toosen-
danin (TSN) that blocks autophagy flux could sensitize triple-negative breast cancer cells
to SN-38/irinotecan-induced cytotoxicity both in vitro and in vivo [125]. Altogether these
findings suggest that inhibition of autophagy may become an interesting approach towards
improving the response to irinotecan therapy.
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7. Mutations That Change Top1 Conformation and Function

Expression of the irinotecan target Top1 was reported to be a predictive biomarker
for irinotecan sensitivity [34,126]. Furthermore, resistance to Top1-targeting drugs can be
developed via mutations that affect Top1 structure or expression [7,8,24].

Top1 has four domains: the NH2-terminal domain (residues 1–214), the core domain
(residues 215–635), which can be divided into subdomains I, II, and III, the linker domain
(residues 636–712), and the COOH-terminal domain (residues 713–765). The poorly con-
served linker domain, which connects the core and COOH-terminal domains, is highly
flexible [127] and is dispensable for the catalytic activity [12]. Nevertheless, the lack of a
functional linker associates with reduced sensitivity to irinotecan [127–129]. It was pro-
posed that increasing flexibility of the linker domain alters the conformation imposed by
the drug binding, giving rise to the irinotecan-resistant enzyme [127–129].

A number of point mutations in Top1 that confer resistance to SN38 have been identi-
fied in tumor cell culture (e.g., p.F361S, p. R364H, p.E418L, p.G503S, p.D533G, p.A653P, and
p.N722S) (Figure 3). However, these mutations have not been seen in clinical samples. This
apparent contradiction is probably related to mutants’ reduced growth rate [24,128–130].
Accordingly, in a heterogenic tumoral population where there is ample diversity among the
clones, a fraction of Top1 mutation-carrying clones could be low and, therefore, not picked
up in mutation analysis [24,130]. In addition to point mutations in Top1, copy number
variations of the Top1 gene that associate with resistance were also reported in different
cultured cancer cells [131].

Figure 3. Crystal structure model for topoisomerase I. (A) Showing two domains, DNA placement
and cleavage, (B) sections showing Top1 wrapped around DNA, (C) Irinotecan-resistance mutations
in Top1 (not exact scale and is for representation based on data from public depository, http://doi.
org/10.2210/pdb1k4t/pdb, accessed on 12 February 2023).

8. Novel Mechanisms of Drug Resistance to SN-38 Involve Mutations at Top1 Binding
Sites That Reduce Top1-Mediated DNA Cleavage [36]

In a recent development, we studied a puzzling need of multiple exposures to drugs
in selection of resistant cancer cell mutants in culture. Our investigation involved a cloned,

http://doi.org/10.2210/pdb1k4t/pdb
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genetically identical population of HCT116 colon cancer cells. This model could recapitu-
late clinical conditions in clonal emergence and evolution of cancers. Multiple exposures
of the genetically identical population to irinotecan in a dose escalation setting led to the
evolution of drug resistance. Our initial expectation was that conventional resistance mech-
anisms would emerge, such as Top1 mutations or alterations in the transcriptome landscape
that could promote cell survival. To elucidate these mechanisms, we independently se-
lected three clones and conducted whole genome sequencing and transcriptome analysis,
comparing them to the parental irinotecan-sensitive clone. Surprisingly, RNAseq did not
demonstrate any changes in gene transcription related to drug metabolism, detoxification
mechanisms, or MDR pumps, indicating that alterations in the transcriptome were unlikely
to be involved in the development of resistance.

Importantly, we detected hundreds of thousands of SNPs and InDels in the resistant
mutants compared to the parental clone. Among them, we did not find mutations that
affect Top1 or genes that belong to pathways associated with either cell survival or DNA
repair. Therefore, it is unlikely that changes in gene function or expression are involved in
this adaptation process (Figure 4).

Figure 4. Study model for dose escalation-mediated drug resistance. Resistance mutations result
from cycles of creating DSB and their repair at the Top1-binding sites.

Strikingly, 15% of the mutations in the three independent isolates were identical.
This large number of common mutations clearly indicates a non-random mechanism
for their generation. Metadata analysis indicates that the mutations occurred at Top1
binding/cleavage sites in the genome. Interestingly, the majority of these sites corresponded
to various types of satellites, including alpha satellites and satellite-II, indicating that Top1
preferentially interacts with and cleaves DNA at satellite sites. In the parental clone of the
HCT116 cells, we observed a significantly higher number of these sites than in the reference
genome that represents an average of several normal human genomes. Considering that
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the HCT116 line demonstrates satellite instability, it appears that this instability generates
additional Top1 binding/cleavage sites in the process of cancer evolution. This increased
number of Top1 sites may significantly contribute to the elevated sensitivity of these cells
to irinotecan.

Importantly, mutations generated in the irinotecan resistance mutants carried signa-
tures of the double strand breaks repair mechanisms (HR: Homologous recombination
and NHEJ: Non-homologous end joining). Accordingly, considering their locations at the
Top1-binding sites, these mutations must result from the repair of DSB created by Top1
upon SN-38 treatments.

The most striking finding was that in the case of heterozygocity in the parental clone:
where one allele was normal (found in the reference genome) and another one mutated due
to cancer evolution, the latter allele was lost preferentially upon development of irinotecan
resistance. Such loss of heterozygocity can only result from the HR repair of DSB. The
disproportionately high loss of the “cancer allele” indicated that Top1-generated DSB took
place in this allele preferentially, and it was repaired by copying of the reference genome
sequence from the homologous chromosome. Therefore, reversion to the normal reference
genome allele upon treatment with SN-38 must eliminate the Top1 cleavage/binding
site at this place. Accordingly, we hypothesized that upon initial treatments with SN-38,
Top1 that associates with specific binding sites on the chromosomes creates single strand
breaks that can be converted to toxic DSB at these sites. Repair of these DSBs via HR
(and possibly NHEJ) creates mutations at these sites that prevent binding of Top1 to them
upon following exposures to the drug. Indeed, in the resistant mutants, we observed a
significantly reduced association of Top1 with the genome. Furthermore, upon exposures
of the resistant mutants to SN-38, we observed dramatically fewer DSB, as monitored by
formation of the γH2AX foci [36].

Taken together, these findings suggest that the primary pathway for adaptation to SN-
38 is not linked to functional gene mutations, such as Top-1, or alterations in gene expression.
Rather, mutations are generated after each exposure to the drug, which effectively “close”
Top1 binding/cleavage sites on the chromosomes. These mutations gradually accumulate
upon multiple exposures and ultimately render cells resistant to the drug. In other words,
the development of irinotecan resistance is an inherent feature of the drug’s mechanism of
action, where resistant mutations are directly produced from the repair of DSBs caused by
Top1. Due to this intrinsic mechanism, resistance can be acquired rapidly, within just a few
cycles of drug administration.

These findings suggest interesting strategies for the suppression of the development
of irinotecan resistance. Indeed, the uncovered mechanism of the resistance development is
dependent on the efficiency of the DSB repair. According to this analysis, HR repair is the
major factor in generating resistance mutations, but NHEJ may also be actively involved in
their generation. Therefore, the model predicts that inhibiting HR alone or in combination
with NHEJ would not only increase the sensitivity of cancer cells to irinotecan, but also
prevent the development of secondary resistance.

Another interesting conclusion from this mechanism is that, since the number of Top1
sites is gradually reduced upon development of the resistance, Top1’s ability to relax DNA
supercoils should gradually get reduced. Since relaxation of DNA supercoils is essential
for replication and transcription, the DNA relaxation activity of Top1 must be taken over
by another enzyme, most likely Top2. Accordingly, development of resistance to irinotecan
may enhance sensitivity of cells to Top2 inhibitors, such as doxorubicin. This possibility
may guide the patient treatment strategy.
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