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Abstract: The United States is experiencing the most profound and devastating opioid crisis in
history, with the number of deaths involving opioids, including prescription and illegal opioids,
continuing to climb over the past two decades. This severe public health issue is difficult to combat
as opioids remain a crucial treatment for pain, and at the same time, they are also highly addictive.
Opioids act on the opioid receptor, which in turn activates its downstream signaling pathway that
eventually leads to an analgesic effect. Among the four types of opioid receptors, the µ subtype is
primarily responsible for the analgesic cascade. This review describes available 3D structures of
the µ opioid receptor in the protein data bank and provides structural insights for the binding of
agonists and antagonists to the receptor. Comparative analysis on the atomic details of the binding
site in these structures was conducted and distinct binding interactions for agonists, partial agonists,
and antagonists were observed. The findings in this article deepen our understanding of the ligand
binding activity and shed some light on the development of novel opioid analgesics which may
improve the risk benefit balance of existing opioids.

Keywords: µ opioid receptor; structure; binding; agonist; antagonist

1. Introduction

The opioid crisis is one of the most prominent and severe public health issues in U.S.
history owing to its rapidly changing nature. It has affected all types of communities across
the country and indeed factors including diverse geography and demography, high multi-
plicity and complexity of its causes, and devastating consequences from opioid misuse and
opioid use disorder (OUD) have all contributed to the difficulty of combating this crisis.
According to the Centers for Disease Control and Prevention (CDC) Wonder Multiple Cause
of Death database (https://wonder.cdc.gov/, accessed on 13 February 2023), the number
of deaths caused by opioids increased annually from 1999 to 2020. In 1999, there were
6984 opioid-related deaths, while in 2020, the number of fatalities significantly increased
by approximately 14-fold to 94,371. Opioid-related deaths have been separated by the
CDC Wonder database (https://wonder.cdc.gov/wonder/help/mcd.html#UCD%20-%
20ICD-10%20Codes, accessed on 13 February 2023) into four specific categories: natural
or semisynthetic opioids, synthetic opioids, heroin, and mental and behavioral disorders.
Natural opioids such as morphine and codeine and semisynthetic opioids such as oxy-
codone and hydrocodone are frequently prescribed for pain reduction. Synthetic opioids
such as fentanyl are often prescribed for treating severe pain, typically advanced cancer
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pain, although the most recent cases of harm are linked to illicitly manufactured synthetic
products. Since 2013, synthetic opioids have contributed the most to the rapidly increasing
trend of all opioid-related deaths and are responsible for 42% of all mortalities. The opioid
crisis has not only resulted in increasing fatalities throughout the years but also financially
impacts society. In November 2017, the White House suggested that previous estimations
of the economic impact of the opioid crisis had been extremely underestimated in the
Council of Economic Advisers’ report [1]. The annual cost of the opioid crisis increased
by approximately six-fold when all losses were considered [1]. Florence et al. estimated
$1.02 trillion as the economic cost of the opioid crisis, in which the number of lives lost due
to opioid overdose ($480.8 billion) and the reduced quality of life due to OUD ($390.0 billion)
have accounted for over 85% of the total economic burden [2]. In addition, the healthcare
spending cost accounted for almost $35 billion and moreover, the criminal justice-related
spending accounted for $14.8 billion [2].

Such high costs, as well as the dangers of opioid addiction, have raised public aware-
ness of opioid misuse. Many efforts and interventions have been devoted to targeting the
opioid crisis including the development of opioid prescribing guidelines; government-
funded programs for OUD prevention, treatment, and recovery; and research into var-
ious aspects associated with the crisis. A recent opioid guideline was developed by
CDC to explicitly address the concerns of both opioid overdose and chronic pain (https:
//www.cdc.gov/mmwr/volumes/71/rr/rr7103a1.htm, accessed on 14 February 2023).
Government programs such as the Opioid Abuse and Overdose Prevention program of the
CDC and the State Targeted Response to the Opioid Abuse Crisis program of the Substance
Abuse and Mental Health Services Administration (SAMHSA) have received increased
funding in response to the continuing opioid crisis. Opioid-related research has also grown,
as evidenced by the surge in the number of article titles in PubMed containing the word
“opioid” since 2017.

Most opioid-related research has focused on developing new drugs for pain manage-
ment and OUD treatment. Unlike drugs that are only used illicitly, access to opioids cannot
be overly restrictive as they remain some of the most potent painkillers in modern medicine.
To reduce the potential for harm caused by opioids for pain management, alternative drugs
that alleviate pain with reduced or no addiction risk are under development. Another
strategy is to study the mechanism of opioid addiction and optimize current treatment
regimens by combining it with other drugs and reducing doses of the opioid component.
Both strategies have been investigated by researchers from a variety of perspectives and
continue to be explored.

In order to elucidate the mechanisms of action of opioids, researchers have used
pharmacological and biochemical approaches to investigate the signaling pathways of
opioids. The experimental data were able to verify that opioids elicit their primary ef-
fects by binding to the opioid receptor, which in turn inhibits pain transmission upon
activation [3,4]. Therefore, the opioid receptor plays a crucial role in the pathway involving
pain transmission, making it an important drug target for pain therapy. Although opioids
are highly potent painkillers, all opioids can not only cause addiction but can also manifest
in dependence, tolerance, withdrawal effects, and adverse effects including respiratory
depression, sedation, and constipation [4]. A major goal for researchers targeting opioid
receptors is the development of new compounds that have high analgesic efficacy with
fewer side effects and a lower risk of tolerance, dependence, and addiction.

The structure–activity relationship between the opioid receptor and its ligands has
been extensively studied, and researchers have been able to develop derivatives of naturally
occurring opioids and synthetic opioids. However, these compounds did not have much
success in overcoming the adverse effects of existing opioids. With advancements in X-ray
crystallography and cryogenic electron microscopy (cryo-EM), more protein structures
have been resolved in recent years, including the opioid receptors. The availability of
3D protein structures enables new perspectives and allows new approaches in drug design
and development, including, but not limited to, the discovery of cryptic pockets on the
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receptor as potential binding sites, allosteric binding sites leading to allosteric modula-
tion of the receptor, protein–protein interaction interfaces emerging as drug targets, and
polypharmacology design. Overall, 3D protein structures provide valuable insights into
the development of more specific and effective treatments [5–8]. In this article, we review
recently solved structures of the µ subtype of the opioid receptor. In particular, we analyze
the binding site of the µ opioid receptor and ligand–receptor interactions, as well as the
allosteric modulation of the µ opioid receptor.

2. Biology of Opioid Receptors

The hypothesis of opioid receptor existence dates back to the 1950s, and it was based
on the rigid structural activity relationship of opioids [4]. The concept of selective recogni-
tion sites has led to extensive studies on the family of opioid receptors, including receptor
expression, cloning, and ligand binding [9–11]. However, the discovery of the opioid
receptor was not experimentally demonstrated until 1973 when three laboratories reported
the stereoselectivity of the opioid receptor in binding assays utilizing different radioligands:
[3H]naloxone [12], [3H]dihydromorphine [13], and [3H]etorphine [14]. Further investi-
gation using pharmacologic experiments revealed the possibility of multiple subtypes of
opioid receptor: µ for morphine type, δ for enkephalin type, κ for ketocyclazocine type, σ
for SKF10047 (N-allylnormetazocine) type, and ε for β-endorphin type [15].

The classification of the opioid receptor subtypes has evolved as our understanding
of the molecular aspects of opioid receptors has profoundly grown. After two decades of
the biochemical demonstration of opioid receptors, four distinct complementary DNAs
(cDNAs) were isolated and identified as members of the opioid receptor family [4]. Three
of the cDNAs were later correlated to the pharmacologically defined µ-(MOR), δ-(DOR),
and κ-opioid receptors (KOR), while the fourth receptor did not bind opioid ligands with
high affinity [15]. Instead, a novel peptide, nociceptin/orphanin FQ was identified as the
endogenous ligand for the fourth receptor in the opioid receptor family, hence the name
nociceptin opioid receptor (NOR, originally named ORL-1) [16]. The amino acid sequence
similarity across these four subtypes of opioid receptors is approximately 50% [15].

Opioid receptors are primarily localized in pain-modulating descending pathways,
including the medulla locus coeruleus and the periaqueductal gray area [17]. They are also
expressed in limbic, midbrain, and cortical structures [17,18]. Opioid receptor activation
at these sites directly inhibits neurons, which leads to the inhibition of spinal cord pain
transmission [17]. Meanwhile, both opioid receptors and opioid peptides can be found
throughout the nociceptive neural circuitry and critical regions of the central nervous
system that are involved in reward and emotion [17,18]. The endogenous opioid peptides
bind to the opioid receptor with different specificity. Endomorphin-1 and -2 selectively
bind to the MOR, and dynorphin-A and -B and α-neoendorphin only bind to KOR. In
contrast, β-endorphin and enkephalins bind to both MOR and DOR (Table 1) [3,19,20].

Table 1. Four subtypes of opioid receptor and a list of their endogenous ligands.

Opioid Receptor Subtype Endogenous Ligand

µ β-endorphin, enkephalins, endomorphin-1, endomorphin-2
δ β-endorphin, enkephalins
κ dynorphin A, dynorphin B, α-neoendorphin

NOR 1 N/OFQ (nociceptin/orphanin FQ)
1 nociceptin/orphanin FQ opioid peptide receptor.

In order to study the mechanism of action of the opioid receptor, elucidating its
structure becomes crucial. Molecular cloning and hydropathy analysis predicted that
the primary structure of the opioid receptor is composed of seven transmembrane seg-
ments, which is a structural characteristic of G protein-coupled receptors (GPCR) [15].
This prediction was validated in 2012 by X-ray crystallography [21]. The overall architec-
ture of the opioid receptor resembles the structure of the GPCRs with seven transmem-
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brane α-helices connected by three intracellular loops (ICL1-3) and three extracellular
loops (ECL1-3) [21].

As members of the non-olfactory class A GPCRs, all four known subtypes of opioid
receptors are coupled to pertussis toxin-sensitive G proteins (Gi or Go or both) [17,19,20,22].
Upon agonist binding to the orthosteric binding site, the conformational change of the
receptor prompts the activation of intracellular G proteins. Subsequently, the Gαi and
Gβγ subunits dissociate from each other and then act on various downstream intracellular
signaling pathways [17,19,20,22]. For instance, translocation of the Gα subunit is followed
by the inhibition of the adenylyl cyclase (AC) activity, thereby inhibiting the formation of
cAMP [23–25]. cAMP activates protein kinase A (PKA), a protein that is responsible for the
phosphorylation of various ion channels, proteins, and enzymes, which eventually leads to
their activation or inhibition [26]. The release of the Gβγ subunit leads to the inhibition
of the voltage-gated Ca2+ channels (VGCC, L-type, and N-type) in addition to K+ channel
activation (Figure 1) [17,24,27].
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Figure 1. The signal transduction pathway of the opioid receptor. Upon agonist binding, the opioid
receptor couples with the heterotrimeric G protein that later dissociates into Gα and Gβγ subunits,
followed by the translocation of the Gα subunit that leads to the inhibition of the adenylyl cyclase
(AC) activity. The release of Gβγ subunit inhibits voltage-gated Ca2+ channels (VGCC, L-type, and
N-type) and causes activation of K+ channels.

GPCRs are known for their sophisticated signaling pathways and conformational
landscapes. Ligands may preferentially activate or inhibit a particular pathway by altering
the conformations of the receptor, and this is referred to as functional selectivity or ligand
bias [28,29]. The functional selectivity of the opioid receptor has been studied extensively
due to potential therapeutic benefits of biased agonism and partial agonism. The opioid
receptor can have G protein dependent signaling, β-arrestin dependent signaling, and
G protein β-arrestin complex dependent signaling [30–32]. The G protein dependent
signaling leads to a reduction of cAMP, a decreased Ca2+ response, and the activation
of G. protein-coupled inwardly rectifying potassium (GIRK) channels [33]. In contrast, the
phosphorylation of opioid receptors by G protein-coupled receptor kinases (GRK) leads
to the recruitment of β-arrestin [34]. The binding of β-arrestin, in turn, regulates receptor
desensitization, sequestration, sorting, internalization, and degradation [34]. In this case,
the β-arrestin dependent signaling terminates the G protein signaling as the opioid receptor
undergoes internalization and degradation [35]. Phosphorylated β-arrestin opioid receptor
complex can also recruit other signal transduction cascades such as the mitogen-activated
protein kinase (MAPK) pathway and the p38 pathway [36,37]. Moreover, the formation
of the Gαi subunit and the β-arrestin complex also mediate various signaling pathways,
including the activation of extracellular signal-regulated kinase (ERK) (Figure 2) [37].
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Figure 2. Biased signaling of MOR. The figure on the left shows the coupling between G proteins
and MOR after ligand binding, leading to a reduction of cAMP, decreased Ca2+ signaling, and the
activation of GIRK channels. In the middle, GRK phosphorylated the receptor, resulting in β-arrestin
recruitment. This leads to receptor internalization and degradation. Meanwhile, β-arrestin mediates
other signaling pathways, including those of MAPK and p38. The figure on the right shows the
interaction between the Gαi subunit and β-arrestin. These two proteins form a complex that mediates
various signaling pathways such as the activation of ERK.

3. Structures of µ Opioid Receptor (MOR)

Several structures of MOR with atomic resolution have been reported since 2012 and
are listed in Table 2.

Table 2. Available structures of µ opioid receptor.

PDB ID Ligand Ligand Type In Complex with Structure Type Resolution

4DKL β-FNA Antagonist Lysozyme chimera X-RAY 2.8
7UL4 Alvimopan Antagonist Megabody 6 Cryo-EM 2.8
5C1M BU72 Full agonist Nanobody 39 X-RAY 2.07
8EF5 Fentanyl Full agonist Gαi-1, Gβ-1, Gγ-2 Cryo-EM 3.3
8EF6 Morphine Full agonist Gαi-1, Gβ-1, Gγ-2, scFv16 Cryo-EM 3.2
6DDE DAMGO Full agonist Gαi-1, Gβ-1, Gγ-2, scFv16 Cryo-EM 3.5
6DDF DAMGO Full agonist Gαi-1, Gβ-1, Gγ-2 Cryo-EM 3.5
8EFQ DAMGO Full agonist Gαi-1, Gβ-1, Gγ-2 Cryo-EM 3.3
7T2H Lofentanil Full agonist Gαi-1, Gβ-1, Gγ-2, scFv16 Cryo-EM 3.2

7T2G Mitragynine
pseudoindoxyl Full agonist Gαi-1, Gβ-1, Gγ-2 Cryo-EM 2.5

8EFB Oliceridine
(TRV130) Partial agonist Gαi-1, Gβ-1, Gγ-2, scFv16 Cryo-EM 3.2

8EFL SR17018 Partial agonist Gαi-1, Gβ-1, Gγ-2, scFv16 Cryo-EM 3.2
8EFO PZM21 Partial agonist Gαi-1, Gβ-1, Gγ-2, scFv16 Cryo-EM 2.8
7SBF PZM21 Partial agonist Gαi-1, Gβ-1, Gγ-2, scFv16 Cryo-EM 2.9
7SCG FH210 Partial agonist Gαi-1, Gβ-1, Gγ-2, scFv16 Cryo-EM 3.0
7U2L NNPPP 1 Bitopic ligand Gαi-1, Gβ-1, Gγ-2, scFv16 Cryo-EM 3.2

1 N-(5-carbamimidamidopentyl)-N-[1-(2-phenylethyl) piperidin-4-yl] propanamide.

These include two structures in complex with antagonists β-funaltrexamine (β-FNA)
(PDB ID: 4DKL) [21] and alvimopan (PDB ID: 7UL4) [38]; five structures in complex
with partial agonists PZM21 (PDB ID: 7SBF, 8EFO) [39,40], FH210 (PDB ID: 7SCG) [39],
oliceridine (TRV130) (PDB ID: 8EFB) [40], and SR17018 (PDB ID: 8EFL) [40]; and six struc-
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tures bound with full agonists BU72 (PDB ID: 5C1M) [41], [D-Ala2, N-MePhe4, Gly-ol5]
enkephalin (DAMGO, a synthetic peptide) (PDB ID: 6DDE, 6DDF, and 8EFQ) [40,42], fen-
tanyl (PDB ID: 8EF5) [40], morphine (PDB ID:8EF6) [40], lofentanil (PDB ID: 7T2H) [43],
and mitragynine pseudoindoxyl (PDB ID: 7T2G) [43]. Another recently solved structure
is bound with a bitopic ligand (PDB ID: 7U2L) [8]. The two structures reported earlier
in 2012 [21] and 2015 [41] utilized an X-ray diffraction method and the stabilization of
the receptor alone was difficult, therefore the T4 lysozyme (T4L) fusion protein strategy
and nanobody were used to help stabilize the protein for crystallization. The remaining
structures were from cryo-EM experiments and the receptors were solved in complex with
the G proteins and/or megabodies (Table 2).

The MOR consists of seven transmembrane helices that are connected by loops ECL1-3
and ICL1-3. The orthosteric binding site is located near the extracellular side of the helix
bundle. The alignment of the structures of MOR revealed that all ligands were bound
within the same site (Figure 3). Intriguingly, this binding site is largely exposed to the
extracellular surface, whereas in other GPCRs the ligands were often buried deeper within
the helix bundle. This structural characteristic may explain the rapid dissociation kinetics
of extremely potent opioids. For instance, the inhibition constant of alvimopan is 350 pM
with a half-life of 30 min [21].
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different shades of yellow. The right panel is an enlarged illustration of all ligands (both agonist and
antagonist) aligned. This figure was generated with ChimeraX 1.4. [44,45].

Both agonists and antagonists bind to the same orthosteric site of the MOR, and
the structural differences presented in these structures were relatively subtle. In partic-
ular, the binding modes of the antagonist β-FNA and full agonist BU72 are very similar.
Both ligands have a morphinan scaffold with a similar binding orientation (Figure 4).
Two conserved interactions between the ligands and the receptor were observed: (1) a
water-mediated hydrogen bond between the phenolic hydroxyl of the morphinan group
and H2976.52 (superscripts are Ballesteros–Weinstein numbering in GPCRs, all residue
numbering scheme in this manuscript refers to the mouse MOR, there are also human
MOR cryo-EM structures available with different residue number scheme) and (2) an ionic
interaction between the tertiary amine of the morphinan group and D1473.32. Meanwhile,
the side chain of D1473.32 also forms a hydrogen bond with Y3267.43. Despite the structural
differences in BU72 and DAMGO, the orientation of the residues that interacted with the



Int. J. Mol. Sci. 2023, 24, 7042 7 of 19

full agonists are highly similar. The ionic interaction with D1473.32 was preserved as the
N-terminus of DAMGO formed a salt bridge with the amine group of D1473.32, and the
same amine group also formed a hydrogen bond with Y3267.43 in this structure (Figure 4).
The same water-mediated hydrogen bond network between H2976.52 and the phenol group
of DAMGO was observed in the molecular dynamics (MD) simulation [37]. Although
β-FNA and alvimopan are both antagonists, unlike the morphinan scaffold of β-FNA,
alvimopan possesses phenol-piperidine moieties which share similarities with the structure
of fentanyl and its analogs. The protonated piperidine forms a salt bridge with the D1473.32

(Figure 4). The recently solved fentanyl-bound MOR structure has shown a direct
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stacking interaction. between the benzene ring of fentanyl and the side chain of W2936.48

and Y3267.43, which is not presented in the morphine-bound MOR structure [40]. Addition-
ally, a hydrophobic interaction between the phenylethyl moiety of fentanyl and a minor
pocket located between TM2 and TM3 of the MOR is also absent in the morphine-bound
MOR structure [40]. Mutations of the residues within this minor pocket including residues
Q1242.60, W13323.50, and I1443.27 to alanine affected the potency of fentanyl more than that
of morphine [40]. These atomic details revealed by cryo-EM structures may explain the
higher potency of fentanyl to the receptor. The 2D structures of all ligands are shown
in Table 3.

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 10 of 22 
 

 

 

Figure 4. Cont.



Int. J. Mol. Sci. 2023, 24, 7042 8 of 19
Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 11 of 22 
 

 

 

Figure 4. Binding pose comparison of antagonists β-FNA (top row left) and alvimopan (top row 

right), agonists BU72 (row 2 left), fentanyl (row 2 right), morphine (row 3 left), DAMGO (row 4 

right), mitragynine pseudoindoxyl (row 5 left), and lofentanil (row 5 right), and partial agonists 

Figure 4. Binding pose comparison of antagonists β-FNA (top row left) and alvimopan (top
row right), agonists BU72 (row 2 left), fentanyl (row 2 right), morphine (row 3 left), DAMGO
(row 4 right), mitragynine pseudoindoxyl (row 5 left), and lofentanil (row 5 right), and partial ago-
nists PZM21 (bottom row left), FH210 (bottom row right), oliceridine (TRV130) (row 3 right), and
SR17018 (row 4 left). This figure was generated using Maestro. [46].

Although the binding pocket and binding interaction are highly similar between
full agonist bound structures and antagonist bound structures, the partial agonist bound
structures maintained the same interactions while also showing a distinctive feature. Both
partial agonists PZM21 and FH210 retained the polar interactions between their basic amine
and D1473.32 and water mediated hydrogen bond between their phenol hydroxy group and
H2976.52 (Figure 4). Intriguingly, both partial agonists also showed high complementarity
to a lipophilic vestibule formed by the extracellular surface of transmembrane helices (TM2
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and TM3) and ECL1. The interactions between the thiolphenylalkyl moiety of PZM21 and
naphthyl moiety of FH210 with this lipophilic vestibule may help to explain their partial
agonism and the increase in G protein biased signaling over β-arrestin recruitment.

Table 3. The 2D structures of the ligands.

Ligand Type 2D Structure

Agonist
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Despite the overall structural similarities shared between the structures of MOR, the
distinctive binding feature of the partial agonists raised the question of whether there are
other differences between the binding pockets. To answer this question, we first analyzed
the composition of the surrounding residues within 5 Å of the ligands in all structures.
The number of residues within 5 Å of the ligands is between 15 to 20, half of which are
hydrophobic, and the remaining half are either charged residues or polar residues (Table 4).
This analysis suggested that the residue composition surrounding the ligands is very
similar. The structure in complex with the bitopic ligand (PDB ID: 7U2L) is not included in
our analyses due to the undetermined pharmacological effect of the bitopic ligand. Next,
instead of focusing on the type of residues surrounding the ligands, we categorized the
residues by ligand types. In other words, we investigated if the residues are shared by all
ligands, between two types of ligands, or unique to one type of ligand. We also narrowed
down the search by limiting the distance between the ligand and the receptor to 4 Å. A total
of 11 residues were found in all structures. W13323.50, W2936.48, H2976.52, K3036.58, and
W3187.35 were shared between structures in complex with either full agonists or antagonists.
V1433.28 and C21745.50 were shared between structures in complex with either full agonists
or partial agonists. Y751.39, T21845.51, H3197.35, and G3257.41 were the residues unique to
the binding of full agonists. T1202.56 and K2335.39 were the residues found within 4 Å of the
partial agonist that are distinctive, and L2195.52 and E2295.35 were unique to the antagonists
(Figure 5). We computed the contact area for the ligands, revealing that DAMGO has
the largest contact area of 147 Å2 and BU72 has the smallest contact area of 40 Å2. As
mentioned above, water molecules play an important role in mediating hydrogen bonding
interactions between the receptor and the ligand. We also examined the water molecules in
the structures. Out of the 15 structures, 10 structures did not solve any water molecules
(PDB ID: 6DDE, 6DDF, 7SBF, 7T2G, 8EF5, 8EF6, 8EFB, 8EFL, 8EFQ, and 8EFO), while the
other 5 structures (PDB ID: 4DKL, 7UL4, 5C1M, 7SCG, and 7T2H) have 2, 1, 7, 2, and
8 water molecules solved, respectively.

Table 4. Binding pocket residue composition of each structure (residues within 5 Å of the ligand
are included).

PDB ID Ligand Charged
Residues

Polar
Residues

Hydrophobic
Residues

4DKL β-FNA 5 2 8
7UL4 Alvimopan 3 6 11
5C1M BU72 4 4 10
8EF5 Fentanyl 1 3 13
8EF6 Morphine 2 1 9
6DDE DAMGO 4 5 10

6DDF6DDE DAMGODAMGO 44 55 1010
6DDF8EFQ DAMGO 24 55 1410

7T2H Lofentanil 2 4 12

7T2G Mitragynine
pseudoindoxyl 3 5 10

8EFB Oliceridine
(TRV130) 1 3 15

8EFL SR17018 1 4 13
8EFO PZM21 2 4 13
7SBF PZM21 3 5 11
7SCG FH210 3 5 9

To further analyze the binding site, we measured the solvent-accessible surface area
and solvent-accessible volume for each structure. Although residues near the ligand exhibit
similar conformations, binding of the ligand may induce a conformational change in
residues of the second interaction shell. Therefore, the binding of different ligands in the
same binding site may still lead to subtle differences in the solvent-accessible surface area
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and volume of nearby residues. Table 5 lists the solvent-accessible surface area and volume
of the binding site for all structures. CASTp 3.0 was used for SASA and SAV calculation [47].
There was no significant difference found in the solvent-accessible surface area among
all structures, but the full agonist bound structures have the smallest solvent-accessible
volume compared to that of the antagonist bound structures or partial agonist bound
structures. This characteristic may be explained by the induced-fit mechanism. Although
both agonists and antagonists bind to the same binding site, the size of the ligands varies,
leading to differences in the shape complementarity of the binding pocket.
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this figure was generated with ChimeraX 1.4. [44,45].

Table 5. Binding site solvent accessible surface area (SASA) and solvent accessible volume (SAV).

PDB ID Ligand SASA (Å2) SAV (Å3)

4DKL β-FNA 724 926
7UL4 Alvimopan 1016 1296
5C1M BU72 1212 619
8EF5 Fentanyl 1062 1324
8EF6 Morphine 960 1097
6DDE DAMGO 716 682
6DDF DAMGO 631 588
8EFQ DAMGO 827 938
7T2H Lofentanil 821 1024

7T2G Mitragynine
pseudoindoxyl 612 674

8EFB Oliceridine
(TRV130) 1052 1067

8EFL SR17018 1284 1875
8EFO PZM21 949 989
7SBF PZM21 1341 2126
7SCG FH210 990 1330
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Molecular dynamics simulation is a technique often employed to study protein dy-
namics with atomic details, which provides a deeper understanding of small molecule
binding and protein functional selectivity mechanisms [48–51]. Multiple studies have
endeavored to investigate ligand binding and selectivity of the MOR, the role of water
molecules in the MOR, the activation mechanism of the MOR, and biased signaling of
the MOR using MD simulations [52–63]. Here, we summarized the findings focused on
the interactions involved in ligand binding and how water molecules were involved in
ligand binding to the MOR. Both Liao et al. and Podlewska et al. discovered that the
partial agonist PZM21 interacts strongly with D1473.32, Y1483.33, and Y3267.43, which is
congruent with the interactions found in the cryo-EM structures [64,65]. Intriguingly, in
the MD simulation trajectories Podlewska et al. observed that the increased intensity of the
interactions between PZM21 with I2966.51 and H2976.52 prompted the increased intensity of
interaction with W3187.34 [64]. Valerylfentanyl, a fentanyl analog often implicated in opioid
overdose, is a partial agonist of the MOR [66]. MD simulations have revealed that the alkyl
chain of this compound is not well accommodated by the active state of the MOR, which
may shift the receptor toward an inactive state [66]. Cheng et al. observed that oliceridine
(TRV130) formed a hydrogen bond with D1473.32 and a direct interaction with Y3267.43,
which maintained the close distance between Y3267.43 and W2936.48, thus enhancing the
stability of W2936.48 [56]. Shim et al. showed that the salt bridge between β-FNA and
D1473.32 was consistently maintained in MD simulations [52]. Overall, the interactions
between the ligands and the MOR found in MD simulations and cryo-EM structures were
consistent, while the MD simulations provided additional atomic details that may help to
explain the potential mechanism of action of the partial agonism.

Fourier-transform infrared spectroscopy and UV-visible spectroscopy data have shown
that internal water molecules are essential for the function of various membrane proteins
including GPCRs [67,68]. It has been proposed that internal water molecules play an
important role in GPCR activation and signaling, but the mechanism behind these findings
remains elusive [69]. Yuan et al. performed MD simulations on the MOR to study the role of
water molecules in MOR activation. Two systems were built: an agonist- (morphine) bound
system and an antagonist- (levallorphan) bound system. They discovered that the agonist-
bound system has more intrinsic water molecules compared to the antagonist-bound
system [53]. Closer examination revealed that besides the hydrogen bond with D1473.32,
levallorphan also formed a σ–
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stacking interaction with Y3207.43 that prohibits water
penetration [53]. These findings suggest that the size of the ligand, as well as the degree of
“openness” of the binding pocket, may play a role in determining whether a ligand acts as
an agonist or antagonist. Consistent with this idea, the agonist-bound structures have a
smaller solvent accessible volume due to a smaller ligand size and greater exposure of the
binding pocket, whereas the antagonists are larger in size, requiring the binding pocket to
expand, resulting in a larger solvent accessible volume. Later, the same group published a
second paper with five different systems: the apo system, agonist (morphine) bound system
with and without sodium, and antagonist (naltrexone) bound system with and without
sodium [55]. The analysis showed that water molecules within the binding site frequently
exchange with the extracellular water molecules in the agonist-bound systems, which was
not observed in the antagonist-bound systems [55]. The water molecule movement near
the conserved NPxxY motifs has been associated with the switches of GPCR activation, and
its importance has been demonstrated in the MD simulations [53,70–72]. The importance
of the internal water environment near the NPxxY region has also been demonstrated by
Cheng et al., in that water molecules in the agonist-bound system are much more active
compared to that of the antagonist-bound system [56]. All these findings are consistent
with the crystal structure data where the structure of the MOR in complex with agonist
BU72 (PDB ID: 5C1M) [41] was solved with water molecules around the NPxxY region,
proving the importance of water in MOR activation.
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4. Allosteric Modulation of the MOR

With the ongoing opioid crisis, the urgency for understanding the allosteric modula-
tion of opioid receptors to guide the development of effective and safe drugs for pain man-
agement has increased. Allosteric modulators are ligands that bind to the non-orthosteric
binding site of the receptor, either enhancing (positive allosteric modulator or PAM) or
diminishing (negative allosteric modulator or NAM) the signaling activities of the receptor.
Allosteric modulators can alter the affinity, potency, and efficacy of the orthosteric ligands.
PAMs to MOR are considered as new candidates for a safer approach to pain management.
Ideally, PAMs would indirectly activate the MOR by enhancing the effects of endogenous
opioid peptides, leading to the desired analgesic effect with a lower risk of severe side
effects or addiction liability. Meanwhile, PAMs might increase the efficacy or potency of
opioid drugs such as morphine, so the same therapeutic effect can be achieved at a lower
dose with fewer side effects. It is worth noting that allosteric modulators can sometimes
act as biased ligands. Bias refers to the phenomenon in which a ligand selectively activates
certain signaling pathways downstream of the receptor. This phenomenon can occur for
both orthosteric and allosteric ligands. In this case, the binding of PAMs may alter the
preferred signaling pathway of the receptor, leading to biased downstream signaling. The
advantage is the avoidance of the pathway that can potentially lead to undesired effects.
For example, the β-arrestin-biased signaling of the MOR has been connected to respiratory
depression and constipation [73–75]. Additional studies found controversy surrounding
the connection between β-arrestin signaling and respiratory depression [76]. Therefore,
the connection between β-arrestin-biased signaling and respiratory depression remains an
area of ongoing investigation, and further studies are needed to fully understand the role
of this pathway in the development of these side effects. However, PAMs may still have
the potential advantage of steering the downstream signaling toward G protein-biased sig-
naling without activating the β-arrestin-biased signaling pathway. Additionally, allosteric
modulators can sometimes activate the receptor directly. Therefore, the allosteric activity
is not only dependent on the binding affinity of the modulator itself and the allosteric
cooperativity, which characterizes the capacity of the modulator to alter the affinity and/or
efficacy of the orthosteric ligand, but also dependent on the orthosteric ligand as well [77].
The phenomenon that the same allosteric modulator has different effects depending on
the orthosteric ligand is referred to as probe dependence [77]. On the other hand, two
NAMs were discovered prior to the development of MOR PAMs. One of these NAMs is
cannabidiol, which is a CB1 receptor agonist and was found to be a NAM of both MOR and
DOR agonists [78]. Cannabidiol was shown to accelerate the dissociation of DAMGO from
the MOR by a factor of at least 12 and also accelerated the dissociation of [3H]naltrindole
from the DOR by a factor of at least 2 [78]. In a high-throughput screen using a β-arrestin
recruitment assay, salvinorin A, a potent KOR agonist, was also identified as a NAM of
MOR [79]. The potential use of NAMs may be as a treatment for opioid use disorder (OUD).
As mentioned earlier, NAMs bind to the allosteric binding site of the receptor, weakening
or reducing signaling activity of the receptor by slowing or inhibiting the binding of the
ligands to the orthosteric binding site. In the case of the MOR, NAMs can reduce the
signaling activity of the receptor, leading to a reduction in the effects of opioid agonists.
This may have potential therapeutic benefits for OUD treatment. Currently, there are no
MOR NAMs approved for the treatment of OUD, and more research is needed to fully
explore their potential therapeutic benefits and safety profile.

Monovalent and divalent cations, in particular the monovalent sodium cation (Na+)
and the divalent magnesium cation (Mg2+), are well-known PAMs and NAMs for the
MOR [61]. Interestingly, Na+ and Mg2+ have opposite effects, with Na+ acting as a NAM by
reducing agonist binding and Mg2+ acting as a PAM by affecting MOR signaling [61]. The
idea of Na+ as a NAM has been established for decades, and the hypothesis was that Na+

stabilizes the inactive conformation of the receptor, which later was extended to several
GPCRs including the MOR [53,58]. Both high-resolution X-ray structures of GPCRs and
multiple MD simulations have supported this hypothesis [58,80–86]. The recently solved
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structure of inactive DOR revealed that the allosteric binding site of Na+ is coordinated
by two water molecules and residues N1313.35, S1353.39, and D952.50 (PDB ID: 4N6H [80])
(Figure 6). Binding events of Na+ to this allosteric binding site were also observed in MD
simulations in both inactive MOR and KOR systems [84]. This allosteric binding site was
found to be collapsed in the active GPCR structures [81]. A recent study of a prototypic
GPCR and adenosine A2A receptor revealed the unexpected results that Na+ also stabilizes
the intermediate state that may correlate to partial agonism, which may explain why Na+

was also found to promote agonist-induced MOR activation [87]. The same study also
revealed that Mg2+ promotes the opening of the G protein binding cleft, leading to the
bridging between the acidic residues located on the extracellular region of TM5 and TM6,
and resulting in receptor activation [87]. MD simulation studies have discovered that
the preferred binding site of Mg2+ is located near the extracellular region of the MOR,
in particular in proximity to residues S214ECL2, D216ECL2, and E310ECL3 (Figure 6) [61].
Additionally, Mg2+ exhibits a higher binding affinity to the active conformation of the MOR
compared to the inactive conformation [61].

The conformational state of the MOR is altered not only by cations but also by other
endogenous molecules such as lipids. As a membrane-embedded protein, the translocation
and internalization of MOR are controlled by lipids while its function is also modulated by
lipids [88], especially cholesterol, a sterol-type of lipid that comprises approximately 30%
of the cell membrane [89]. Experimental data have shown that the removal of cholesterol
reduces cAMP signaling of the MOR [90]. One of the ways that cholesterol can modulate
the activity of the MOR is by binding directly to the receptor which leads to allosteric
effects; the other is by changing the fluidity of the membrane, which in turn affects the
signaling of the receptor [89]. Cholesterol was found co-crystallized with many GPCRs,
including the MOR. In both active (PDB ID: 5C1M [41]) and inactive (PDB ID: 4DKL [21])
MOR structures, cholesterol was found to be co-crystallized at the same binding site. This
binding site was also found in the active structures of KOR (PDB ID: 6PT2 [91], 6B73 [92]),
the structure of the adenosine A2A receptor (PDB ID: 5IU4 [93]), and the active structure of
the CXCR3 receptor (PDB ID: 5WB2 [94]). This binding site is a groove between TM2, TM3,
and TM4 or TM6 at the extracellular region of the receptor (Figure 6).

Endogenous molecules are not the only allosteric modulators of MOR; many small
molecules were either serendipitously found or intentionally designed to act as PAMs
for the MOR. The first selective small molecule PAMs of the MOR are BMS-986121 and
BMS-986122, both of which were identified by high-throughput screening in 2013 [95]. Both
molecules were first screened for the ability to enhance the binding of endogenous agonist
endomorphin-1 that recruits β-arrestin to MOR [95]. However, further studies found these
compounds enhanced the affinity and/or efficacy of various opioid agonists. Consequently,
more analogs of these two compounds were developed along with SAM (silent allosteric
modulator) BMS-986124 [95]. PAM BMS-986122 exhibits probe dependence: it increases
the potency and affinity of methadone and DAMGO but only enhanced the efficacy of
morphine and nalbuphine, with no effect on the binding of antagonists [77,96]. To date, the
published BMS series of compounds only act as PAMs or SAMs, and the structure–activity
relationships remain unclear. However, there have been several attempts to identify the
binding site of the BMS compoundseries by docking and MD simulations. Bartuzi et al.
revealed that the potential binding site of BMS-986122 may be slightly above the orthosteric
binding site and towards the extracellular region of TM2 and TM7 (Figure 6) [97]. Recently,
Bartuzi et al. developed a novel small molecule PAM of the MOR that can enhance the
efficacy of morphine [98]. They also predicted this novel compound binds in proximity
to TM2 and the binding pocket is composed of W13523.50, C1423.25, V1453.28, I1463.29, and
C21945.50 (Figure 6) [98].
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5. Future Perspectives

Although medicinal chemists spent almost two centuries developing drugs targeting
the MOR, many of the compounds still share the same scaffold as morphine or have similar
synthetic scaffolds, which in turn limits the diversity of the active compounds. Moreover,
this scaffold was reported to induce undesirable adverse effects, including respiratory
depression and constipation. More recent approaches to developing new drugs targeting
the MOR involve high-throughput screening and defined signaling assays in stable MOR
transfected cell lines. However, these approaches are time-consuming and expensive. The
advancement of X-ray crystallography and cryo-EM helped to solve more opioid receptor
structures in recent years, which provided an unprecedented opportunity in computer-
aided drug design. High-resolution structures of the MOR in complex with agonists
or antagonists can confirm the binding site of the ligands and provide insights into the
chemical recognition of the ligands. The molecular details of the binding site itself provide
valuable information for structure-based drug design. Furthermore, some of the MOR
structures have been crystallized with G proteins, which not only provides hints regarding
the conformational changes that drive the downstream signaling pathway, but also in terms
of the atomic details of the protein–protein interaction interface, which can potentially serve
as a binding site for protein–protein interaction disruptors or molecular glues that stabilize
the interface. Finally, these high-resolution structures have enabled researchers to explore
novel allosteric binding sites. Recent improvements in computational chemistry have
increased the accuracy of docking calculations, and with rapidly increasing computational
power, researchers can explore the infinite chemical space and screen hundreds of millions
of compounds. Structurally divergent compounds are likely to have unique biological
properties that may potentially act as safer analgesics. Overall, the availability of high-
resolution structures and a better understanding of the MOR structures may hold the key
to successful opioid analogue discovery.
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