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Abstract: The two-hit model has been proposed to explain the effects of diabetes on mothers who are
already in a putative subclinical damaged state and then undergo neuronal damage during the deliv-
ery process. However, the anatomical and pathophysiological mechanisms are not well understood.
Our overarching hypothesis in this review paper is that pregnant women who are diabetic have a
damaged peripheral nervous system, constituting the “first hit” hypothesis. The delivery process
itself—the “second hit”—can produce neurological damage to the mother. Women with diabetes
mellitus (DM) are at risk for neurological damage during both hits, but the cumulative effects of both
“hits” pose a greater risk of neurological damage and pathophysiological changes during delivery. In
our analysis, we introduce the different steps of our concept paper. Subsequently, we describe each
of the topics. First, we outline the mechanisms by which diabetes acts as a detrimental variable in
neuropathy by focusing on the most common form of diabetic neuropathy, diabetic distal symmetrical
polyneuropathy, also known as distal sensorimotor neuropathy. The possible role of macrosomia
in causing diabetic neuropathy and obstetric neurological injury is discussed. Second, we describe
how vaginal delivery can cause various obstetrical neurological syndromes and pathophysiological
changes. Third, we highlight the risk of obstetric neuropathy and discuss anatomical sites at which
lesions may occur, including lesions during delivery. Fourth, we characterize the pathophysiological
pathways involved in the causation of diabetic neuropathy. Finally, we highlight diabetic damage to
sensory vs. motor nerves, including how hyperglycemia causes different types of damage depending
on the location of nerve cell bodies.

Keywords: diabetic neuropathy; neurological damage during delivery

1. Introduction

Diabetes mellitus (DM) describes a state of chronic hyperglycemia that affects more
than 460 million individuals worldwide [1]. The number of patients with DM has been
projected to rise to 700 million worldwide by 2045 [2]. Two types of diabetes mellitus are
currently recognized based on their etiologies: Type 1 and Type 2. Type 1 DM describes
an autoimmune disease process in which pancreatic beta cells have been targeted for
destruction; therefore, there is insufficient insulin production, leading to hyperglycemia.
Type 2 DM has been characterized as hyperglycemia due to insulin resistance. Patients
with Type 2 DM produce insulin; however, the body does not respond appropriately [1].

Diabetic distal symmetrical polyneuropathy, or distal symmetrical sensorimotor neu-
ropathy (DSSPN), is the most common form of diabetic neuropathy [3,4]. It is responsible
for foot lesions, including ulcers and amputations [5]. The lesions manifest in a “stocking
and glove” pattern. This form of diabetic neuropathy begins by damaging the sensory
axons of the feet first and then the hands. Thus, the symptoms are correlated with the
length of the axon. This form disturbs sensory function first and then damages the au-
tonomic nervous system and somatic motor function. Pre-diabetic conditions exhibit a
similar pattern [6]. Chronic hyperglycemia damages Schwann cells, which are responsible
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for the myelination of axons in the peripheral nervous system. It has been noted that
there are features of demyelination in patients with severe cases of hyperglycemia. The
current literature has only determined that Wallerian degeneration is involved in signaling
pathways that induce axonal degeneration [4].

2. The Mechanisms of Diabetic Neuropathies Are Complex

The pathogenesis of diabetic neuropathy is complex [7]. Diabetic distal symmetrical
polyneuropathy (DSP) is a length-dependent polyneuropathy. It is generally considered
to be multi-factorial. DSP is considered to involve interactions between glycemic control,
the duration of diabetes, and neuronal attrition related to age, hypertension, and body
weight. Alterations seen in DSP include segmental demyelination, microangiopathy, and
Wallerian degeneration. Apoptosis of dorsal root ganglia is an important mechanistic
consideration that causes the loss of unmyelinated and myelinated fibers. Entrapment
neuropathies are also common in the diabetic population, affecting one in every three
patients [8,9]. Dellon [10] suggested three mechanisms that cause diabetic patients to be
more susceptible to peripheral neuropathy. The osmotic hypothesis [11] postulates that
there is an increase in the conversion of glucose to sorbitol in the diabetic population.
Sorbitol has hydrophilic characteristics, which increase water concentration in the nerves,
causing osmotic swelling. It has been shown that the median and tibial nerves in patients
with diabetes have significantly larger cross-sectional areas than in a healthy, non-diabetic
control group [12]. The swelling in a defined area, such as the carpal or tarsal tunnel,
can lead to compressive neuropathy (Figure 1). Second, an abnormal metabolic state
and high sorbitol concentration in diabetic patients can impair the nerve regeneration
pathway [13] (Figure 1). Lastly, hyperglycemia can produce high amounts of advanced
glycation end products (AGE) that can bind to collagen in the peripheral nerve and nearby
ligaments, altering the biomechanical AGE properties of both the nerve and ligament. The
hyperglycemic state is an additional mechanism that can cause compressive neuropathy
when swelling occurs in a restricted space [9,13]. A different concept involves the role
of inflammation and vascular complications, especially concerning pain [14]. Vascular
injury in diabetes is often mediated by the development of atherosclerosis (Figure 1).
Hyperglycemia leads to dyslipidemias, encouraging the formation of foam cells. These
cells contribute to the buildup of plaques in the blood vessels. These foam cells also
release cytokines that stimulate endothelial cells to produce reactive oxygen species (ROS).
ROS use the NF-κB pathways to cause leukocyte recruitment and apoptosis, leading to
inflammation, ischemia, and cellular nerve damage [15].

Diabetes mellitus targets the axons of sensory neurons, autonomic nervous system
neurons, and motor neurons [4]. Schwann cells are damaged in hyperglycemia, and in more
severe cases, demyelination of the axons occurs, which is reflected in the stocking-glove
pattern of damage (Figure 1). The axons of the neurons supplying the feet are longer than
those supplying the hand, so the most significant damage appears first in the feet (length-
dependent demyelination) [4]. Considering the role of Schwann cells in the maintenance
and repair of axons, damage to Schwann cells may play a key role in the failure of axons to
be maintained or repaired.
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Figure 1. Pathways Involved in diabetic neuropathy: hyperglycemia causes diabetic neuropathy
through several pathways. Elevated blood glucose leads to an increased conversion of glucose to
sorbitol. Sorbitol can cause osmotic swelling, causing compression neuropathy, and can inhibit
axonal repair mechanisms. Hyperglycemia can also cause direct damage to nerve cells through
the stimulation of the PTEN (phosphatase and tensin homolog) pathway. Hyperglycemia causes
Schwann cell toxicity, thereby producing advanced glycation end products (AGEs) and leading to
axonal demyelination. Macrophages are important for nerve repair and regeneration, but can be
inhibited by hyperglycemia. Hyperglycemia also leads to dyslipidemia and the formation of foam
cells from macrophages. These foam cells contribute to the formation of atherosclerotic plaques,
leading to vascular and endoneurial microvascular damage to produce reactive oxygen species (ROS).
ROS use the NF-κB pathways to cause leukocyte recruitment and apoptosis, leading to inflammation,
ischemia, and cellular nerve damage [16].

Diabetic neurons have an elevated expression of PTEN [17]. PTEN expression inhibits
the transduction pathways that are activated by growth factors and required for neuronal
regeneration [17,18]. PTEN gene expression persists after injury, thereby interfering with
neuronal regeneration. Inhibiting PTEN removes the roadblock to regeneration [18]. The
effects on sensory and motor neurons differ somewhat, modeling how general diabetic
neuropathy usually affects the functions of sensory neurons. Sensory neuron losses occur
first in diabetic mice [19], whose dorsal root ganglia exhibit an increased expression of
PTEN compared to littermate controls. This causes neuronal cell death in sensory neurons
by disrupting their repair processes. Motor neurons exhibit a distal loss of axon terminals
but no perikaryal dropouts (Figure 2). In diabetic mice, the result is the survival of motor
neurons but the loss of motor units and neuromuscular junctions, producing a loss of
motor function. It has been postulated that the differences between the sensory and motor
neurons in terms of the blood–brain barrier can explain the relative vulnerability of sensory
neurons compared to motor neurons (Figure 2). The cell bodies of sensory neurons are
located in the dorsal root ganglia. In contrast, the cell bodies of motor neurons are located
in the anterior horn of the spinal cord. The blood–neuron interface is less well-protected in
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the dorsal root ganglion than in the spinal cord [20–22]. It is noteworthy to point out that
surgical decompression can be an effective treatment for diabetic neuropathy [23].

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 4 of 11 
 

 

of PTEN compared to littermate controls. This causes neuronal cell death in sensory neu-

rons by disrupting their repair processes. Motor neurons exhibit a distal loss of axon ter-

minals but no perikaryal dropouts (Figure 2). In diabetic mice, the result is the survival of 

motor neurons but the loss of motor units and neuromuscular junctions, producing a loss 

of motor function. It has been postulated that the differences between the sensory and 

motor neurons in terms of the blood–brain barrier can explain the relative vulnerability of 

sensory neurons compared to motor neurons (Figure 2). The cell bodies of sensory neu-

rons are located in the dorsal root ganglia. In contrast, the cell bodies of motor neurons 

are located in the anterior horn of the spinal cord. The blood–neuron interface is less well-

protected in the dorsal root ganglion than in the spinal cord [20–22]. It is noteworthy to 

point out that surgical decompression can be an effective treatment for diabetic neuropa-

thy [23]. 

 

Figure 2. Diabetic damage to sensory vs. motor nerves: hyperglycemia causes different types of 

damage, depending on the location of nerve cell bodies. Sensory nerve cell bodies are located in the 

dorsal root ganglia, which are supplied by spinal segmental arteries. Hyperglycemia in this blood 

supply causes axonal damage and cell body damage, leading to a loss of sensory input and peri-

karyal dropout. Motor nerve cell bodies are located in the anterior horns of the spinal cord. The 

blood–spinal cord barrier, similar to the blood–brain barrier, protects these cell bodies from the 

damaging effects of hyperglycemia. However, the axons of motor nerves and their motor units can 

still be damaged, leading to the loss of motor function. 

Macrophages may play a role in the axonal damage associated with diabetes mellitus. 

Associated delays in macrophage invasion and the removal of macrophages have been 

noted in diabetic mice (Figure 1). This raises the possibility that abnormalities in macro-

phage participation in axonal regeneration following injury may be deficient or defective 

since macrophage invasion and removal are different in diabetic mice compared to litter-

mate controls [24]. Alterations in energy metabolism caused by diabetes mellitus may play 

a role in diabetic neuropathy. The substrate overload in diabetes mellitus leads to the for-

mation of acylcarnitines, which are toxic to Schwann cells and dorsal root ganglion cells 

Figure 2. Diabetic damage to sensory vs. motor nerves: hyperglycemia causes different types of
damage, depending on the location of nerve cell bodies. Sensory nerve cell bodies are located in the
dorsal root ganglia, which are supplied by spinal segmental arteries. Hyperglycemia in this blood
supply causes axonal damage and cell body damage, leading to a loss of sensory input and perikaryal
dropout. Motor nerve cell bodies are located in the anterior horns of the spinal cord. The blood–spinal
cord barrier, similar to the blood–brain barrier, protects these cell bodies from the damaging effects
of hyperglycemia. However, the axons of motor nerves and their motor units can still be damaged,
leading to the loss of motor function.

Macrophages may play a role in the axonal damage associated with diabetes mel-
litus. Associated delays in macrophage invasion and the removal of macrophages have
been noted in diabetic mice (Figure 1). This raises the possibility that abnormalities in
macrophage participation in axonal regeneration following injury may be deficient or
defective since macrophage invasion and removal are different in diabetic mice compared
to littermate controls [24]. Alterations in energy metabolism caused by diabetes mellitus
may play a role in diabetic neuropathy. The substrate overload in diabetes mellitus leads
to the formation of acylcarnitines, which are toxic to Schwann cells and dorsal root gan-
glion cells [5]. Microcirculatory changes may also damage neurons since the dysfunction
of the microcirculatory system is strongly associated with diabetic neuropathy [25]. In
this concept, damage to the microcirculation leads to neuronal damage. The pathways
that damage this microcirculation are similar to those in other diabetes-associated vasculi-
tides [26]. Endoneurial capillary density is increased in diabetic patients, and findings
in rats support this concept [4]. Central nervous system (CNS) changes may also occur,
increasing sensitivity to pain [27].
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2.1. Macrosomic Babies Play a Role in Causing Diabetic Neuropathy and Obstetric
Neurological Injury

Gestational diabetes mellitus (GDM) occurs when a previously non-diabetic woman
becomes pregnant and develops diabetes mellitus during her pregnancy. Pregnancy places
metabolic stress on the mother and can contribute to a state of insulin resistance. As a
result, the pancreas will have to produce more insulin to compensate for the resistance of
cells to bring in glucose. When the pancreas cannot produce enough insulin, the mother
will be hyperglycemic, resembling Type 2 DM [1]. It is noted that approximately 4–14% of
pregnancies have complications related to GDM [27].

Diabetes mellitus, coupled with the delivery of a macrosomic baby (>4000 gm) in a
short (five feet or less in height) mother, increases the risk of postpartum femoral neu-
ropathy [28]. Diabetes during the gestational period is a known risk factor for causing
the development of macrosomic babies, which are risk factors for obstetric radiculopa-
thy, plexopathy, or neuropathy due to cephalopelvic disproportion [29] (Figure 3). The
mechanisms that precede fetal macrosomia have been shown to originate from maternal
glycemic impairment. High blood glucose levels can travel from the mother’s placenta into
fetal circulation. Thus, by the second trimester, the fetal pancreas can respond by releasing
insulin to combat the hyperglycemic state, leading to hyperinsulinemia in the fetus. The
coupling of the effects of hyperinsulinemia and hyperglycemia can lead to increased fat
and protein storage in the fetus and ultimately produce a macrosomic fetus [30].
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Figure 3. Two-hit hypothesis of diabetic neuropathy in pregnancy: The first hit is believed to be
caused by the pathways previously discussed, leading to cell body toxicity and nerve damage.
This damage may lead to subacute neuropathy with few symptoms. Diabetes is a common cause
of macrosomia, which increases the risk of compression neuropathies during vaginal birth. This
compression damage, combined with impaired nerve repair pathways, leads to the second hit,
causing the more frequent or severe radiculopathies and neuropathies seen in vaginal births with
diabetic mothers.
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2.2. Mechanism of Injury for Obstetric Lower Extremity Neuropathies
2.2.1. Vaginal Delivery can Cause Various obstetrical Neurological Syndromes

Several clinical neurological conditions are observed during the delivery process and
puerperium. These conditions are sometimes referred to as postpartum or intrapartum
obstetric neuropathies (sometimes plexopathies) and involve the pelvis and lower limb
of the patient. It is estimated that the incidence of such conditions is around 1% of all
births [31–33]. Specific types include femoral neuropathy, lumbosacral plexopathy, lateral
femoral cutaneous neuropathy, common fibular neuropathy, deep fibular neuropathy, and
radiculopathy. In addition, pregnancy can exacerbate the development of neuropathies in
women with insulin-dependent diabetes mellitus [33].

2.2.2. Obstetric Lesions of Direct Branches of the Lumbosacral Plexus

A lesion of the lateral femoral cutaneous nerve beneath the inguinal ligament is
integral to obstetric neuropathy at parturition [34]. Furthermore, this is one of the most
common lesions in the delivery process (38% of obstetric lesions [32,33]).

The femoral nerve is a major motor and sensory nerve that also passes beneath
the inguinal ligament. When the patient is in the dorsal lithotomy position for hours,
excessively abducting and flexing the hips, the inguinal ligament compresses the nerve as
it does the lateral femoral cutaneous nerve [35]. An obstetric femoral neuropathy causes
significant difficulty in trying to walk. Obstetric femoral neuropathy accounts for 35% of
obstetric lesions [33,35].

Two other neuropathies may arise, including (1) obturator nerve neuropathy and
(2) sciatic nerve neuropathy. A lesion of the obturator nerve in the delivery process accounts
for 5% of cases [32,33]. The sciatic nerve is a major posterior nerve of the lumbosacral
plexus. It passes out of the pelvis and divides into the common fibular and tibial divisions.
These then pass into the popliteal fossa to form the common fibular and tibial nerves. The
mechanism of injury of the sciatic nerve in delivery is uncertain. A lesion of the sciatic nerve
properly accounts for 3% of obstetric lesions [32,33]. One proposed mechanism leading
to the irritation of this nerve may be the prolonged spasming of adjacent musculatures,
such as the piriformis muscle [36,37]. Sometimes the common fibular division of the sciatic
nerve passes through the piriformis muscle. When the muscle becomes spastic, pain may
be felt along the distribution of the common fibular nerve [38].

2.2.3. Obstetric Lesions of Nerves That Supply the Leg and Foot

The sciatic nerve forms the common fibular nerve and the tibial nerve. The common
fibular nerve passes around the neck of the fibula, where it is subject to injury compression.
The common fibular nerve is at risk in obstetrical deliveries. When a woman lies in the
dorsal lithotomy position, she has the thigh bent (flexed) at the hip and the legs bent (flexed)
at the knee. This position puts pressure on the common fibular nerve. Sometimes the patient
or an attendant tries to hold the lower limbs in this position for hours during delivery.
These actions can cause compression of the common fibular nerve and the obstruction
of its blood supply [39,40]. Damage to the nerve can cause pain and numbness due to
hyperactivity of the small-diameter pain fibers and hypoactivity of the sensory fibers that
supply fine touch to the distribution area. The destruction of the large-diameter motor
fibers causes a loss of blood supply and death to the axon at the point of compression. The
most significant result is the presence of a foot drop. Common fibular nerve lesions account
for 5% of obstetric lesions [32,33].

3. Obstetrical Neuropathies
3.1. Compressive Neuropathies

In compression neuropathy, a structure such as the patient’s hand or the baby’s head
compresses the nerve, obstructing its blood supply. The resulting anoxia damages the
axons of the nerve. The larger fibers have a higher oxygen demand and die first. These
fibers mediate delicate touch. The smaller fibers mediate pain and temperature sensation.
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They take longer to die. The pain fibers may become hyperactive and cause pain [41]. The
axons die at the point of injury, continuing down the segments distal to the lesion. This
is termed Wallerian degeneration [42]. These changes have been studied using magnetic
resonance neurography [43]. Because the cell body in the dorsal root ganglion is still viable,
the axons will regenerate at a rate of 1–2 mm/day. The peripheral nervous system is noted
for its ability to undergo repair. The critical role of Schwann cells in repairing injured
axons makes them a prerequisite for nerve repair [19,44,45]. Injury causes Schwann cells
to de-differentiate, allowing them to initiate the activity of genes that underlie the repair
process. Unfortunately, aging and prolonged injury can limit the ability of Schwann cells to
initiate repair [46].

3.2. Diabetes-Potentiated Compression Injuries

The specific mechanism involved in the role of diabetes in postpartum neuropathy
is not well understood. Compared to matched controls (4.8%), pregnancies among pa-
tients with Type 1 diabetes exhibit a 10-fold increase in the prevalence of postpartum
neuropathy [31]. These diabetic individuals may have pre-existing (subacute) nerve dam-
age. The subacute injury has yet to manifest clinically; however, further insult can lead
to the overt manifestation of symptoms. This could represent anatomical sites already at
high risk of either nerve compression or nerve entrapment [32]. Additionally, diabetes-
potentiated compression injuries have previously been documented to occur with an
increased incidence involving the lateral femoral cutaneous, peroneal (fibular) nerves,
ulnar nerve, and median nerve [10]. It has also been suggested that diabetes may increase
the risk of femoral nerve compression [33]. Given this predisposition, the pre-existing dam-
age may become more severe when obstetric nerve damage occurs following the delivery
process. Such occurrences highlight the importance of further inquiry into the involvement
of diabetes in postpartum neuropathy.

4. How Diabetes Mellitus Produces Nerve Damage That can Be Potentiated by Any
Injury Occurring during Delivery
4.1. Hypothesis: Diabetes Mellitus Produces Nerve Damage That can Be Potentiated by Any Injury
Occurring during Delivery

One possibility is that parturition can potentiate nerve damage acquired from the
diabetic disease process through a double-hit model. The double-hit syndrome can be
observed with the first insult coming from the effects of diabetes [10], the mechanisms of
which have been outlined above. Subsequently, a second compressive insult may take place
as a result of a variety of factors. This could range from the prolonged placement of the
patient’s legs in the lithotomy position to the positioning of the fetal head and cephalopelvic
disproportion [30], as stated above. The additive consequences of the delivery process can
further potentiate damage to a nerve that is already impaired by diabetes. This theory can
be limiting as it implies compression is the only cause of nerve neuropathy. However, aside
from compression alone, different, multifaceted disease processes contribute to a nerve’s
susceptibility to damage.

4.1.1. Diabetes Mellitus Produces a More Severe Neuropathy through a Two-Fold
Pathological Process

First, the neurons of diabetics are injured directly by the disease process. The second
hit occurs during the attempt to repair the injured neurons, when the regeneration process is
subject to molecular blockade [17]. This process involves the PTEN (phosphatase and tensin
homolog) gene. PTEN regulates axonal growth by inhibiting the transduction pathway
through the P13K pathway, preventing neuronal regeneration. Following an axonal injury,
as in diabetes, PTEN expression continues, causing an ongoing regenerative block (second
hit) [17]. The regeneration of peripheral nerves is impaired in diabetic mice in which
diabetes was induced by treatment with streptozotocin [47]. Considerable delays of up to
8–10 weeks were observed in the regrowth of myelinated axons in diabetic mice [46,47].
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4.1.2. Support for the Two-Hit Hypothesis

The concept that neurological injury can be divided into a two-step (“hit”) process
has been advanced in different ways. The first example of a two-hit process involves the
concept that damage to a neuron by diabetes (“first hit”) can then interfere with the repair
process in the damaged neuron (“second hit”). The “first hit” in this concept involves the
effects of diabetes mellitus in altering the neurons themselves. In this model, the first hit is
the diabetic damage to the neuron that causes it to express elevated levels of PTEN (see
above). The “second hit” involves the expression of PTEN, which damages the regenerative
capacity of sensory neurons first and motor neurons afterward [14]. Mature neurons, such
as those exposed to diabetes mellitus, have a diminished capacity for regeneration [17],
which may involve the downregulation of receptors for growth factors.

4.1.3. A Second Example of a Two-Hit Process Involves the Neuronal Damage Caused
by Diabetes

In this concept, the first hit involves the effects of diabetes on the axons of the median
nerve in the carpal tunnel. The carpal tunnel is a “choke point” in which stressors such as
diabetes, pregnancy, and overuse syndromes can damage the axons of the median nerve,
causing pain in the distal branches of the median nerve. If the effects are severe enough,
motor disturbances can cause loss of function and even atrophy of the thenar muscles
of the thumb. Carpal tunnel syndrome is a compressive injury that affects the diabetic
population three times more often than the normal population. Although up to one-third of
the diabetic population may have carpal tunnel syndrome confirmed through electrophysi-
ological studies, only about 5.8% of these patients will present with clinical symptoms [10].
Therefore, it is likely that diabetic patients may experience different neuropathies, much
like that of the axons of the median nerve, without observable symptoms. However, these
preceding subclinical neurological conditions can exacerbate the injury during delivery.
The two-hit model we have proposed can explain the effects of diabetes on mothers who
are already in a putative subclinical damaged state [10] and then undergo neuronal damage
during the delivery process.

5. Summary and Conclusions

In this review paper, we discussed how the two-hit model can explain the effects of
diabetes on mothers who are already in a putative subclinical damaged state and then
undergo neuronal damage during the delivery process. In our review, we discussed
how pregnant women who are diabetic have a damaged nervous system, although the
condition may be subclinical. This constitutes the “first hit”. The delivery process may
cause damage to the nervous system of the mother during delivery. This constitutes the
“second hit”. Our hypothesis is that pregnant women who have diabetes mellitus are at
risk for neurological damage during both hits, but the cumulative effects of both “hits”
poses a greater risk of neurological damage during delivery. To support our hypothesis,
we discussed how diabetes mellitus produces a more severe neuropathy through different
pathological processes. We conclude that diabetic pregnant patients who may have clinical
or subclinical neuropathies can acquire a second insult during the delivery process that
can exacerbate the presentation of a previously damaged nerve, resulting in symptoms
that could interfere with their ability to carry out daily activities and maintain their quality
of life.
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