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Abstract: Depression is a common mental disorder that seriously affects the quality of life and leads
to an increasing global suicide rate. Macro, micro, and trace elements are the main components
that maintain normal physiological functions of the brain. Depression is manifested in abnormal
brain functions, which are considered to be tightly related to the imbalance of elements. Elements
associated with depression include glucose, fatty acids, amino acids, and mineral elements such
as lithium, zinc, magnesium, copper, iron, and selenium. To explore the relationship between
these elements and depression, the main literature in the last decade was mainly searched and
summarized on PubMed, Google Scholar, Scopus, Web of Science, and other electronic databases
with the keywords “depression, sugar, fat, protein, lithium, zinc, magnesium, copper, iron, and
selenium”. These elements aggravate or alleviate depression by regulating a series of physiological
processes, including the transmission of neural signals, inflammation, oxidative stress, neurogenesis,
and synaptic plasticity, which thus affect the expression or activity of physiological components
such as neurotransmitters, neurotrophic factors, receptors, cytokines, and ion-binding proteins in the
body. For example, excessive fat intake can lead to depression, with possible mechanisms including
inflammation, increased oxidative stress, reduced synaptic plasticity, and decreased expression of 5-
Hydroxytryptamine (5-HT), Brain Derived Neurotrophic Factor (BDNF), Postsynaptic density protein
95(PSD-95), etc. Supplementing mineral elements, such as selenium, zinc, magnesium, or lithium as
a psychotropic medication is mostly used as an auxiliary method to improve depression with other
antidepressants. In general, appropriate nutritional elements are essential to treat depression and
prevent the risk of depression.

Keywords: depression; macronutrients; mineral elements; appropriate supplementation; overdose
or deficiency

1. Introduction

Depression is one of the most common mental disorders globally, with an estimated
280 million people in the world suffering from it [1]. At worst, severe depression can lead
to suicide. Not only does depression bring mental problems to the patients themselves, but
it also causes financial and social burdens to their families and society [2].

The monoamine theory has influenced the development of major antidepressant
treatments, including monoamine oxidase inhibitors (MAOIs), selective serotonin reup-
take inhibitors (SSRIs), and serotonin-norepinephrine reuptake inhibitors (SNRIs). These
inhibitors are functional by increasing monoamine levels (5-hydroxytryptamine, nore-
pinephrine) to treat depression [3]. With accumulated studies on depression, other bio-
chemical and physiological factors have also been implicated in the pathogenesis of depres-
sion, including brain-derived neurotrophic factor (BDNF)-related neurotrophic atrophy [4],
inflammation [5], hypothalamic–pituitary–adrenal (HPA) axis dysfunction [6], etc. Among
them, the role of nutrients in depression has attracted more and more attention [7].
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The nutritional elements have been reported to help maintain a stable mental state, and
an imbalance of them is closely related to depression [8]. As shown in Figure 1, this review
will explore the relationship between the imbalance of some nutrients and depression
and summarize that the excess or deficiency of nutrients can increase the incidence of
depression, thus maintaining the balance of corresponding nutrients can help reduce the
incidence of depression. Moreover, appropriate supplementation of some mineral elements
is considered to help treat depressed patients. The possible physiological processes and
molecular mechanisms involved are discussed based on experiments.
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2. Overdose or Deficiency of Macronutrients Elements Increase the Risk of Depression
2.1. Dietary Sugars

Glucose is the primary source of energy for the human brain. ATP produced by
glucose metabolism is the basis for maintaining neuronal and non-neuronal cell functions
in the brain, such as producing neurotransmitters and nerve impulses [9]. Most sugars are
metabolized in the body to produce glucose. There are many sugars in sweets, beverages,
and candies. Many studies have shown that the excessive intake of sweets, sugar-sweetened
beverages, and candy increases the risk of depression. Guo et al. have shown that regular
consumption of sugar-sweetened beverages might increase the risk of depression in older
Americans [10]. A study by Vermeulen et al. in a Dutch population also showed that a
dietary pattern high in sugar (HS) increases the risk of depression [11]. The result of a 3-year
follow-up survey by Shimmura et al. showed that high candy consumption significantly
increases the risk of depression among Japanese workers, with 16.8% of high candy eaters
experiencing depressive symptoms [12]. A study by Kashino et al. also showed that
Japanese people who drink ≥4 cups of sugar-sweetened beverages per week have a 91%
higher risk of depression than those who drink <1 cup/week [13]. A meta-analysis study
indicated that people who consume 2 cups of cola per day have a 5% increased risk of
depression, while those who consume the equivalent of 3 cans of cola per day have an
approximately 25% increased risk of depression [14]. The research among Chinese people
has also demonstrated that a high-sugar diet increases the odds of depression [15,16]. A
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study in the Spanish population found that consumption of added sugars was associated
with a significantly increased risk of depression but no significant association between the
consumption of sugar-sweetened beverages and the risk of depression [17]. A study on
the Korean population suggested that beverage intake increases the risk of depression in
women but decreases the risk in men. The differences may be due to different statistical
methods for sugar intake and evaluation criteria for depression [18]. Moreover, a high-
sugar diet is prone to diabetes and obesity, which are also risk factors for depression [19,20].
In addition to sugar, sugary drinks and desserts may add sweeteners and other ingredients,
the excessive intake of which may also be associated with the occurrence of depression, but
there is currently a lack of relevant research with follow-up studies. A study has shown that
fasting blood glucose concentrations (FBG) were significantly elevated in major depressed
patients compared to healthy subjects (4.73 ± 0.45 vs. 4.52 ± 0.43 mmol/L, p < 0.01) [21].

The possible physiological processes and physiological components of a high-sugar
diet affecting depression might be considered in the following pathways: 1. Neural signals:
it affects the content of 5-Hydroxytryptamine (5-HT) in the brain. Animal experiments
showed that a high-sugar diet reduces the activity of dendritic 5-HT-1A receptors, which
may impede the feedback control of serotonin synthesis and release in the hypothalamus
leading to a decrease in 5-HT [22]. 5-HT is a crucial monoamine neurotransmitter, and its
decreased content in the brain is one of the critical factors leading to depression [23]. 2. In-
flammation and pro-inflammatory factors. A meta-analysis study by Köhler et al. indicated
that pro-inflammatory factors such as interleukin-6(IL-6), tumor necrosis factor-α(TNF-α),
interleukin-13(IL-13), interleukin-12(IL-12), etc., are significantly elevated in major de-
pressive disorder (MDD) patients, which associates inflammation with depression [24].
Lipopolysaccharide (LPS) is a commonly used inflammatory inducer. Experimental studies
have shown that LPS induces inflammation in rodents at the same time as depression-
like symptoms [25,26], indicating there might be a correlation between inflammation and
depression. Do et al. showed that a high-sugar diet could induce inflammation and
depression-like behavior in mice. Moreover, they found that a high-sugar diet may induce
inflammation by altering the gut microbiota and intestinal permeability [27]. 3. Synaptic
plasticity and the expression of brain-derived neurotrophic factor (BDNF). The level of
BDNF in the serum of patients with MDD is significantly lower than that of healthy patients,
and after receiving antidepressant treatment, the level of BDNF in the patient’s body is
significantly increased. BDNF can be used as a biomarker of depression or as a measure
of antidepressant efficacy predictors [28]. Another study showed that low plasma BDNF
is associated with suicidal behavior in major depression [29]. BDNF is widely expressed
in the developing and adult mammalian brain and has been implicated in development,
neural regeneration, synaptic transmission, synaptic plasticity, and neurogenesis [30]. A
deficiency of BDNF or Trk receptors does not induce depression, but antidepressants are
required to increase BDNF activity and restore neuronal networks [31]. In rodent models, a
high-glucose diet can reduce the expression of BDNF, synapsin I, cyclic AMP-responsive
element-binding protein (CREB), and growth-associated protein 43, which affect synaptic
plasticity [32]. Another study showed that after one week of feeding rats with high sugar
and fat, dendritic spines and dendritic branches in the CA1 region of the rat brain were
significantly reduced [33].

2.2. Dietary Fat

A study showed that fat content is a risk factor for depression [34]. Fat accumulation
in the body leads to obesity, which is also a risk factor for depression. A meta-analysis
displayed that obese individuals have an 18% increased risk of depression [35]. An intrac-
erebral study showed a 40% increased risk of depression in obese adolescents [36]. After
dietary fat is metabolized and absorbed by the human body, it will be mainly converted
into triglycerides (TG), total cholesterol (TC), etc. High-density lipoprotein cholesterol
(HDL-C) and low-density lipoprotein cholesterol (LDL-C) are the main components of
total cholesterol. TG, TC, HDL-C, and LDL-C are four items of blood lipid tests [37]. Peng
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et al. showed that HDL-C in the blood is significantly higher in major depressed patients
compared to healthy subjects (1.31± 0.32 vs. 1.24± 0.300 mmol/L, p < 0.01); however, there
are no significant changes in LDL-C, TC, and TG [21]. Another study showed a significant
association between high levels of HDL-C (≥1.04 mmol/L) and depression in adult men
and between high levels of TG (≥1.7 mmol/L) and depression in adult women [38]. How-
ever, Enko et al. observed that HDL-C is significantly lower in major depressed patients
compared to healthy subjects (1.43 [1.97–4.01] vs. 1.60 [1.23–1.89] mmol/L, p = 0.049),
and TG is significantly higher (1.08 [0.76–1.54] vs. 0.84 [0.63–1.32] g/L, p = 0.014) [39]. A
recent Mendelian randomization analysis by So et al. reported a positive association of
HDL-C with major depressed patients, but increased HDL-C is causally associated with
fewer depressive symptoms. The reasons for the discrepancy may involve the different
evaluation criteria for depression and the heterogeneity of samples [40]. It suggests that
abnormal HDL-C and TG may be risk factors for depression, which need further research.
In addition to research in humans, there is a similar phenomenon in rodents. Mice given a
high-fat diet (HFD) for 12 weeks developed depressive-like behaviors, and then switching
the high-fat diet to a standard diet for 4 weeks eliminated the depressive-like behaviors in
mice [41]. After administration of an HFD in BALB/c mice, high-density lipoprotein choles-
terol and low-density lipoprotein cholesterol are strongly associated with depressive-like
behavior [42]. The study by Anders et al. showed HFD could exacerbate depressive-like
behaviors in the Flinders Sensitive Line (FSL) rat [43]. Another study also suggested that
olive leaf extract may prevent depression by inhibiting fat mass and weight gain in mice
fed with a high-fat diet [44].

The possible physiological processes and mechanisms of a high-fat diet affecting
depression are summarized as follows: 1. Neural signals: 5-HT, glutamatergic recep-
tor, GABAA receptor, glutamate, and aspartate transporter. After feeding with HFD for
14 weeks, Wu et al. found a significant decrease in the 5-HT system expression in the hip-
pocampus of C57BL/6 mice [45]. A study also showed that HFD attenuated the inhibitory
effect of escitalopram, a selective serotonin reuptake inhibitor (SSRI), on 5-HT reabsorption
in the brain, reducing the concentration of 5-HT in synapses [46]. A high-fat diet administra-
tion of intestinal 5-HT synthesis inhibitors can attenuate depression-like behaviors in mice
with high-fat diet-induced depression [47]. Long-term use of HFD can induce depressive-
like behavior in rats and lead to decreased expression levels of the AMPA receptor (GlutA2)
and GABA receptor (GAD65) [48]. HFD-induced depression correlates with the desensiti-
zation of GABAergic AgRP (agouti-related peptide) neurons in the hypothalamus, which
plays a fundamental role in the control of appetite and body weight [49]. A recent study
suggested that feeding mice an HFD causes the downregulation of glutamate transporter
1 (GLT-1), leading to glutamate overactivation, which in turn leads to depression [50].
2. Inflammation and oxidative stress. A high-fat diet can induce an increase in proinflam-
matory cytokines in the rat hippocampus and depression-like behaviors [46]. In HFD-fed
rats, depressive-like behaviors develop due to the overproduction of proinflammatory
cytokines TNF-tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), and interleukin-1
beta (IL-1β), the oxidative stress-related elevation of thiobarbituric acid-responsive sub-
stances (TABRS), and the down-regulation of antioxidant enzymes catalase (CAT) and
glutathione peroxidase (GPX). Antidepressant agomelatine (AGO) eliminated depression
in HFD rats, reduced the activity of inflammatory cytokines (TNF-α, IL-6, and IL-1β),
TABRS, and restored the activity of CAT and GPX [51]. The antidepressant simvastatin
(SMV) might also ameliorate depression by reducing inflammation in the brains of HFD-fed
mice [45,52]. 3. Synaptic plasticity. Studies have shown that HFD also affects synaptic plas-
ticity by reducing the expression of βIII-tubulin, postsynaptic density protein 95(PSD-95),
synaptosomal-associated Protein, 25 kDa (SNAP-25), and neurotrophic factor-3 when it
causes depression-like behavior in rats [48]. 4. The involvement of signaling pathways.
HFD may induce depression in rats by desensitizing the Akt/GSK3β signaling pathway to
5-HT in the DG subgranular region of the hippocampal dentate gyrus, and returning to
a normal diet can rescue the Akt/GSK3β response to 5-HT and alleviate depression-like
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behaviors [53]. Mice exposed to an HFD show accumulated fatty acids in the hypothalamus,
leading to depression by inhibiting the cAMP/PKA signaling cascade [54]. HFD might also
inhibit AMPK phosphorylation and induce mTOR phosphorylation to suppress autophagy,
thus leading to depression-like behavior in mice [55]. 5. Other related receptor proteins:
leptin receptor long isoform (LepRb), cannabinoid receptor type 1 (CNR1). LepRb plays
an important role in regulating depression and anxiety-related behaviors, and selective
deletion induces depression-related behaviors [56,57]. Yang et al. showed that high fat can
cause depressive-like behaviors in rats and result in reduced levels of LepRb protein and
mRNA in the hippocampus and hypothalamus [58]. CNR1, an important component of
the endocannabinoid system, plays an important role in depression [59]. CNR1-deficient
mice can also be used to model depression in mice [60]. A study showed that pregnant rats
fed an HFD led to depressive-like behaviors in their offspring, with a decrease in the Cnr1
mRNA levels in the prefrontal cortex in the male offspring [61].

2.3. Dietary Protein

There are fewer studies on the relationship between dietary protein and depression.
Low-protein diets are associated with an increased risk of depression in the U.S. and Korean
populations. Among macronutrients carbohydrates, protein, and fat, the prevalence of
depression decreases significantly in both the United States and South Korea when the
proportion of calories consumed from protein increases by 10% [62]. Another study in the
United States showed that an increase in protein intake reduces the risk of depression in
men but increases the risk of depression in women [63]. A cross-sectional study suggested
that total protein intake from milk and dairy products may reduce the risk of depressive
symptoms in U.S. adults [64]. In a population of Japanese male workers, a study suggested
that low protein intake may be associated with a higher prevalence of depressive symp-
toms [65]. Peng et al. showed that total protein (TP) is significantly decreased in major
depressed patients compared to healthy subjects (4.73 ± 0.45 vs. 4.52 ± 0.43 mmol/L,
p < 0.01) [21]. Red and processed meats contain protein and saturated fat, and excessive
consumption of either could slightly increase the risk of depression [66]. Low protein intake
reduces depressive symptoms in diabetic patients [67]. Milk is also rich in protein and
fat, and intake of skim milk is inversely associated with depression, while whole milk is
positively associated with depression [68].

Dietary protein is rich in amino acids, which can supplement the amino acids required
by the human body to maintain normal physiological functions. Tryptophan in dietary
protein is a precursor for the synthesis of serotonin, and an increase in serotonin in the
brain is the key to treating depression [69]. A survey by Euter et al. found that a diet low
in tryptophan is associated with a higher risk of depression [70]. Subchronic tryptophan
depletion is also used as an animal model of depression [71]. Tryptophan in dietary protein
is also a precursor compound for synthesizing dopamine, which has also been implicated
in antidepressant therapy [72]. In milk proteins, alpha-lactalbumin [73] and lactoferrin [74]
also help improve depression-like symptoms in mice.

3. Overdose or Deficiency of Mineral Element Increase the Risk in Depression
3.1. Zinc(Zn)

Zinc is an essential trace element that plays an important role in many biochemical
and physiological processes in relation to brain growth and function [75]. Studies in many
national populations, such as the United States [76], Australia [77], and Japan [78–80],
found that a lack of dietary zinc intake increases the risk of depression. Two other studies
have shown that insufficient dietary zinc intake leads to depressive symptoms in women
but not in men [81,82]. Al-Fartusie et al. showed that zinc in serum is significantly lower in
major depressed patients compared to healthy subjects (0.72 ± 0.08 vs. 0.96 ± 0.11 mg/L,
p < 0.01) [83]. Islam et al. found the same experimental results [84]. In rodents, a zinc-
deficient diet also induced depressive-like behavior [85–87].
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We also summarized the possible physiological processes and mechanisms of zinc in
depression. 1. It is related to zinc transporters (ZnTs). In mammals, zinc homeostasis is
primarily regulated by ZnTs [88]. A study showed that there are significant increases in
protein levels of ZnT1, ZnT4, and ZnT5 in the prefrontal cortex in MDD but a reduced pro-
tein level of ZnT3 [89]. Zinc transporter 3 (ZnT3) plays an important role in concentrating
zinc ions within synaptic vesicles in a subset of the brain’s glutamatergic neurons [90]. In
the stress-induced rat depression model, total zinc levels were reduced, and the mRNA
expression of ZnT1 and ZnT3 was significantly reduced in the hippocampus [91]. Neuro-
genesis in the hippocampus was reduced in both rats fed with a zinc-deficient diet and
ZnT3 knockout mice, but it was resumed after a normal zinc diet treatment [92]. 2. It is
related to Zn2+-activated G protein-coupled receptor 39 (GPR39). GPR39 senses changes in
extracellular zinc concentrations, which results in the activation of an intracellular signaling
pathway to regulate the expression of genes associated with depression, such as BNDF and
5-HT [93,94]. GPR39 knockout causes depressive-like behavior in mice [95]. Depressive-like
symptoms were observed in GPR39 knockout mice, accompanied by decreased CREB and
BDNF expression [96]. The GPR39 protein can bind to 5-HT1A and form a 5-HT1A-GPR39
complex that is regulated by zinc concentration [97]. 3. Inflammation and oxidative stress.
After giving rats a zinc-deficient diet for 6 weeks, Doboszewska et al. found that it causes
depressive behavior and increases the oxidation/inflammation parameters IL-1 and TBARS
in rats [98]. 4. N-methyl-d-aspartate (NMDA). NMDA has emerged as a therapeutic target
for depression therapy in clinical and preclinical studies. Since increasing evidence has
supported the disruption of glutamate homeostasis and neurotransmission in depressed
subjects [99]. A study has shown that in rats, zinc deficiency-induced depression-like
behaviors are associated with increased NMDAR (GluN1, GluN2A, GluN2B), decreased
AMPAR(GluA1), p-CREB, and BDNF in the hippocampus to change the NMDAR neuronal
signal [100]. Another study also showed that in rats, zinc deficiency-induced depression-
like behaviors are associated with increased NMDAR (GluN2A and GluN2B), decreased
PSD-95, p-CREB, and BDNF in the hippocampus [101].

3.2. Magnesium (Mg)

Magnesium is one of the most important minerals in the human body and is involved
in various biological processes in the brain and the fluidity of neuronal membranes, main-
taining the stability of brain function [102]. Multiple studies have shown that dietary
magnesium intake is inversely associated with the risk of depression [103–105]. More-
over, magnesium in serum is significantly lower in major depressed patients compared
to healthy subjects (1.10 ± 0.11 vs. 1.64 ± 0.15 mg/L, p < 0.01) [79]. Like humans, a
magnesium-deficient diet induces rodent depression-like behaviors [106,107].

The possible regulatory mechanisms of magnesium in depression could involve gut
microbiota, NMDA nerve signaling, and oxidative stress: Magnesium deficiency diet
might lead to depression-like behavior possibly by altering intestinal microbiome composi-
tion and inducing homeostasis of the microbiome–gut–brain axis in mice [107]. Another
study showed that dietary Mg supplementation increases bacteria involved in intestinal
health and metabolic homeostasis and reduces bacteria involved in inflammation and
human diseases [108]. Ghafari et al. showed that enhancement of depressive-like be-
haviors induced by dietary magnesium restriction is associated with decreased levels of
amygdala-hypothalamic proteins of GluN1-containing NMDA complexes [109]. Whittle
et al. showed that mice fed a low Mg-containing diet (10% of the daily requirement) ex-
hibit depression-like behavior and elevated expression of N(G), N(G)-dimethylarginine
dimethylaminohydrolase 1 (DDAH1), manganese-superoxide dismutase (MnSOD), and
glutamate dehydrogenase 1 (GDH1) related to oxidative stress [110]. Another study also
showed that depression is associated with a decrease in magnesium concentrations in the
human body, which leads to an increase in GPX associated with oxidative stress [111].
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3.3. Copper(Cu)

Copper is an important trace element required by essential enzymes. However, copper
also leads to the production of toxic reactive oxygen species due to its redox activity, so
copper uptake is strictly controlled [112]. It was reported that the serum of major patients
with depression contains higher levels of copper compared to healthy subjects (1.55 ± 0.12
vs. 1.12 ± 0.13 mg/L, p < 0.01) [79]. And the same results were given by the Islam team [84]
and the Ni team [113]. A study found that women with lower levels of magnesium and
higher levels of Cu are more likely to suffer from depression [114]; while it is contradictory
that the correlation between serum copper and the severity of depression was not found in
another study [115].

Copper might influence depression via inflammation, oxidative stress, or synaptic
plasticity. Copper exposure increases depression-like behavior and activates inflammation-
related microglia in APOE4 transgenic mice [116]. Melatonin (Mel) attenuates CU-induced
oxidative stress and depression-like behavior by decreasing lipid peroxidation (LPO) and
nitric oxide (NO) levels and enhancing superoxide dismutase (SOD) and catalase (CAT)
activities in the rat hippocampus [117]. Liu et al. showed that copper levels are increased
in the hippocampus of stressed mice, which can affect synaptic function by inhibiting the
expression of GluN2B and PSD95 [118].

3.4. Iron(Fe)

Iron is an essential trace element for human growth and development and plays a
key role in ensuring normal brain development and function [119]. Several studies have
revealed that dietary iron deficiency increases the risk of depression [76,80,82,120,121]. In a
case-control study, mothers with postpartum iron deficiency were shown to be three times
more likely to develop postpartum depression [122]. Postpartum iron supplementation
helps reduce postpartum depression [123]. Serum iron concentration was significantly de-
creased in many patients with major depression compared to healthy subjects (1.02 ± 0.02
vs. 1.30 ± 0.03 mg/L, p < 0.05 mg/L) [84]. A survey study found that people with a
history of iron deficiency anemia have a higher risk of depression [124]. A study of type I
diabetes and depression found that patients with iron deficiency have a higher incidence of
depression [125]. Not only does iron deficiency increase the incidence of depression, but
iron excess is also associated with depression. A study indicated significant iron deposition
in the thalamus of patients with depression [126].

The mechanism by which iron induces depression is unclear, although it may be
partially related to the level of BDNF and oxidative stress. Brain-derived neurotrophic factor
(BDNF) is widely expressed in developing and adult mammalian brains and is associated
with development, neural regeneration, synaptic transmission, synaptic plasticity, and
neurogenesis [31,127]. Ceruloplasmin is a ferroxidase involved in iron metabolism by
converting Fe (2+) to Fe (3+). Texel et al. found that ceruloplasmin knock-out mice
produce anxiety-like behaviors with significantly decreased levels of Fe and BDNF in the
hippocampus [128]. Other studies have also shown that a low dose of iron is associated
with low BDNF expression in the rat hippocampus [129,130]. A high dose of iron, possibly
from iron accumulation, induces depressive-like behavior in rats [131]. Iron deposition is
closely related to depression, and the possible mechanism is that iron deposition leads to
increased production of reactive oxygen species, which in turn causes neuronal damage in
the brain [132,133].

As Table 1 showed, we summarize the serum or blood Levels of elements in healthy
subjects or major depressed patients and the possible mechanisms.
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Table 1. Summarize the possible mechanism for overdose or deficiency of macronutrients and mineral
elements to increase the risk of depression.

Category

How to
Increase the

Risk of
Depression

Serum or Blood
Levels in Healthy

Subjects

Serum or
Blood Levels

in Major
Depressed

Patients

Physiological Processes and Physiological
Components

Macronutrients

Dietary
sugars Overdose

FBG: 4.52 ±
0.43 mmol/L

FBG:4.73 ±
0.45 mmol/L **

[21]

1. Neural signals: 5-HT↓ [22]

2. Inflammation: pro-inflammatory factors such as
IL-6, TNF-α, etc. ↑ [24]; gut microbiota [27]

3. Synaptic plasticity: synapsin I and BDNF↓ [32];
Dendrite spines and dendritic branches↓ [33]

Dietary fat Overdose

TG: 1.08
[0.76–1.54] g/L

TG: 0.84
[0.63–1.32] g/L

* [39]

1. Neural signals: 5-HT↓ [45]; 5-HT
reabsorption↓ [46]; Intestinal 5-HT↑ [47]; GlutA2 and

GAD65↓ [48]; desensitization of GABAergic AgRP
neuron [49]; GLT-1↓ [50]

2. Inflammation: pro-inflammatory factors such as
IL-6, IL-1, TNF-α, etc. ↑ [45,46,51,52]

3. Oxidative stress: TABRS, CAT, GPX↑ [51]

HDL-C: 1.24 ±
0.30 mmol/L

HDL-C: 1.31 ±
0.32 mmol/L **

[21]

4. Synaptic plasticity: synapsin I and BDNF↓ [32];
βIII-tubulin, PSD-95, SNAP-25, and

Neurotrophin-3↓ [48]

5. Signaling pathway: Akt/GSK3β↓ [53];
cAMP/PKA↓ [54]; AMPK↓ [55].

6. Other related receptor proteins: LepRb↓ [58],
CNR1↓ [61]

Dietary
protein Deficiency TP: 68.72 ±

5.23 g/L
TP: 66.72 ±

5.10 g/L ** [21]
May be related to synthesis of 5-HT and

dopamine [71,72]

Mineral elements

Zinc Deficiency 0.96 ± 0.11 mg/L
0.72 ± 0.08

mg/L ** [83]

1. ZnT3↓ [89,91]; ZnT3 knockout induced decreased
hippocampal neurogenesis [92]

2. GPR39 knockout [95]; GPR39 knockout induced
decreased CREB and BDNF expression [96]

3. Oxidation/inflammation parameters: IL-1 and
TBARS↑ [98]

4. Neural signals: NMDAR(GluN2A,
GluN2B) ↑ [100,111]

Magnesium Deficiency 1.64 ± 0. 15 mg/L 1.10 ± 0.11
mg/L ** [83]

1. Gut microbiota [107]

2. Neural signals: GluN1↓ [109]

3. Oxidative stress: DDAH1, MnSOD, and
GDH1↑ [110]; GPX↑ [111]

Copper Overdose 1.12 ± 0.13 mg/L
1.55 ± 0.12

mg/L ** [83]

1. Inflammation↑ [116]

2. Oxidative stress: SOD and CAT↑ [117]

3. Synaptic plasticity: GluN2B, PSD95↓ [118]

Iron Deficiency/
overdose 1.30 ± 0.03 mg/L 1.02 ± 0.02

mg/L * [84]
May be related to BDNF↓ [129,130] and oxidative

stress↑ [133]

Note: ↓: indicates lower or reduced; ↑: indicates increase or promotion. Depressed patients compared to healthy
subjects, * p < 0.05; ** p < 0.01. Full name and abbreviation: fasting blood glucose (FBG), triglycerides (TG),
high-density lipoprotein cholesterol (HDL-C), total protein (TP), 5-hydroxytryptamine (5-HT), interleukin-6 (IL-6),
tumor necrosis factor-α (TNF-α), brain-derived neurotrophic factor (BDNF), glucose transporter A2 (GlutA2),
glutamic acid decarboxylase 65-kilodalton isoform (GAD65), gamma-aminobutyric acid (GABA), agouti-related
protein (AgRP), glutamate transporter 1 (GLT-1), interleukin-1 (IL-1), thiobarbituric acid reactive substances
(TBARS), catalase (CAT), glutathione peroxidase (GPX), postsynaptic density protein 95 (PSD-95), synaptosomal-
associated protein, 25 kDa (SNAP-25), protein kinase B (AKT), glycogen synthase kinase-3 (GSK3β), cyclic
adenylic acid (cAMP), protein kinase A(PKA), adenosine 5′-monophosphate (AMP)-activated protein kinase
(AMPK), leptin receptor (LepRb), cannabinoid receptor 1 (CNR1), zinc transporter 3 (ZnT3), G-protein coupled
receptor 39 (GPR39), cAMP response element-binding protein (CREB), N-methyl-d-aspartate (NMDA) receptor
2A (GluN2A), N-methyl-d-aspartate receptor 2B (GluN2B), N-methyl-d-aspartate receptor 1 (GluN1), N(G), N(G)-
dimethylarginine dimethylaminohydrolase 1 (DDAH1), manganese-superoxide dismutase (MnSOD), glutamate
dehydrogenase 1 (GDH1), superoxide dismutase (SOD).
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4. Appropriate Supplementation of Some Mineral Elements or as Medication Can
Help Alleviate Depression
4.1. Selenium(Se) Supplementation

Selenium is an essential trace element required for a variety of physiological functions,
including thyroid hormone metabolism, protection against oxidative stress, and immune-
related functions [134]. A cross-sectional study on US adults showed an inverse association
between dietary selenium intake and depressive symptoms [76,135]. A survey on a Chinese
rural elderly population [136] and a cross-sectional study on a Brazilian rural popula-
tion [137] also indicated that higher selenium levels are associated with a lower prevalence
of depression. The optimal doses for serum selenium in young Australians are between
∼82 µg/L and 85 µg/L, which results in a reduced risk of depressive symptoms [138].
Studies have shown that selenium supplementation may be an effective way to prevent
postpartum depression [139,140]. However, a study on US youth found the opposite:
higher selenium exposure levels are associated with increased depressive symptoms [141].
Therefore, selenium supplementation for depression requires the first measurement of
selenium levels in depressed people, and further clinical studies are required. Selenium
supplementation in rodents is beneficial for treating depression. The salt form of selenium,
sodium selenite, had antidepressant effects in rodents [142]. Sodium selenite can increase
the antidepressant effect of imipramine, fluoxetine, and tianeptine and reduce immobility
time on the forced swim test (FST) after the administration of antidepressants [143].

The regulatory mechanisms of selenium in the treatment of depression are limited
due to few experimental studies: 1. Anti-oxidative stress. Selenium can reverse arsenic-
induced deterioration, alleviate depressive-like behaviors in the rat hippocampus, and
reduce malondialdehyde levels and acetylcholinesterase activity [144]. Another study
demonstrated that selenium could inhibit LPS-induced oxidative damage by increasing
antioxidants [145]. 2. Anti-inflammatory. Fluoride treatment reduces dopamine and
norepinephrine secretion, activates inflammation in microglia, and leads to depression-
like behavior. While selenium treatment can activate the JAK2/STAT3 pathway, restore
dopamine and norepinephrine secretion, reduce IL-1β secretion, and increase the number
of viable cortical neurons, thus alleviating fluoride-induced depressive-like behavior [146].

4.2. Zinc(Zn) Supplementation

Section 2.1 of the article suggests that a zinc-deficient diet increases the risk of de-
pression, and in fact, appropriate zinc supplementation can help treat depression. Clinical
studies have shown that zinc supplementation, individually or in combination with an-
tidepressants, may help reduce depressive symptoms, and the dose and treatment course
of zinc in clinical trials were 25~220 mg for 6 to 12 weeks [147–149]. In chronic stress-
induced rodent models of depression, zinc supplementation can reduce depressive-like
behavior [150]. For depressed patients, zinc levels should be first measured. If zinc defi-
ciency occurs, appropriate supplementation should be carried out, and zinc levels should
be monitored during treatment.

The mechanisms of zinc treatment for depression are related to the levels of BDNF
and anti-inflammation. A study showed that zinc enhances the antidepressant efficacy of
imipramine by increasing the concentration of BDNF in the prefrontal cortex [151]. Kirsten
et al. reported that zinc can inhibit LPS-induced depression-like behaviors caused by
inflammation in rats and reduce the expression of inflammation-related factors IFN-γ [99].

4.3. Magnesium (Mg) Supplementation

Depressed patients with magnesium deficiency take 500 mg of magnesium oxide
tablets daily for ≥8 weeks to alleviate depressive symptoms [152]. It is effective that over-
the-counter magnesium chloride (248 mg of elemental magnesium per day) is taken by
adults with mild to moderate symptoms of depression for 6 weeks [153]. A recent clinical
study tracking the electroencephalogram in MDD patients showed that magnesium can
enhance fluoxetine treatment in response to depression treatment [154]. As with the other
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elements above, an initial measurement of magnesium levels is required in depressed
patients, followed by supplementing appropriately and monitoring magnesium levels
during treatment.

The following are possible mechanisms of magnesium therapy for depression: 1. 5-HT.
Poleszak et al. found that the antidepressant-like effects of magnesium are significantly
reduced in mice pretreated with serotonin synthesis inhibitors [155]. 2. Anti-inflammation.
Cyclophosphamide (CYP)-induced inflammation causes depression-like behaviors in rats
and increases the inflammatory factors TNF-α and IL6, while supplementation with mag-
nesium L-threonate could reduce the inflammatory response and depression-like behav-
iors [156]. 3. NMDA. Magnesium could treat depression-like behavior induced by chronic
mild stress in rats, and concomitantly restore the levels of GluN1 and GluN2A and increase
the levels of GluN2B and PSD-95 [157].

4.4. Lithium(Li) as a Psychotropic Medication

Lithium as a psychotropic medication has been used to treat bipolar disorder (BD) and
prevent suicidal and depressive/manic episodes [158]. Lithium also plays an important
role in the treatment of unipolar depression. Barroilhet et al. showed that a low dose of
lithium in the body can help prevent suicide caused by depression, but a higher dose (over
1.0 mmol/L) has specific toxic side effects [159]. Adding trace amounts of lithium to drink-
ing water may reduce suicide risk in the general population [160]. The addition of lithium
to both imipramine and fluvoxamine in phase II is more effective for treating depression
than the phase I drug alone [161]. Lithium has also been recommended in multiple depres-
sion medication guidelines [162]. Lithium is clinically effective as long-term monotherapy
and supplemental antidepressant therapy for depression [163]. A cohort study in Finland
reported that, compared to lithium combined with antidepressants, lithium alone has a
lower risk for patients with significant depression readmitted to the hospital [164]. Other
studies have also shown the benefits of lithium in treating depression [165,166]. Vázquez
et al. summarized the dose and treatment course of lithium in clinical trials as 600~1200 mg
for 1 to 6 weeks [167]. Since a higher dose (over 1.0 mmol/L) has specific toxic side effects,
in the clinic, the lithium content should be first detected in depressed patients and then
monitored regularly.

The possible physiological processes and mechanisms of lithium treatment for de-
pression are considered as follows: 1. Hippocampal neurogenesis. Hippocampal adult
neurogenesis is defined as new neurons generated in the dentate gyrus of the hippocampus
and integrated into neural circuits during adulthood, which can repair nerve damage
and increase neuroplasticity [168]. Hippocampal volume is reduced in the brains of de-
pressed patients but increases after 3 years of antidepressant treatment, suggesting that
antidepressants could induce hippocampal neurogenesis to alleviate depression [169]. In
rodents, impaired neurogenesis can induce depression-like behaviors in animals [170].
An experimental study showed that both lithium alone and combined with fluoxetine
could increase neurogenesis and eliminate depression-like behavior in resistant depression
models. Moreover, lithium combined with fluoxetine has fewer side effects than lithium
alone [171]. 2. BDNF. A survey has shown lithium can enhance serum BDNF levels in
depressed patients [172]. Another study showed that lithium exerts an antidepressant effect
by increasing BDNF and thereby increasing the firing activity of VTA-mPFC DA neurons
in depressive-like mice [173]. 3. The blood–brain barrier (BBB). Disruption of the BBB
leads to a disturbance of brain homeostasis that may be a key factor in the development of
depression [174]. Lithium exerts antidepressant effects by protecting against the destruction
of the BBB/neurovascular unit (NVU) in the chronic mild stress (CMS) rat model [175].

In Table 2, we summarize daily dose and course of mineral elements to treat depressed
patients in clinical trials and the possible mechanisms.
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Table 2. A summary of the benefits of proper supplementation with some mineral elements or as
medication that can help improve depression.

Category

Daily Dose and
Course of Treatment

in Depressed Patients
in Clinical Trials

Physiological Processes and Physiological
Components

Mineral
elements

Proper
supplementation

Selenium —
1. Anti-oxidative stress [144,145]

2. Anti-inflammatory: pro-inflammatory
factors IL-1↓ [146]

Zinc 25~220 mg for 8 to
12 weeks [147–149]

1. Anti-inflammatory: IFN-γ↓ [99]

2. BDNF↑ [151]

Magnesium
248~500 mg for 6 to

8 weeks [152,153]

1. 5-HT↑ [155]

2. Anti-inflammation: TNF-α and IL6↓ [156]

3. Glutamate signaling↑ [157]

Psychotropic
medication

1. Hippocampal neurogenesis↑ [171]

Lithium 600~1200 mg for 1 to
6 weeks [167] 2. BDNF↑ [172,173]

3. Protects the blood–brain barrier [175]

Note: ↓: indicates lower or reduced; ↑: indicates increase or promotion. —: not applicable. Full name and
abbreviation: brain-derived neurotrophic factor (BDNF), interleukin-1 (IL-1), interferon-gamma (IFN-γ), 5-
hydroxytryptamine (5-HT), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6).

5. Conclusions

Nutrients are indispensable to the human body and affect the normal physiological
functions of the human body. As shown in Table 1, nutrient imbalances, including macronu-
trients (dietary sugars, fat, and protein) and mineral elements (zinc, magnesium, copper,
and iron), may increase the occurrence of depression. Several clinical and non-clinical stud-
ies have shown that nutrients also affect the function of antidepressants. As summarized
in Table 2, appropriate doses of selenium, zinc, magnesium, and lithium are beneficial
for reducing depression. Magnesium and zinc deficiencies increase the risk of depression,
and appropriate magnesium and zinc supplementation can also help improve depression.
Therefore, as described in Figure 2, in addition to conventional drug treatment of depres-
sion, it also needs to pay attention to the level of the patient’s own nutritional elements,
the timely supplementation of the lacking nutritional elements, the control of excessive
nutritional elements, and the balance of these nutrients in the body. Moreover, nutritional
elements such as lithium, selenium, zinc, magnesium, etc., for depression treatment should
be based on elemental levels in the body and during treatment. Excessive elemental supple-
mentation may be harmful; therefore, supplementation should be appropriate and follow
the doctor’s advice and not be haphazard or uncontrolled.

In the serum or blood levels of depressed patients, fasting blood glucose, high-density
lipoprotein-cholesterol, and copper are significantly elevated, while total protein, zinc,
magnesium, and iron are significantly decreased [21,83,84], so further research should be
conducted on whether these elements can be used as indicators for the prevention and
treatment of depression.

This review summarizes the functions and mechanisms of some nutrients in depression
research. Nevertheless, further studies are still required. For example, the intake of
dietary sugar, fat, and protein in life also contains some additives such as sweeteners,
preservatives, and other ingredients, and their relationships with depression are not clear,
which should be addressed in follow-up studies. Furthermore, the nutritional elements
associated with depression not only include those summarized in the article but also involve
vitamins [176–178], folic acid [179], N-acetylcysteine [180], S-adenozylmetionine [181],
dietary fiber [182], etc., which also need to be considered. This article suggests that to better
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prevent and treat depression, people should gradually focus on the role of nutrients in
depression and their daily diet, such as low-sugar and low-fat diets.

In general, we summarized the involvement of some nutritional elements in depression
and elucidated their related regulatory mechanisms. It may inspire novel preventive and
therapeutic strategies for depression.
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172. Skalski, M.; Mach, A.; Januszko, P.; Ryszewska-Pokraśniewicz, B.; Biernacka, A.; Nowak, G.; Pilc, A.; Poleszak, E.; Radziwoń-
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