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Abstract: Neurodegenerative disorders are characterized by the progressive loss of neuronal structure
or function, resulting in memory loss and movement disorders. Although the detailed pathogenic
mechanism has not been elucidated, it is thought to be related to the loss of mitochondrial function in
the process of aging. Animal models that mimic the pathology of a disease are essential for under-
standing human diseases. In recent years, small fish have become ideal vertebrate models for human
disease due to their high genetic and histological homology to humans, ease of in vivo imaging, and
ease of genetic manipulation. In this review, we first outline the impact of mitochondrial dysfunction
on the progression of neurodegenerative diseases. Then, we highlight the advantages of small fish as
model organisms, and present examples of previous studies regarding mitochondria-related neuronal
disorders. Lastly, we discuss the applicability of the turquoise killifish, a unique model for aging
research, as a model for neurodegenerative diseases. Small fish models are expected to advance our
understanding of the mitochondrial function in vivo, the pathogenesis of neurodegenerative diseases,
and be important tools for developing therapies to treat diseases.
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1. Introduction

Neurodegenerative disorders are characterized by the progressive loss of structure or
function of neurons and include Alzheimer’s disease (AD), Parkinson’s disease (PD), Hunt-
ington’s disease (HD), amyotrophic lateral sclerosis (ALS), spinocerebellar ataxia (SCA),
and multiple-system atrophy (MSA). The progressive loss or dysfunction of selectively
vulnerable neurons leads to a multitude of symptoms, including memory loss, movement
disorders, and behavioral changes [1]. Oxidative stress and inflammation are thought to
contribute to progressive neurodegenerative disorders, but the detailed mechanisms of
these pathologies remain to be elucidated [2–5]. In addition, the multifactorial etiology and
lack of established biomarkers to predict disease progression contribute to the challenges
associated with neurodegenerative disorders. One of the most significant risk factors for
neurodegenerative diseases is aging. Although various mechanisms of aging have been
proposed, it has long been believed that increased reactive oxygen species (ROS) originating
from mitochondria cause oxidative damage, leading to cellular dysfunction and tissue
failure (the mitochondrial free radical theory of aging; MFRTA) [6–8]. Notably, several
studies have shown the link between ROS generation and oxidative stress during aging;
however, this theory remains controversial [9].

Mitochondria are unique intracellular organelles that are covered by a double mem-
brane, have their own genome, and can self-replicate independently. They are present in all
nucleated cells and perform many functions, including cellular metabolism, energy produc-
tion, and homeostasis. Mitochondrial damage and dysfunction are caused by mutations in
nuclear DNA that encode mitochondrial proteins or mitochondrial DNA (mtDNA), and by
cellular stress due to environmental factors. There is a link between pathophysiological
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changes in several neurodegenerative diseases and mitochondrial dysfunction associated
with aging, including oxidative stress and reduced adenosine triphosphate (ATP) produc-
tion capacity [10–16]. Notably, the loss of neurons is caused by apoptosis regulated by
mitochondria [17]. Therefore, mitochondria could be promising therapeutic targets for
preventing age-related diseases.

In this review, we will discuss the roles of mitochondria that affect the process of
neurodegenerative disorders. First, we will highlight the connection between mitochon-
drial dysfunction and neurodegenerative disorders. Then, we will introduce the small
fish models (zebrafish, medaka, and turquoise killifish) as beneficial in vivo vertebrate
models for studying mitochondrial biology. We will summarize several approaches to
studying mitochondrial function using small fish and discuss the advantages and chal-
lenges. Additionally, we will discuss the potential of small fish models to contribute to the
development of therapeutic strategies for age-related neurodegenerative disorders. It is
important to emphasize that mitochondrial dysfunction is not the only factor in aging and
neurodegenerative disease, but this review will facilitate understanding of this aspect.

2. Mitochondrial Dysfunctions Affecting the Neurodegenerative Process

Mitochondrial functions are diverse and complex and essential for cellular homeostasis
and survival. Therefore, mitochondrial dysfunction with age leads to cell death and
contributes to the progression of neurodegenerative disorders [17] (Figure 1). Mitochondria
are estimated to contain 1000–1500 kinds of proteins, of which only 13 are encoded in
mtDNA and the rest are encoded in nuclear DNA [18,19]. Proper mitochondrial function
depends on the quality control system, such as the transport and translocation of proteins,
the turnover of proteins via the ubiquitin–proteasome system, mitochondrial dynamics,
as well as the elimination of mitochondria through mitophagy [20]. In the following
subsection, we will describe the age-related decline in mitochondrial function and its
relation to neurodegenerative disorders.
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Figure 1. Multifactorial effects of mitochondrial dysfunction in the process of neurodegenerative disorders.
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2.1. DNA Mutations

Mitochondrial dysfunction is often caused by mutations in nuclear DNA involved in
mitochondrial components and maintenance or in mitochondrial DNA. DNA is exposed
to both exogenous physical, chemical, and biological stress and endogenous stress from
the production of ROS and failed DNA replication. Chromosome aneuploidy caused by
abnormal mitosis in the aged brain has been implicated in neurodegenerative diseases [21].
Aneuploidy is also known to lead to mitochondrial dysfunction and increased ROS produc-
tion, as well as an acceleration of cellular senescence [22]. In addition, mitochondrial DNA
is more prone to accumulate mutations than nuclear DNA [23–25]. This is due to the lack
of histones, ROS generation in the inner membrane, limited repair mechanisms in mito-
chondrial DNA, and higher replication frequency than nuclear DNA [26–29]. Moreover,
mitochondrial DNA has very few non-coding sequences, with the result that mutations
affect functional genes directly [29]. It might be challenging to protect DNA from mutations
with age; therefore, the maintenance of its quality control system is essential. Proper regu-
lation of the balance between the removal of damaged mitochondria and the biosynthesis
of new mitochondria is important for aging and longevity [30,31].

2.2. Energy Production

The primary function of mitochondria is to generate ATP via oxidative phosphoryla-
tion (OXPHOS). This reaction is carried out by the electron transport chain (ETC) consisting
of four respiratory chain (RC) complexes (complexes I-IV) and ATP synthase (complex V),
which are present in the mitochondrial inner membrane [32–34] (Figure 2). High-energy
phosphate production is achieved by coupling electron transfer to proton translocation
across the mitochondrial inner membrane, resulting in an electrochemical gradient. It
has been suggested that the loss of OXPHOS function may cause various disorders, in-
cluding non-functional synapses, axonal degeneration, increased ROS production, and
cell death [35,36]. Cytochrome c is a small protein tethered to the mitochondrial inner
membrane by cardiolipin and functions as an electron donor and receptor during OX-
PHOS. The release of cytochrome c from mitochondria promotes apoptosis via activation
of caspase-9, and the subunit of the RC complex acts as a substrate for caspase [37–40].
Moreover, age-related decline in ATP levels promotes necrotic inflammation, which may
trigger a progression of age-dependent disorders [41].
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Figure 2. Schematic image of oxidative phosphorylation (OXPHOS) process and reactive oxygen
species (ROS) production.

There is a link between declines in overall bioenergetic function and the phenotype of
aging [42,43]. The brain is particularly vulnerable to a decrease in bioenergetic function due
to its high energy demands and relatively high mitochondrial mass. With aging, decreased
activity of RC complex I, decreased ATP production capacity, and cytochrome c release



Int. J. Mol. Sci. 2023, 24, 7079 4 of 28

have been observed in the brain [44–46]. An increased number of cytochrome c oxidase
(COX)-deficient neurons with age have also been reported in the substantia nigra and
hippocampus in normal human brains [47,48]. Several studies have shown mitochondrial
dysfunction and reduced mitochondrial complex I activity in the substantia nigra and
frontal cortex of PD patients [49–51]. Similarly, mitochondrial complex I dysfunction has
been reported in the skeletal muscle and platelets of PD patients [52]. In addition, the
induction of a familial PD gene mutation into neuronal cells caused defective complex
I activity and synaptic function [53]. Reduced complex IV activity was also observed
in postmortem homogenates of AD and PD patients [54–56]. Interestingly, a decrease in
mitochondrial respiration associated with a decline in the electron transfer rate of complexes
I and IV among RC complexes was consistently observed in aging and neurodegenerative
diseases. On the other hand, it has been reported that decreased complex II and III activity
with increased complex I and IV activity occurred in MSA cerebellar white matter [57].
In addition, decreased mRNA expression of all mitochondrial complexes subunits (I-V)
has been observed in the frontal cortical and angular gyrus in PD with dementia [58]. The
relationship between these disease-, symptom-, or region-specific alterations of RC complex
and neurodegenerative pathogenesis needs to be elucidated in future studies.

2.3. Reactive Oxygen Species/Oxidative Stress

The mitochondrial RC is the primary site of ROS production in the cell [59,60]
(Figure 2). ROS produced in the OXPHOS process oxidizes nucleic acids, lipids, and
proteins, causing damage, especially within the source origin, mitochondria [61–64]. Mito-
chondria possess antioxidant systems to prevent oxidative damage, and properly regulated
ROS can trigger various signaling pathways and regulate autophagy [65–67]. However,
accumulated oxidative damage to mitochondria due to aging and other factors can affect
ATP production and other essential functions in mitochondria [68–70]. Moreover, ROS
themselves also increase mitochondrial membrane permeability, leading to additional ROS
release (ROS-induced ROS release, RIRR) [60,71].

The negative cycle associated with ROS production significantly impacts survival in
cells with high energy requirements, such as neurons. In addition, the brain is considered
vulnerable to oxidative stress due to its high oxygen consumption, an abundance of oxi-
dizable unsaturated fatty acids, and low expression of some antioxidant enzymes [72,73].
Excessive oxidative stress and oxidative changes in mtDNA have been reported in the
postmortem brain of AD patients [74–76]. Decreased activity of the alpha-ketoglutarate
dehydrogenase complex, which is sensitive to oxidants, is a feature found in AD patients’
brains [77,78]. Oxidative damage to the RC complex I was observed in postmortem brain
samples from PD patients, as well as oxidative damage to nucleic acids, lipids, and pro-
teins [79–82]. ALS-associated antioxidant enzyme superoxide dismutase 1 (Sod1) mutant
mice showed increased ROS production, decreased expression of NF-E2-related factor 2
(Nrf2), a stress response sensor, and early onset of ALS-like pathology [83–85]. Since ox-
idative damage plays a central role in the common pathophysiology of neurodegenerative
diseases, reducing the harmful effects of ROS in the brain may be a promising treatment
option to slow the progression of neurodegeneration and alleviate associated symptoms.

2.4. Calcium and Iron Homeostasis

In addition to energy production, mitochondria are the site of critical metabolic and
synthetic processes, including fatty acid oxidation, cholesterol synthesis, glucose synthesis,
nucleotide synthesis, calcium homeostasis, iron–sulfur clusters (ISC) synthesis, and heme
synthesis [86,87]. Here, we focus on the control of calcium and iron levels.

Mitochondrial regulation of calcium levels has a vital role in signaling molecules
associated with cell death and cell survival, as well as maintenance of mitochondrial func-
tion [88,89]. Mitochondrial regulation of calcium is particularly important in neurons
because calcium functions as a second messenger in neurons [90]. To maintain the cytosolic
calcium level, the temporary influx of calcium ions that occurs during synaptic activity is
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taken up by the endoplasmic reticulum and mitochondria and also released to the extracel-
lular space, which requires a large amount of ATP consumption [91,92]. Thus, decreased
ATP production capacity affects calcium homeostasis. High cytosolic calcium levels stimu-
late various Ca2+-dependent catabolic enzymes, such as phospholipases, proteases, and
endonucleases, resulting in cell death [93].

In HD patients and mouse models, it has been reported that depolarization at lower
calcium loads was caused by mitochondrial calcium abnormalities, which occurred earlier
than pathological or behavioral abnormalities [94]. Another study showed that increased
cytosolic calcium concentration promoted the degradation of wild-type huntingtin via
calcium-dependent proteases, leading to the loss of huntingtin neuroprotective activ-
ity [95]. Calcium overload in mitochondria also stimulates ROS generation and releases
pro-apoptotic factors such as cytochrome c through the perturbation or rupture of the mito-
chondrial outer membrane, which triggers calcium-induced cell death [96,97]. To sustain
the bioenergetic function of mitochondria, the crosstalk with another calcium storage, the
endoplasmic reticulum (ER), is also important. The ε4 allele of apolipoprotein E (APOE4) is
considered one of the risk factors of AD. Tambini et al. showed upregulated mitochondria-
associated ER membrane (MAM) activity in human fibroblasts or mouse neurons when
cultured in APOE4-containing medium, which promotes the transfer of calcium from the
ER into the mitochondria [98]. In addition, presenilin (PSEN) mutations in familial AD have
been associated with the dysregulation of calcium signaling. PSEN1/2 are abundant in the
ER membrane and interact with ER calcium channels such as inositol 1,4,5-trisphosphate
receptors (IP3R) and ryanodine receptors (RyR) [99–102]. It has also been shown that both
increased ER-mitochondrial contact sites and the expressions of MAM-related proteins,
such as IP3R, RyR, and voltage-dependent anion channel (VDAC1), were found in neurons
from sporadic and familial AD patients and AD mouse models [103].

Among the vital metals in the mitochondria, iron plays a central role and is essential
for the function of the RC complex. ISC, which is synthesized in the mitochondria, is used
for OXPHOS, cellular iron homeostasis, pyrimidine/purine metabolism, tricarboxylic acid
cycle (TCA cycle), DNA repair, and heme synthesis [104]. Excessive free iron generates
oxidative stress, which is a hallmark of age-related diseases. Iron accumulation within the
central nervous system (CNS) was found in AD, PD, HD, and ALS [105–112]. Agrawal et al.
demonstrated that human HD and mouse model HD brains accumulated mitochondrial
iron and showed increased expression of the iron uptake protein mitoferrin 2 and decreases
in the ISC synthesis protein frataxin [113]. Intracellular free iron causes lipid peroxidation
and hydroxyl-radical generation, resulting in cell death known as ferroptosis [114]. Lipid
peroxidation can transmit from ferroptotic cells to neighboring cells, inducing a chain of
further ferroptosis [115]. In ALS, ferroptosis but not necroptosis plays a central role in selective
motor neuron death [116]. Therefore, the association of ferroptosis with the pathophysiology
of neurodegenerative disorders has gained researchers’ attention [117–121].

2.5. Mitochondrial Dynamics

Mitochondria are dynamic organelles that change their number, size, and DNA copies
according to cellular requirements. It has been reported that the copy number of mitochon-
drial DNA decreases with age [122,123]. Mitochondrial dynamics refers to two opposing
phenomena: fission and fusion [124,125]. Both processes are essential for mitochondrial
quality control against stress conditions. The rate of mitochondrial fission and fusion de-
pends on metabolic changes and stress intensity. Mitochondrial fission provides a sufficient
number of mitochondria to daughter cells during mitosis. Even in non-dividing cells,
fission contributes to quality control by isolating damaged mitochondria and targeting
them for removal by mitophagy [125,126]. Inhibition of fission in mouse Purkinje cells
resulted in morphological abnormalities associated with excess fusion, oxidative damage
accumulation, and loss of respiratory function [127]. Excessive mitochondrial fission is
an early event in apoptosis and induces apoptosis via permeabilization of the outer mem-
brane [128–130]. Mitochondrial fusion can rescue mitochondria with mutations by allowing
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them to complement each other or mitigate low-level damage by exchanging proteins and
lipids with other mitochondria. Therefore, inhibition of fusion leads to the accumulation of
mitochondrial damage, resulting in a wide variety of dysfunctions, including heterogeneity
of mitochondrial membrane potential, impaired respiratory chain function, disruption of
mtDNA integrity, reduced mitochondrial Ca2+ uptake, mitochondrial fragmentation, and
apoptosis [131–135].

Disturbances in mitochondrial dynamics have been found to escalate pathogenesis
in neurodegenerative disorders [136,137]. Heterogeneous mutations in the mitochondrial
fusion gene mitofusin 2 (MFN2) cause the neurodegenerative disease Charcot-Marie-Tooth
type 2A (CMT2A) [138,139]. Loss of Mfn2 caused neurodegeneration of Purkinje cells in the
cerebellum and dopaminergic neurons [140,141]. In brain tissue from patients with AD and
HD, increased expression of fission-related genes such as dynamin related protein 1 (DRP1)
and fission protein 1 (FIS1) and decreased expression of fusion-related genes such as MFN1,
MFN2, and optic atrophy 1 (OPA1) have been reported, suggesting that excessive fission
inducing apoptosis occurs [142,143]. Abnormal interaction of accumulated amyloid-β
with DRP1 accelerated mitochondrial fragmentation in AD [142]. Mutant huntingtin also
has been reported to interact with DRP1, increasing its enzyme activity and promoting
fission [144,145]. Selective inhibition of DRP1 suppressed excessive mitochondrial frag-
mentation and improved mitochondrial function in cell models of HD and cells derived
from HD patients [146]. These disruptions in mitochondrial dynamics potentially have a
significant impact on the process of mitophagy.

2.6. Mitophagy

Mitophagy is the removal of dysfunctional mitochondria by autophagy-mediated
fusion with lysosomes, which maintain proper cellular homeostasis [147,148]. Mitophagy
pathways can occur in response to disturbances such as decreased membrane potential and
accumulation of misfolded proteins, and selective mitochondrial fission plays an important
role [126,149,150]. Recessive mutations in PTEN-induced putative kinase 1 (Pink1) and
Parkin (PARK2) have been identified as genetic causes of familial PD [151,152]. PINK1
is a mitochondria-localized serine-threonine kinase that can phosphorylate ubiquitin to
activate Parkin, and Parkin is an E3 ubiquitin ligase in the cytoplasm, and both play central
roles in inducing mitophagy [153,154]. In response to mitochondrial damage, such as
loss of mitochondrial membrane potential or accumulation of misfolded proteins, PINK1
stabilized on the mitochondrial outer membrane, and Parkin migrated from the cytosol to
the damaged mitochondria [153,155]. Disturbed autophagy systems have been reported
in other neurodegenerative disorders, such as AD and HD [156]. In HD cellular models,
autophagic vacuoles failed to recognize and trap cytosolic cargo, leading to insufficient
autophagy and the accumulation of dysfunctional mitochondria [157]. Mitophagy enhance-
ment inhibited amyloid-β and tau pathology in AD models, suggesting mitophagy could
be a potential therapeutic target [158].

2.7. Immune System

Mitochondria are thought to have originated as proteobacteria and later became sym-
biotic in other cells (eukaryotic cells) [159]. Therefore, their components are likely to be
recognized as foreign substances by our innate immune system. Mitochondrial DNA is
particularly cytotoxic and triggers an innate immune response. In a cultured cell model
mimicking Parkinson’s disease, leaked mitochondrial DNA induced an elevated type I inter-
feron response and cell death through the DNA sensor interferon-gamma inducible protein
16 (IFI-16) [160]. In another study, transfection of oxidant-initiated degraded mitochondrial
polynucleotides into primary mouse astrocytes stimulated the expression of interleukin 1β
(Il-1b), Il-6, monocyte chemotactic protein 1 (Mcp1), and tumor necrosis factor α (Tnfa) [161].
In addition to mitochondrial DNA, mitochondrial components such as oxidized cardi-
olipin, cytochrome c, ATP, N-formyl peptides, and high mobility group box 1 have been
reported to induce inflammatory responses [162–169]. Mitochondrial lysates yielded the
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expression of Tnfa and Il-8 in a mouse microglial cell line [170]. Interestingly, they also
upregulated the expression of amyloid-β precursor protein (App), a precursor of amyloid-β
that accumulates in Alzheimer’s disease brains [170]. The microglia of AD patients express
cytokines/chemokines such as TNFA, IL-1B, major histocompatibility complex (MHC) class
II, cyclooxygenase 2, and MCP1 [171,172]. Similarly, elevated levels of TNFA, interferon γ,
IL-2,4,6, and 10 were found in the serum of PD patients [173]. The release of mitochondrial
components associated with cell death may induce an immune response and contribute to
the progression of neurodegenerative disease with neuroinflammation.

3. Small Fish Models to Study Mitochondrial Function/Dysfunction

Small fish (e.g., zebrafish and medaka) are widely used vertebrate models in de-
velopmental genetics and embryology due to the presence of numerous mutants, ease
of genetic modification and embryo manipulation, and ease of imaging using transpar-
ent embryos and larvae. These have been recognized as human disease models in the
last decades because they share a high similarity in genes, organ structures, and dis-
ease phenotypes [174,175]. For instance, both zebrafish and medaka have shown PD-
like phenotypes by the administration of neurotoxins such as 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (MPTP) and 6-hydroxydopamine (6-OHDA) [176–181]. In the following
subsection, the selected examples of genetic models, imaging techniques, and drug screen-
ing illustrate the advantages and challenges of small fish models in studying mitochondrial
function/dysfunction (Figure 3).
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3.1. Genetic Models

Zebrafish and medaka are suitable model organisms to perform gene editing. There are
several efficient genome editing methods used for small fishes, such as zinc-finger nucleases
(ZFNs), transcription activator-like effector nucleases (TALENs), and CRISPR/Cas9 [182].
Small fish release fertilized eggs outside the body, making it easy to introduce genome
editing tools by microinjection. In addition, a morpholino antisense oligonucleotide (MO)-
based gene knockdown has been widely performed in small fishes. Currently, the mito-
chondrial gene dysfunction models are mainly evaluated by MO-based gene knockdown
(Table 1). This method is easy to introduce, but the effect is temporal, occurring only
during the early developmental stage. Furthermore, it has been reported that many genetic
knockout models cannot replicate the MO-induced phenotypes, possibly due to off-target
effects [183]. Therefore, it is important to establish knockout models or use spontaneous
mutants for analyzing gene function [174]. In addition, tissue-specific promoter and/or
site-specific recombinase technology (e.g., Cre-Lox recombination system) are required to
study tissue-specific effects. Moreover, an inducible recombination system (e.g., heat-shock
promoter, chemical-inducible recombination, and light-inducible recombination) may be
necessary to analyze the phenotypes in aged populations or avoid lethality. Detailed strate-
gies for spatiotemporal mutagenesis have been summarized in other reviews [184,185].
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Notably, fish have undergone a whole-genome duplication that causes them to possess
duplicated genes [186,187]. In most cases, one copy loses its function as a pseudogene
(nonfunctionalization). However, other cases involve subfunctionalization in which the
two copies split the original function, or neofunctionalization in which one copy generates
a new function [188]. It is important to remember this fact when analyzing phenotypes and
gene function. Here, we summarize zebrafish and medaka models used to study several
genes associated with mitochondrial function and mainly neuronal defects. Other models
of neurodegenerative disorders can be found in recent reviews [189–192].

Table 1. The characteristics of loss or gain of function studied in zebrafish for mitochondrial-related genes.

Gene Related Disease Model Phenotypes Refs

Neurodegenerative disease model

pink1 (park6) Parkinson’s disease MO knockdown

Short tail, small eyes and head. Cardiac
edema. Enlarged brain ventricles. Reduced
number of dopaminergic neurons. Increased
caspase-3 activity and ROS levels.

[193]

MO knockdown
No alterations in the number of dopaminergic
neurons. Disturbed patterning and projection
of neurons.

[194]

MO knockdown Decreased tyrosine hydroxylase
(Th) + neurons. [195]

ENU mutagenesis
Reduced number of dopaminergic neurons.
Reduced complex I and III activity. Enlarged
mitochondria. Increased microglia activity.

[196]

CRISPR-mediated
knockout

Decreased number of dopaminergic neurons
and noradrenergic neurons. [197]

CRISPR-mediated
knockout Decreased Th + neurons. [198]

Parkin (park2) Parkinson’s disease MO knockdown Decreased Complex I activity. Reduced
number of dopaminergic neurons. [199]

parl Parkinson’s disease MO knockdown Increased cell death. Low density or
mis-patterned dopaminergic neurons. [200]

DJ-1 (park7) Parkinson’s disease MO knockdown

No alterations in the number of dopaminergic
neurons. Reduced number of dopaminergic
neurons under oxidative stress conditions.
Increased Sod1 expression level. Increased
apoptosis under proteasome inhibition.

[201]

MO knockdown

No alterations in the number of dopaminergic
neurons. Reduced number of dopaminergic
neurons under oxidative stress conditions.
Increased apoptosis under the proteasome
inhibition condition.

[202]

CRISPR-mediated
knockout

No anomalies in larval development. Small
body size. Reduced complex I activity.
Reduced Th level in aged fish.

[203]

CRISPR-mediated
knockout Decreased Th + neurons. [198]
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Table 1. Cont.

Gene Related Disease Model Phenotypes Refs

lrrk2 Parkinson’s disease MO knockdown

Severe embryonic lethality. Small brain, heart
edema. Loss of Th + neurons.
Deletion of the WD40 domain: Loss of
Th + neurons.

[204]

MO knockdown No alternation in the number of
dopaminergic neurons. [205]

MO knockdown

Edema, ocular abnormality, abnormal body
axis. Reduced number of dopaminergic
neurons. Increased ROS level. Increased Sod1
expression level.

[206]

ZFN-mediated
knockout A weakened antibacterial response. [207]

CRISPR-mediated
knockout

Increased apoptosis. Reduced number of
microglia/leukocytes in the larval brain.
Decreased Th + neurons in the larval brain.
Progressive increase in monoamine
oxidase-dependent catabolism.

[208]

CRISPR-mediated
knockout

No alterations in the number of dopaminergic
neurons. [209]

sod1 Amyotrophic lateral
sclerosis

Mutant human
SOD1

overexpression
(temporal)

Abnormal axonal branching. Short
axonal length. [210]

Mutant zebrafish
sod1 overexpression

(stable)

No effect on motor axon outgrowth.
Abnormal neuromuscular junction (NMJ).
Progressive deficiency in locomotion.
(end-stage) with intermittent paralysis.
Decreased number of motor neurons.
Vacuolated mitochondria.

[211]

ENU mutagenesis Decreased NMJ and motor neurons. [212]

Neuronal defect

mfn2 Charcot-Marie-Tooth
type 2A MO knockdown

Irregular somite, small eyes, edema in the
brain (mild), and small head with encephalic
necrosis (severe). Abnormal axonal
projections. Underdeveloped motor neurons.
Decreased distribution of AChR clusters.
Reduced size of myofibers.

[213]

ENU mutagenesis Age-related alteration of NMJ pathology.
Reduced number of motile mitochondria. [214]

gdap1 MO knockdown Reduced density of sensory neurites.
Decreased temperature-related activity. [215]

MO knockdown

Co-suppression of mfn2 + gdap1: Exacerbated
phenotype of motor neuron pathology (failed
neuronal extension and innervation of
myotome) compared with single suppression.

[216]

slc25a1

Congenital myasthenic
syndromes/

D-2- and
L-2-hydroxyglutaric

aciduria

MO knockdown Abnormal NMJ. Edema of the hindbrain,
heart, yolk sac, and tail. [217]
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Table 1. Cont.

Gene Related Disease Model Phenotypes Refs

kbp Goldberg-Shprintzen
syndrome

ENU mutagenesis
MO knockdown

Delayed development of peripheral axons.
Defects in axonal outgrowth. Axonal
degeneration or retraction. Abnormal
myelination, microtubule organization, and
localization of mitochondria.

[218]

actr10
ENU mutagenesis
TALEN-mediated

knockout

Axonal swelling, accumulation
of mitochondria. [219]

PGC-1α
(ppargc1a) Wallerian degeneration

Laser axotomy
+ PGC-1α

overexpression

Increased mitochondrial density, attenuated
roGFP2 (redox-sensitive sensor) oxidation,
delayed degeneration.

[220]

SNCA (aSyn)
overexpression

+ PGC-1α
overexpression

Mediated Snca (aSyn) toxicity in
axonal neurons. [221]

nipsnap1 CRISPR-mediated
knockout

Reduced mitophagy in the head region.
Increased ROS production and apoptosis.
Loss of dopaminergic neurons.

[222]

Anomaly of brain development

tfam MO knockdown

Decreased mtDNA copy number and
OXPHOS activity. Edema, small eyes and
brain, non-looped heart, disorganized
skeletal muscles.

[223]

opa1 Optic atrophy MO knockdown

Abnormal blood circulation, non-looped
heart. Small eyes and pectoral fin buds.
Obscure midbrain-hindbrain boundary →
Enlarged hindbrain ventricle.

[224]

MO knockdown
Disturbed mitochondrial network. No
effect on sensory neurites and
temperature-related activity

[215]

surf1
cox5aa
cox5ab

Leigh syndrome MO knockdown

Impaired COX activity. Shortened
rostral-caudal body axis. Abnormal swim
bladder, head shape, gut development, jaw
formation. Edema, small eyes, and
non-looped heart.

[225]

3.1.1. Neurodegenerative Disease Models

Of the mutated genes that cause familial PD, many encode mitochondria-associated
proteins (PINK1, Parkin, PARL, DJ-1, and LRRK2). PINK1 is a protein associated with
mitophagy induction through Parkin activation [153]. Knockdown of pink1 in zebrafish
reduced the number of dopaminergic neurons [193,195]. Another study of pink1 morphants
reported no overall decrease in the number of dopaminergic neurons but disturbed pat-
terning and projection of these neurons [194]. Furthermore, the pink1 null mutant and
pink1 knockout model also showed the loss of dopaminergic neurons [196–198]. These
results suggest that single depletion of pink1 in zebrafish is sufficient to affect dopaminergic
neurons and a suitable model of PD. PD is also characterized by movement disorders.
Motor deficits have also been observed in many of the pink1 deletion models presented here.
Hughes et al. developed a classification method in adult zebrafish movement disorders
with PD-like phenotypes using high-resolution video capture and machine learning [198].
These zebrafish models and behavioral assessments will provide further insights into
understanding human pathology.
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DJ-1 (PARK7) has a role in protecting cells from oxidative and ER stress [226]. Zebrafish
knockdown of DJ-1 did not alter the number of dopaminergic neurons; however, they were
vulnerable to oxidative stress [201,202]. DJ-1 knockout models showed a reduction in
dopaminergic neurons with aging [198,203]. Therefore, mutations in DJ-1 may not directly
cause neuronal death, but the weak neuronal cell protection system leads to PD through
the accumulation of stress with age.

Leucine-rich repeat kinase 2 (LRRK2) is a multidomain protein interacting with
parkin [227,228]. The studies of knockdown or knockout of lrrk2 have reported various but
conflicting phenotypes in terms of the number of dopaminergic neurons [204–209]. No-
tably, the mechanism underlying the pathogenic effect of PD by LRRK2 mutation remains
unknown because point mutations have been found among different domains [228]. The
most frequent mutation in LRRK2 is supposed to be a gain-of-function that increases kinase
activity [229,230]. Further investigation will be needed to understand the role of LRRK2
in PD progression by using not only loss-of-function models but also by establishing a
gain-of-function model.

Several genetic medaka models of PD have been established. Unlike zebrafish, pink1 or
Parkin (park2) single mutations screened from the ENU mutagenesis library did not show
dopaminergic cell loss [231,232]. The double deficiency of pink1 and Parkin (park2) led to
a deterioration of motor function and loss of dopaminergic neurons [232]. DJ-1 knockout
medaka was also established by TALEN and CRISPR/Cas9 systems, but the phenotypes
were not reported [233,234]. There have been few analyses of mutants in medaka, and
further findings should be obtained in future studies.

Gain-of-function mutations in SOD1 cause familial ALS. Mutated SOD1 aggregates in
the mitochondrial inner membrane and is thought to be involved in oxidative stress and
apoptosis [235]. Lemmens et al. reported abnormal motor neuron branching and short
axons in zebrafish, which transiently overexpressed mutated human SOD1 proteins [210].
On the other hand, no such axonal abnormalities were observed in transgenic lines over-
expressing mutant zebrafish sod1, but abnormal neuromuscular junctions (NMJs) were
observed [211]. This line showed end-stage manifestations, including reduced swimming
behavior, partial paralysis, reduced number of motor neurons, and mitochondrial vacuola-
tion. Decreased NMJs and motor neurons have also been reported in zebrafish mutants
of Sod1 [212]. These models recapitulate the ALS phenotype and can be used as valuable
models for ALS research.

3.1.2. Neuronal Defects

Charcot-Marie-Tooth disease (CMT) is a peripheral neuropathy resulting in weaker
muscles. Mutations in the mitochondrial fusion gene MFN2 lead to CMT2A [139]. Zebrafish
knockdown of mfn2 showed abnormal motor neurons and myofiber alignments [213]. In
addition, zebrafish mfn2 mutants showing age-related alteration of NMJ pathology and
reduced motile mitochondria have been identified [214]. Both morphants and mutants
showed dull motor responses to physical stimuli, making them a good model for CMT2A.
Similar abnormal NMJ phenotypes could be found in the knockdown of slc25a1, the mito-
chondrial citrate carrier [217]. Mutations in SLC25A1 are associated with neuromuscular
transmission disorders (congenital myasthenic syndromes) and neurometabolic disorders
(D-2- and L-2-hydroxyglutaric aciduria) [217,236].

It has been reported that mutation in the MFN2 gene impaired mitochondrial axonal
transport [237]. Therefore, defective mitochondrial transport along axons may be asso-
ciated with NMJ pathology and loss of motor function. Zebrafish kbp is an ortholog of
human Kif1-binding protein (KBP/KIAA1279) that regulates mitochondria localization.
The zebrafish kbp mutant revealed that kbp has an essential role in the development, growth,
and maintenance of axons [218]. Notably, mutations in KIF1B are associated with CMT2A
as well as MFN2 [238]. Similarly, the zebrafish mutant of actr10, part of the dynactin
complex, led to mitochondria failing to attach to the dynein retrograde motor, leading to
axon swelling and accumulation of mitochondria [219].
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3.1.3. Anomaly of Brain Development

Knockdown of mitochondrial genes often leads to systemic effects during embryogene-
sis. Mitochondrial transcription factor A (TFAM) is a multifunctional protein that regulates
the transcription and translation of essential mitochondrial genes, mtDNA copy number,
and DNA packaging [239,240]. OPA1 is involved in mitochondrial fusion and regulation
of apoptosis, and its mutation is associated with autosomal dominant optic atrophy [132].
SURF1 is a COX assembly protein, and its mutation is associated with Leigh syndrome [241].
Even though these genes possess different mitochondrial functions, the morphants showed
severe developmental defects in the eye, heart, and brain regions [223–225]. These de-
fects have also been reported in mfn2 and slc25a morphants [213,217]. Mitochondrial gene
mutations often cause early-onset mitochondrial diseases such as Leigh syndrome and
mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) [242]. Mi-
tochondrial disease is clinically complex and can affect any tissue or organ: encephalopathy,
neuropathy, blindness, deafness, myopathy, cardiomyopathy, enteropathy, renal disease,
liver failure, and anemia. However, many children affected by mitochondrial disease
exhibit tissue/organ-specific symptoms in the early stages of the disease [242]. The fast-
developing small fish may be used as a good model to approach the pathogenesis of these
mitochondrial diseases. In medaka, the knockdown of holo-cytochrome c-type synthase
(hccs) showed the phenotype of microphthalmia with linear skin lesions (MLS) through
ROS overproduction [243]. Further investigation will be needed by generating tissue- or
cell type-specific gene knockout models to understand the tissue/organ specificity and
variability of clinical symptoms.

3.2. mtDNA Manipulation

The lengths of mitochondrial DNA of zebrafish and humans are 16,596 and 16,569 bp,
respectively, and encode 13 protein genes, 22 tRNAs, 2 rRNAs, and a non-coding control
region [244,245]. Many mitochondrial DNA variants, such as point mutations and dele-
tions, have been reported as causative genetic defects of various disorders, including PD
and AD [246–249]. Therefore, developing the tools to edit mitochondrial DNA precisely
is essential to understand the etiology of mitochondrial diseases. Current major gene
editing methods are also applicable to mitochondrial DNA editing: mtZFN [250–252], mi-
toTALLEN [253–256], and mito-CRISPR/Cas9 [257–260]. The mito-CRISPR/Cas9 system
was also successfully used in the knock-in strategy in the zebrafish model [261]. However,
these strategies face difficulty in delivering the editing components into mitochondria [262].
In addition, mitochondria-targeted nucleases selectively reduced mtDNA haplotypes in
the germline, eliminating mitochondrial mutations [263,264]. To date, few studies have
been successfully established in in vivo models. Recently, Mok et al. engineered a bacte-
rial cytidine deaminase toxin (DddAtox)-based mitochondrial genome editing tool [265].
DddAtox was split into two inactive portions, which were fused with a transcription
activator-like effector (TALE) and a uracil glycosylase inhibitor, resulting in DddA-derived
cytosine base editors (DdCBEs). DdCBEs were introduced in zebrafish to create a model
of mitochondrial disease. This study showed higher efficiency of mitochondrial nd5 gene
mutation associated with Leigh syndrome and MELAS than a mouse model utilizing the
same strategy [266,267]. Further new methods will continue to be developed and opti-
mized for precise mitochondrial genome editing for understanding mitochondrial disease
and developing therapeutic applications. In this process, small fish can represent strong
in vivo models.

3.3. Imaging

Imaging mitochondria is useful for monitoring the structural and functional changes
during the pathological process, but measuring mitochondrial function in vivo, especially
in mammalian models, involves many technical difficulties. Various fluorescent reporters
have been developed and used for in vitro live-cell imaging [268]. To understand the mito-
chondrial dynamics in vivo, a fluorescent protein fused with a mitochondrial localization
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sequence (e.g., mito-GFP, mito-CFP, and mito-RFP) has been used in mice and zebrafish
models [269–272]. Dukes et al. reported abnormal mitochondrial transport in vivo in a
pharmacological PD model using a transgenic zebrafish in which the mitochondria of
dopaminergic neurons are labeled with the fluorescent reporter [273]. Recent advances
in fluorescent biosensors enable us to observe the behavior of molecules in live cells with
high sensitivity. Using pH-sensitive fluorescent protein, Wrighton et al. established a
zebrafish model to monitor physiological stress-induced mitophagy [274]. Vicente et al.
fused the Ca2+-sensitive photoprotein to GFP and established a zebrafish model to monitor
both the cytoplasmic and mitochondrial Ca2+ during skeletal muscle contraction [275]. A
FRET-based ATP biosensor was also used to visualize ATP dynamics in in vivo beating
hearts [276]. These recent models will contribute to the elucidation of the disease mech-
anisms. Since body transparency is only seen during the embryonic and larval stages,
intravital imaging within the adult body, such as the brain, is a challenge similar to in
mammals. However, there is an option to utilize pigmentation mutants which allow us to
see the internal structure in the adult stage to some extent [277].

3.4. Drug Screening

Drug screening processes are used to identify compounds of interest. In such processes,
zebrafish is a useful model to evaluate toxicity and effectiveness after the in vitro selection.
Needless to say, mice or other mammalian models are evolutionarily closer to humans.
However, 71% of human genes have at least one zebrafish orthologue [187]. Furthermore,
zebrafish provide beneficial features for high throughput drug screening, including small
body size, fast development, ease of laboratory management, and production of large
numbers of offspring [174]. Zebrafish can be useful models not only for drug screening
but also for determining the mechanism of action [278]. Although high throughput drug
screening is available for zebrafish, imaging and analysis of a large number of living
organisms are still challenging.

As we discussed above, mitochondria have vital roles in cells, and mitochondrial dys-
function contributes to various disorders. Thus, mitochondria are an important drug target
for mutations in mitochondrial DNA, mitochondrial component proteins, and restoration
of mitochondrial function [279]. A platform of non-invasive and real-time measurements of
metabolic changes in zebrafish larvae has been established and used for drug screening of
epilepsy [280–282]. Zhang et al. conducted drug screening by using pink1 deficient zebrafish
as a model of Parkinson’s disease. Based on a phenotypic screening strategy, they identified
trifluoperazine that induces a stress-dependent activation of autophagy to rescue Pink1
deficiency [283]. Another study utilized a nitroreductase-metronidazole system, which
induces apoptosis through damage of mitochondrial DNA, to ablate dopaminergic neurons
in zebrafish. Through in vivo dopaminergic neuron imaging, the Renin-Angiotensin-
Aldosterone System (RAAS) inhibitors were identified as neuroprotective [284]. Zebrafish
models for drug screening and disease models will expand more and contribute to fu-
ture therapeutics.

4. Merits and Demerits of CNS Regeneration Capacity in Zebrafish

One of the biggest differences between mammals and zebrafish is the ability of neu-
rogenesis. Zebrafish possess pronounced regeneration capacity in various tissues and
organs; therefore, they have been widely used as a model to study complex tissue re-
generation [285]. They are able to regenerate their injured CNS, such as spinal cord and
telencephalon injuries, with functional recoveries [286–290]. In adult mammals, radial glial
cells are recognized as the source of new neurons (neural stem/progenitor cells), which
are localized in the restricted regions: the subventricular zone (SVZ) and the dentate gyrus
subgranular zone (SGZ) [291–294] (Figure 4).
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Furthermore, radial glial cells in adult zebrafish brains are widely distributed and form
neurogenic niches in the telencephalon, diencephalon, mesencephalon, rhombencephalon,
and spinal cord [295–300] (Figure 4). These progenitor cells were activated following injury
and contributed to regeneration [301–303]. In addition, another specified stem cell niche
has been identified in the zebrafish cerebellum [304–306]. Although these features are
important for elucidating the molecular mechanisms that can be translated to therapeutic
applications for adult mammals, we should keep their endogenous regeneration ability
in mind for understanding the pathological process of neurodegenerative disorders. For
example, injection of amyloid-β42-derivates in the zebrafish brain could lead to AD-like
phenotypes. However, progenitor cells were activated and processed neurogenesis through
the Il-4 signaling pathway [307]. Zebrafish also did not exhibit an age-dependent decline in
dopaminergic and noradrenergic neurons, which may be supported by their neurogenesis
ability [308]. On the other hand, it has also been reported that the number of newborn
neurons and oligodendrocytes decreases with age in the zebrafish telencephalon [309].
Further investigations of regenerative capacity in the fish model will provide knowledge
addressing the limited neurogenic capabilities in the mammalian brain.

5. Turquoise Killifish: A New Model for Neurodegenerative Disorders

In 2003, the turquoise killifish was reported to have the shortest lifespan among ver-
tebrates [310]. Since then, the turquoise killifish has attracted attention as a new small
fish model for aging research. It shows remarkable aging phenotypes during its short
lifespan of only several months, including organ atrophy, scoliosis, and elevated levels
of aging-related acidic β-galactosidase [311–314]. In the body, aging is accompanied by
decreased telomere length, mitochondrial copy number, and antibody production capacity,
leading to multiple organ failures [315–317]. This fish was used to study the relationship
between gene expression patterns in youth and longevity. This study identified that mito-
chondrial RC complex I genes were less active at a young age in long-lived fish. In addition,
partial pharmacological inhibition of complex I by the small molecule rotenone extended
its lifespan [318]. There is no doubt that mitochondrial function decreases with age, but
further investigation will be needed to develop a strategy for improving mitochondrial
function in the aged population.

Declines in neuronal regeneration ability with age have also been reported in the
optic nerve and telencephalon [319,320]. Interestingly, brain regeneration in young fish
was mainly supported by non-glial neural progenitor cells [320], in spite of the presence
of radial glia for neurogenesis [321]. Further characterization of neural progenitor cells
in young and aged turquoise killifish is necessary. As for neurodegenerative disorders,
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neurofibrillary degeneration in aged fish was observed in the optic tectum, telencephalon,
and brainstem, as indicated by Fluoro-JadeB staining [322]. The turquoise killifish also
showed age-related degeneration of dopaminergic and noradrenergic nerves and progres-
sion of alpha-synuclein accumulation, similar to pathological phenotypes observed in
human Parkinson’s disease [308]. This feature may help to elucidate the mechanism of
solitary Parkinson’s disease, which is not dependent on a genetic component. Another
recent study reported the decreased expressions of enzymes, transporters, and receptors
of brain serotonin (5-HT) that are related to neurodegenerative/neurodevelopmental dis-
orders [323]. This study also revealed the increased monoamine oxidase (MAO) activity
in aged fish. Aging-induced increased MAO activity has also been reported in rodents
and human brains [324,325]. MAO is localized at mitochondrial outer membranes, and its
elevated activity is thought to be associated with age-related diseases, including neuro-
logical disorders via increased ROS production and regulation of bioactive amines such
as serotonin and catecholamines [326–328]. This emerging small fish model is still in its
infancy. It is expected that the extremely rapid aging characteristic will be used to ad-
vance our understanding of mitochondrial involvement in disease and the mechanisms of
neurodegenerative disorders.

6. Conclusions

In this review, we outlined the factors involved in mitochondrial dysfunction in the
progression of neurodegenerative disorders and how small fish models can be used to
analyze mitochondrial function. Despite many years of research, we do not know much
about the mechanisms of neurodegenerative diseases, including how they occur and when
they begin. We have not established a therapeutic strategy for their treatment. In addition,
whether mitochondrial dysfunction and the progression of neurodegenerative disease are
causally associated or correlated is still debatable. The small fish model alone may not be
the key tool that unveils everything, and it is important to apply the observed results to
other models such as mammals for deeper understanding. However, there are currently
various technical difficulties preventing closer investigations, including the analysis of
mitochondrial function, which is related to the progression of the disease. Small fish models
are undoubtedly useful as vertebrate models for testing new tools that will be developed in
the future. Similarly, they are helpful as an entry model for in vivo testing in drug discovery
pipelines. These features will facilitate new insights and discoveries to understand human
neurological disorders.
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