
Citation: Rajpal, S.; Mishra, P.;

Mizaikoff, B. Rational In Silico

Design of Molecularly Imprinted

Polymers: Current Challenges and

Future Potential. Int. J. Mol. Sci. 2023,

24, 6785. https://doi.org/10.3390/

ijms24076785

Academic Editors: Ian A. Nicholls

and Michael J. Whitcombe

Received: 4 March 2023

Revised: 29 March 2023

Accepted: 30 March 2023

Published: 5 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Review

Rational In Silico Design of Molecularly Imprinted Polymers:
Current Challenges and Future Potential
Soumya Rajpal 1,2, Prashant Mishra 1 and Boris Mizaikoff 2,3,*

1 Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi,
New Delhi 110016, India; rajpal.soumya@dbeb.iitd.ac.in (S.R.); pmishra@dbeb.iitd.ac.in (P.M.)

2 Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11,
89081 Ulm, Germany

3 Hahn-Schickard, Sedanstraße 14, 89077 Ulm, Germany
* Correspondence: boris.mizaikoff@uni-ulm.de

Abstract: The rational design of molecularly imprinted polymers has evolved along with state-of-
the-art experimental imprinting strategies taking advantage of sophisticated computational tools.
In silico methods enable the screening and simulation of innovative polymerization components
and conditions superseding conventional formulations. The combined use of quantum mechanics,
molecular mechanics, and molecular dynamics strategies allows for macromolecular modelling to
study the systematic translation from the pre- to the post-polymerization stage. However, predictive
design and high-performance computing to advance MIP development are neither fully explored
nor practiced comprehensively on a routine basis to date. In this review, we focus on different steps
along the molecular imprinting process and discuss appropriate computational methods that may
assist in optimizing the associated experimental strategies. We discuss the potential, challenges,
and limitations of computational approaches including ML/AI and present perspectives that may
guide next-generation rational MIP design for accelerating the discovery of innovative molecularly
templated materials.

Keywords: molecularly imprinted polymers; MIP; computational design; molecular dynamics;
quantum mechanics; polymer simulations; machine learning; ML; artificial intelligence; AI; monomer
screening; material design; rational design; data analysis

1. Introduction

For the purpose of analysis, purification, or diagnostics, complex mixtures are sep-
arated using, e.g., chromatographies or specific antibodies with molecularly imprinted
polymers (MIPs) as a synthetic receptor alternative. MIPs are designed affinity materials
that can be chemically synthesized such that predetermined specific recognition proper-
ties are entailed. Initially, the synthesis strategy was based predominantly on empirical
processes involving polymer formation via functional monomers, cross-linkers, and poly-
merization initiators in the presence of a target template, which could then interact either
via covalent or non-covalent bonds. The template is finally extracted to create ‘memory’
cavities within the polymer that resembles the template in functionality and potentially
also in shape and size [1]. Since the cleavage of covalent bonds is non-trivial without
potentially affecting the binding sites, non-covalently prepared MIPs will be the focus of
the present review. However, obtaining robust pre-polymerization complexes is essential
during non-covalent imprinting for ensuring high affinity, selectivity, and binding capacity
of the resulting MIPs [2]. Nowadays, this rather random process has advanced toward
computationally predictable synthesis strategies with a high probability of success, yielding
rationally tailorable smart polymer structures. In particular, the past two decades have seen
MIP research evolving from ‘trial and error’ towards rational design based on molecular
simulations for reducing efforts in experimentally optimizing stoichiometry, monomer
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selection, and polymer synthesis conditions [3]. The utility of MIP modelling has certainly
increased, with almost unlimited access to computational power and sophisticated software
packages, and it places tailor-made synthetic recognition materials with high specificity
and optimized performance within reach. Hence, the present review aims at summarizing
rational design strategies assisting this process for facilitating next-generation materials
and methodologies via in silico design and modelling.

Notwithstanding, it should be noted that there has been tremendous progress in MIP
technology and materials, with state-of-the-art applications in environmental analysis,
food quality, and safety monitoring, and in the health sector, including biomedical and
clinical scenarios, owing to their inherently high stability, versatility, and potentially low-
cost production [4–13]. Indeed, performance improvements are noticeable based on an
advanced understanding of the physical mechanisms underlying MIP formation and MIP-
target recognition via the analysis of each stage during the synthesis. With such insight
derived from the advanced analysis of such materials, this in turn stimulates computational
modelling, especially of the initial processes occurring in pre-polymerization mixtures and
during polymerization reactions, leading toward ‘rational MIP design’ [14].

The most commonly used computational approaches—independently or combined—
to tailor the recognition properties of MIPs are quantum mechanics (QM), molecular
mechanics (MM), and molecular dynamics (MD) simulations [3,15,16]. These allow for the
smart selection of components for polymerization mixtures and consider their interactions
affected by physical parameters; finally, one may even derive the binding capacity of the
resulting polymer. However, while MIPs are ideally tailored to exhibit selective binding
characteristics, due to an intrinsic property of polymers acting as adsorbents, they can lead
to non-specific interactions [17]. Several reviews thoroughly discuss the application of
QM, MM, and MD to model the fabrication of imprinted polymers [3,15,16,18]. Therefore,
herein these techniques will only be briefly outlined.

Primarily, MIP modelling hinges on the basic thermodynamic Equation (1) describing
the binding events in templated systems as [19,20]:

∆Gbind = ∆Gt+r + ∆Gr + ∆Gh + ∆Gvib + ∑∆Gp + ∆Gconf + ∆GvdW (1)

where the Gibbs free energy change for complex formation (∆Gbind) is the combined
energy change associated with the loss of translational and rotational freedom (∆Gt+r),
restriction of rotors upon complexation (∆Gr), hydrophobic interactions (∆Gh), residual
soft vibrational modes (∆Gvib), the sum of interacting polar group contributions (∑∆Gp),
adverse conformational changes (∆Gconf), and unfavorable van der Waals interactions
(∆GvdW).

This approach maps the situation in a ‘pre-polymerization mixture’ where monomers
and target template are mixed to assess these interactions and estimate the energy of the
system. In silico, this can be executed as an electronic structure calculation using ab initio,
semi-empirical and/or density function theory (DFT) that is included in QM methods.
These are highly accurate for a limited number of atoms; with an increasing number of
constituents, the disadvantages of QM include the need for extensive computational re-
sources and time. QM relies on the electronic distribution for estimating the total energy of
the system. Based on Schrödinger’s equation and several approximations including the
decoupling of electronic motion from the nuclear motion (Born–Oppenheimer approxima-
tion), the total energy is calculated as the sum of nuclear energy (electrostatic repulsion)
and electronic energy, whereby the latter comprises kinetic, potential, and electron–electron
repulsion. Principally, ab initio calculations involve the use of different theories, such
as Hartree–Fock (HF) theory or Møller–Plesset theory, that approximate the electronic
wavefunction, as opposed to density functional theory (DFT) that approximates the Hamil-
tonian operator [3,21]. These theories vary in the way the correlation effects for electronic
motions are incorporated in the calculations. Studies involving ab initio calculations do
not appropriately consider basis functions for system-energy calculations, which leads to
an overestimation of the true value for intermolecular interactions [22]. This is known



Int. J. Mol. Sci. 2023, 24, 6785 3 of 23

as the basis set superposition error (BSSE) that needs to be corrected in QM-based MIP
design; yet, only few studies have reported this correction [23–25]. Semi-empirical meth-
ods are simplified quantum methods and relatively fast in their execution; however, they
operate by considering only the valence electrons of the system and parameters derived
from experiments.

Electronic motion may characterize intermolecular interactions; however, once the
observed system is large, e.g., entailing many template molecules, proteins, etc., molecular
mechanics methods that estimate the energy as a function of nuclear positions only are
advantageous. The calculations are based on the stretching of bonds or rotation around
single bonds using a variety of force-field methods. The most common force fields applied
are AMBER, OPLS, and CHARMM [26]. MM therefore allows the simulation of macro-
molecular systems with less time and computational power; however, this is at the expense
of accuracy.

Molecular dynamics comes into play if template–monomer interactions have to be
modelled over a period of time to provide insight into the robustness and the dynamics of
the interactions. Thereby, the nature of the solvent, temperature, and salt conditions may
also be manipulated. MD simulations provide insight into the solvation effect by explicitly
adding desired solvent molecules to the system. Alternatively, several quantum methods
such as the polarizable continuum model (PCM) may also (implicitly) introduce solvents
as a perturbation of the gas-phase behavior of the system to indicate such effects [27].

Although highly accurate, the standalone use of QM methods—for modelling multiple
copies of monomers, templates, and explicit solvents—cannot incorporate all parameters
and concentrations to emulate real-world experimental conditions, leading to a compro-
mise by limiting the size of combinatorial screening and focus on a selected set of MIP
formulations based on experimental knowledge, albeit with the evident limitations of being
trapped in a local optimum. Alternatively, QM-MM, QM-MD, MM-MD, and QM-MM-MD
combinations are nowadays being increasingly adopted for evaluating multi-molecular
systems. These are differentially used according to the template of interest, its properties,
the dimensions of monomer libraries to be screened, etc. Herein, we therefore review the
use of in silico methods at every step along the MIP synthesis under the consideration that
a rigorous and standard modelling approach of imprinted polymers is still not yet estab-
lished. For highlighting progress in the field, selected relevant studies will be discussed
that point beyond the present limitations and toward a more comprehensive theoretical
treatment of MIPs. Current limitations will be contrasted by future prospects derived from
a multidisciplinary approach to this topic for revolutionizing the rational in silico design of
next-generation MIPs.

2. Computational Modelling during Polymerization

MIP optimization practically involves six major steps (1–6), and the intervention with
computational methods takes place either individually at each step or for multiple steps
together (Figure 1). Ideally, for the closest prediction of the experimental performance,
all these steps require simulations in a given order; however, only few studies report
on such a comprehensive approach. Nevertheless, studies that have developed MIPs
based on predictive modelling of at least two or three steps are highlighted in Table 1.
The experimentally synthesized MIPs based on computational methods show significant
binding characteristics in terms of their imprinting factor (IF) and binding capacity (Q). This
table provides insight into how computational research is expanding for MIP development;
yet, only few studies explore all the steps listed below:

1. Appropriate monomer(s) selection;
2. Monomer-to-template ratio optimization;
3. Monomers, template, and additional polymerization conditions/agents analyzed at

different solvent conditions;
4. Structural polymer establishment and optimization;
5. Polymer-template interactions (generic);
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6. Polymer-template interactions in a target solvent and binding to structural analogues
for evaluating selectivity.

Simulating a structural polymer itself is computationally expensive; if the template is
a large species (e.g., protein, etc.), the last step (6) significantly adds to the computational
load. Generally, two or three steps are predictively optimized in most studies, while the
remaining characteristics are experimentally tested and optimized (Table 1). However,
increasing access to advanced computational tools and softwares has enabled combined
applications of electronic structure calculations, MD simulations, and multivariate data
analysis strategies to all aspects of MIP design and synthesis.

Typically, the first three steps are collectively referred to as the pre-polymerization mix-
ture optimization (Figure 1A,B). It is well known that the nature and extent of non-covalent
interactions including electrostatic, hydrophobic, and H-bond interactions between the
monomer and template dictate the recognition properties of the final MIPs. This has been
investigated both with experimental [28–30] and theoretical approaches [31–35]. The next
steps are related to the actual polymerization process, the establishment of the structural
polymer, and post-polymerization assessment (Figure 1C). These steps concerning the
resulting polymer morphology and the influence of the morphology on recognition have
been explored less frequently to date (step 4, 5) [35].
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Figure 1. (A) Structure of a representative pre-polymerization system used as an input model for
MD simulations. The template (spheres representation) is located at the origin of the simulated
system and surrounded by a spherical shell of 48 functional monomers (N-isopropylacrylamide
(NIPAM), pink; acrylamidophenyl(amino)methaniminium acetate (A,B), orange; methacrylamide
(MAM), green, 48 cross-linker units (ethylene glycol dimethacrylate (EGDMA)) blue; and an explicit
solvent box (acetonitrile), gray. (B) Examples of prepolymerization complexes and hydrogen-bonding
interactions observed with target template (l-fucose). Reprinted with permission from [36], Copyright
2021, American Chemical Society. (C) Virtually imprinted tubes templated with 17-β-estradiol
demonstrate the concept for virtual chromatography experiment simulations;. The template is
represented by the red molecule, the functional monomers by the colorful molecules and the solvent
by the cyan molecules. Reproduced from [37] with permission from the Royal Society of Chemistry.
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Table 1. Molecularly imprinted polymers designed with computational intervention at multiple steps using quantum mechanics (QM), molecular mechanics (MM),
molecular dynamics (MD) methods, and combinations of QM-MD, MM-MD, QM-MM, and QM-MM-MD.

Method
Used

Steps
Explored Monomers Used/Screened Computational Technique Template MIP

Performance References

QM

1,2 Pyrrole, 3,4-ethylenedioxythiophene
and m-phenylenediamine

Semi-empirical PM3,
DFT method at B3LYP/6-31+G level Sulfamethizole IF: 8.4

LOD ~ 1.7 nM [38]

2,3 MAA DFT method at B3LYP/6-311G (d) level;
PCM for solvent effect Naltrexone Q: 11.60 mg/g, IF: 2.27 [39]

2,3 Pyrrole DFT method at B3LYP/6-311+G*;
PCM for solvent Dopamine LOD ~ 10 nM [22]

1,2,3
AA, MAA, AAM, MMA, TFMAA,

p-VBA, N-vinyl pyridine, allyl alcohol,
1-vinylimidazole

Semi-empirical PM3, DFT method at
B3LYP/6-31G(d,p); PCM for solvent effect Metaproterenol LOD ~ 0.01 µg/mL;

IF: 5.2 [40]

1,2,3 AA, MAA, MAAM, 2-VP, STY,
allylamine

DFT method at B3LYP/6-31G+ (d, p) level;
PCM for solvent effect (S)-warfarin IF: 25.7;

Recovery ~ 90% [41]

1,2,3 AA, MAA, AAM, MAAM, MMA,4-VP HF 6-311G** basis set, DFT method at
B3LYP/3-21G level PCM for solvent effect

Metformin LOD ~ 0.005 ng/mL;
Recovery ~ 99% [42]

1,2,3 AA, MAA, AAM, 4-VP,
1-vinylimidazole, 4-vinylimidazole

DFT method at B3LYP/6-311G (d,p) level;
PCM for solvent effect Cannabinoids – [43]

1,2,3 AA, MAA, TFMAA DFT method at B3LYP/6-31G (d,p) level;
PCM for solvent effect Tramadol – [44]

1,2,3 AA, MAA, AAM, MAAM, TFMAA,
ITA, p-VBA, 2-VP, 4-VP, acrolein

DFT method at B3LYP/6-31++G (d,p) level
(also, second-order Møller–Plesset (MP2));

PCM for solvent effect
L-Serine – [23]

1,2,3 MAA, AAM, ITA, VP

DFT method at different levels: B3LYP,
BHandHLYP, M062X, andωB97xD and basis
sets: 6-31G(d,p), 6-31++G (d,p) (Comparative

study); PCM for solvent effect

2,3,7,8-tetra-
chlorodibenzo-p-dioxin

Q: 3.7 mg/g,
IF: 2.371 [25]

1,2,3 AA, MAA, TFMAA, p-VBA DFT method at B3LYP/6-311G (d,p) level;
PCM for solvent effect Dinotefuran Recovery: 89.87 ± 4.64% [45]
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Table 1. Cont.

Method
Used

Steps
Explored Monomers Used/Screened Computational Technique Template MIP

Performance References

1,2,3 MAA, AAM, vinyl benzene DFT method at B3LYP/6-311++G (d,p) level;
PCM for solvent effect

3-hydroxy-2-methyl
quinoline-4(1H)-one

(HMQ), dummy
template

Q: 5.21 mg/g,
IF: 6.43 [46]

2,3,4,5 6 MAA Semi-empirical PM3, DFT method at
B3LYP/6-31G level Hydroxyzine, cetirizine – [47]

MD

2,3 MAA, MMA Amber99, GAFF Bupivacaine – [35,48,49]

2,3 4-VP COMPASS 4-nitrophenol IF: ~1.4 [50]

1,2,3 MAA Amber99, GAFF 17-β-estradiol – [51]

1,2,3 MAA, poly (ethylene glycol) ethyl ether
methacrylate Amber ff14SB, GAFF MMP9 protein IF: 1.3 [52]

4,5,6 MAA OPLS-AA Cholesterol – [53]

1,2,3,4, 5,6
MAA, AAM, N,N′-methyl-

enebisacrylamide and 2-
(dimethylamino)ethyl methacrylate

MARTINI ff, OPLS-AA, coarse-grained (CG)
lattice, Monte Carlo (MC) simulations

Lysozyme and
cytochrome c IF: ~1.2 [54]

QM-MD

1,2,3 MMA, MAAM, 2-VP, 4-VP DFT method at B3LYP/6-31+G (d,p) level;
PCM for solvent effect; COMPASS

5-(3,5-Dichloro-
2-hydroxybenzyl amino)-

2-hydroxybenzoic
acid

– [55]

1,2,3

1-(triethoxysilylpropyl)-3
-(trimethoxysilylpropyl)-4,5-
dihydroimidazolium iodide;

4-(2-(trimethoxysilyl)ethyl)pyridine;
1-(3-(trimethoxysilyl)propyl)urea

DFT method at
B3LYP/6-311+G(2d,2p)//HF/6-31 G* level;
(also tested (B3LYP, CAM-B3LYP, LC-wPBE)

with different basis sets (6-31++G(d,p),
6-311++G(2d,2p), cc-pVTZ); PCM for solvent

effect; OPLS-aa

Naproxen – [56]

1,2,3

N-allyl thiourea, N-Benzoyl thiourea, (2,
6-difluorophenyl) thiourea, 1-

(3-carboxyphenyl)—2-thiourea,
1-Benzoyl-3-(2-Pyridyl)− 2-Thiourea

DFT method at B3LYP/6-31+G (d,p) level;
PCM for solvent effect; universal force field

(Material studio)

H3AsO3
(Heavy metal) – [57]
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Table 1. Cont.

Method
Used

Steps
Explored Monomers Used/Screened Computational Technique Template MIP

Performance References

2,3,4
Cyt-S4: cytosine-bis(2,2′-bithienyl)-(4-

carboxyphenyl)methane
ester

DFT method at the B3LYP/3-21G* level; PCM
for solvent effect; OPLS

6-Thioguanine IF:2.9;
LOD: 10 µM [58]

4,5,6 MAAM HF/PM3; GAFF 17-β-estradiol – [37]

MM-MD

1,2,3 28 monomers including 2-hydroxyethyl
methacrylate, MAA, ITA SYBL PACKAGE Curcumin, ephedrine IF: 1.3–2.0 [59,60]

1,2 AA, MAA, AAM, MAAM, 2-VP, 4-VP CHARMm and MMFF94 Amlodipine Q: 53.77 µg/mg; IF: 2 [61]

2,3,4,5 MAA PCFF, Monte Carlo (CMC) simulations Caffeine, theophylline – [62]

1,2,3

AA, MAA, TFMAA, ITA, 2-VP, 4-VP,
STY, 2-acrylamido-2-methyl-1-

propanesulfonic acid, allylamine,
1-vinylimidazole, N,N-diethylamino

ethyl methacrylate acrylamide,
2-hydroxyethyl methacrylate

SYBL; AMBER99sb force Melamine IF: 1.39 [63]

1,3

MAA, ITA, NIPAM, N-hydroxyethyl
acrylamide, N-phenylacrylamide,

2-acrylamido-2-methyl-1-
propanesulfonic

acid

GAFF, GROMOS96 SARS-CoV-2 spike
protein epitopes – [64]

QM-MM

1,2,3,4,5
AA, MAA, TFMAA, 4-VP, allylamine,

1-vinylimidazole, 2-hydroxyethyl
methacrylate

DFT method at the B3LYP/6-311+G(d,p)
level; PCM for solvent effect; CHARMm

1-(2,4-Difluorophenyl)-2-
(1H-1,2,4-triazol-1-

yl)ethanone
Q: 0.333 µmol/g [65]

2,3,4,5,6 MAA DFT method at the B3LYP/6-311+G(d,p)
level; PCM for solvent effect; CHARMm Tyramine IF: 4.27;

Recovery: ~95% [66]

2,3,4,5,6 MAA
Semi-empirical PM3; conductor-like

screening model (COSMO) for solvent effect;
GAFF

Histamine, l-histidine
and d-histidine;

theophylline, caffeine,
and theobromine

– [67]

1,2,3 MAA, AAM, MMA HF/6–31G(d); PCM for solvent effect;
MMFF94x 6-mercaptopurine Q: 0.822 mg/g, IF: 3.99 [68]
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Table 1. Cont.

Method
Used

Steps
Explored Monomers Used/Screened Computational Technique Template MIP

Performance References

QM-MM-MD 1,2,3,4,5,6

AA, MAA, AAM, TFMAA, ITA, 4-VP,
isopropenylbenzene, 2-hydroxyethyl
methacrylate, 2-(diethylamino)ethyl

methacrylate, allylamine

DFT method at the B3LYP/6-311+G(d,p)
level; CHARMm Octopamine IF: 6.37 [69]

Abbreviations: Monomers: AA: acrylic acid; MAA: methacrylic acid; AAM: acrylamide; MAAM: methacrylamide; MMA: methyl methacrylate; TFMAA: trifluoromethacrylic acid;
p-VBA: p-vinyl benzoic acid; STY: styrene; 2-VP: 2-vinyl pyridine; 4-VP: 4-vinylpyridine; ITA: itaconic acid; NIPAM: N-isopropylacrylamide; QM methods: DFT: density functional
theory; HF: Hartree–Fock; PM3/6 (semi-empirical): parameterized model 3/6; B3LYP: Becke three-parameter exchange-correlation functional; PCM: polarizable continuum mode; MM
force fields: OPLS-AA: optimized potentials for liquid simulations all-atom); GAFF: general AMBER force field; AMBER: assisted model building with energy refinement; CHARMM:
Chemistry at HARvard Macromolecular Mechanics, GROMOS: GROningen MOlecular Simulation; COMPASS: condensed-phase optimized molecular potentials for atomistic simulation
studies; PCFF: polymer consistent force field; MMFF94x: Merck molecular force field; Q: binding capacity; IF: imprinting factor; LOD: limit of detection.
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3. In Silico Monomer Selection

The first step of computational optimization to guide experimental design is the se-
lection of suitable monomers that can interact with a target template, preferably through
non-covalent interactions such as electrostatic, van der Waals, and H-bond interactions.
The transition from testing a small set of monomers to in silico screening of large monomer
libraries has been beneficial for the MIP development process by speeding up the ex-
ploration of novel monomer functionalities [70–77]. Among these libraries, commonly
used monomers include acrylate derivates such as AA, MAA, AAM, MAAM, MMA, and
TFMAA that can offer diversity of functional groups to uniquely interact with a target
template. Numerous MIP related articles continue to employ these limited monomers,
thereby restricting the potential of the computational resources and leaving out the remain-
ing class of monomers (Table 1). Generally excluded are alkoxysilane-based monomers
that can form smart, sol-gel materials with high thermal stability, water compatibility, and
easier control of porosity and thickness in the resulting ‘molecularly imprinted xerogel’ [78].
These monomer species are greater in size, implying an increased number of atoms to input
to computational modelling. A few studies employed a simplified version of a QM model
for alkoxysilanes to keep reasonable computing time while choosing a relatively modest
initial basis set 3-21G [21]. Others have combined QM, MM, and MD studies for faster
assessment of the non-covalent interactions [56,79–82]. In order to reliably predict best
performing monomers, MM/MD-based ‘fast-screening’ determining a few monomers for a
QM-based ‘thorough screening’ is a fair interplay of both techniques [71].

While extensive research is available for acrylate-based polymers to establish that
the strength of monomer-template interactions translates to high efficiency MIPs, this
needs to be thoroughly explored for molecularly imprinted xerogels, the main aspect being
the active hydrolytic-polycondensation reactions relevant to silane monomers varying in
different solvents and temperature [83]. This can affect the pre-polymerization complex
formation between the template and monomers where the silane can variably exist in its
native, hydrolyzed, and condensed state. With the advent of computational approaches
such as quantum Monte Carlo or metadynamics, an improved and elaborated simulation
may be possible [82].

Furthermore, there is a requirement for a definitive protocol to obtain suitably ranked
monomers for different target templates (including proteins) without the need for further
experimental validation. Two studies have devised a generic MM/MD method; however,
it is applicable mostly to low molar mass templates [84,85]. For protein imprint opti-
mization, the employment of MM-based force fields has been varied by different research
groups [26,86–89]. It was noted in a comparative study that one force field might be more
reliable than the other for a template to assess monomer–template interactions [90]. A
lack of a universal protocol leads to an arbitrary selection of computational methods, and
so the predictions need to be continuously validated with some degree of experimental
optimization. This can inspire artificial intelligence/machine learning to engage different
methods and comprehend available research findings to develop an all-inclusive protocol
employable for all monomers and templates.

Nevertheless, the current methods can greatly reduce the tedious process of experi-
mental screening. Virtual libraries of more than 60–70 commonly used monomers can be
possibly generated and screened [91]. Simultaneously, practical problems associated with
MIP application need to be contemplated. For example, high-cost monomers cannot be
used for large scale synthesis serving as solid-phase sorbents, and so virtual libraries can
be grouped into high and low-cost monomers. Another possible grouping can be made for
biocompatible monomers that are relevant for in vivo applications [92]. Monomers libraries
can include information about the porogens with which they are compatible, as well as
whether they can function together with a target template. Later sections also highlight
the need for water compatible monomers, especially for biomolecule imprinting. As the
existing monomer library comprises either insoluble or partially water-soluble monomers,
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the list can be expanded with bio-based monomers such as gelatin, chitosan, cellulose,
sodium alginate, and cyclic oligosaccharides. These can form a hydrophilic exterior to be
compatible with an aqueous medium and a hydrophobic core rearrangement to interact
with organic moieties during molecular imprinting [93].

Next in the category are metal ions, such as Ni2+, Zn2+, Cu2+, and Co2+, that can
form coordination complexes with proteins, peptides, and His-tagged oligonucleotides
with high affinity [94–96]. For example, Ni2+ was used with a C-terminal nonapeptide
of human serum albumin for imprinting the peptide [97]. Metal ions possess the ability
to generate Lewis acid sites in the polymer network, act as a functional monomer, and
reversibly coordinate with small organic molecules [98]. The advancing field of polymer
research can innovate the library of monomers, and their efficiency can be evaluated for
MIP design.

4. In Silico Template Modelling and Selection

The size of the template is the main determinant for the predictive method to be
used. Lower mass templates (MW<1000 g/mol) can be modelled using QM methods;
however, these are difficult to apply for large templates, such as proteins. An increase in
the size and complexity of the template can introduce binding site heterogeneity in the
respective MIP cavities [99,100]. To model large templates (proteins, peptides, nucleic
acids, etc.), MM/MD methods can be used that mimic the searching algorithms applied in
drug design [16]. MM methods involve docking to indicate preferential monomer binding
sites on the protein surface. However, it is not a straightforward process, as it is for small
templates, for the following reasons. Firstly, the simulations require the template protein
in the form of its crystal structure data, which are mostly acquired from the protein data
bank (PDB), but those proteins where crystal structure data are not available have to be
modelled a priori. Secondly, multiple binding sites have to be assessed for their interaction
energy with the monomer. As the solvent accessible surface area (SASA) of the protein is
composed of both hydrophilic and hydrophobic residues, analogous monomers are used in
screening. Monomers with an ability to engage several binding sites are ideal for molecular
imprinting [86,87].

Experimentally, the combinatorial use of multiple monomers inculcating diverse
functionalities has been shown to improve specificity in polymer cavities [101,102]. To
mimic this, multi-monomer simultaneous screening strategies can be employed to select
from a possible combination of monomers and can also parallelly account for monomer–
monomer interactions [90]. Thirdly, proteins are predisposed to conformational change due
to monomer-induced protein instability, and so molecular dynamics studies are required
to predict the conditions including (multiple) monomers, solvent, time, and temperature
that can maximally preserve the protein structure during imprinting. This step is crucial in
guiding the fabrication of high-performance MIPs but remains computationally challenging
with respect to the power and resources required. Modelling an entire pre-polymerization
complex is expected to simulate high monomer to protein molar ratios of up to 2000:1 as is
commonly seen in the literature [26]. Therefore, predictive design for templating proteins
is mostly limited at the screening stage as opposed to the possibility of the simulation of
most steps for small molecule imprinting (Table 1) [25].

During MIP synthesis, the large-sized proteins have a higher tendency to entrap
inside the bulk polymer or to undergo incomplete template removal, denaturation, etc.,
and therefore, advanced strategies for imprinting have been adopted such as surface
imprinting and solid-phase imprinting; harsh and lengthy polymerization conditions have
been minimized; and, more importantly, the use of complete proteins as a template has
been substituted with smaller fragments and/or epitopes [100,103–105].

Theoretical calculations for epitopes and fragments can be easier to conduct compared
to protein–monomer interaction modelling. Additionally, required epitope design and
selection can be guided from previous studies [106]. Fundamentally, peptides and/or frag-
ments have the potential to form a structural identity in a solution that can be different from
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that native to the protein [94], so modelling of structural characteristics in solution may be
essential based on the application. Similarly, the structure of the epitope can also be affected
by monomer-induced interactions. In any event, the multi-factor modelling for smaller
fragments/epitopes is possible in a computing time less than that for whole proteins.

A related analogue or ‘dummy’ templating approach is also available for lower mass
template, especially when it is expensive or difficult to acquire in sufficient amounts [46].
The computational intervention (as seen by Wyszomirski and Prus) can allow faster compar-
ison of the monomer affinity of dummy templates with actual templates [107]. Monomers
that have higher affinity for both the templates instead of preferring one to the other can be
selected, and the tedious trial-and-error methods can be superseded. Subsequently, this
may be simulated at a polymer level to evaluate the shape and size complementarity of the
templated cavities with the actual template. MD-based polymer simulations can potentially
map structural differences in MIPs in case they are non-specific to the original template.

Template size can be as large as biological organisms such as bacteria, viruses, and
yeast cells that have been employed for imprinting to develop diagnostics for direct
pathogen binding [108–113]. Bacterial/viral imprinting is currently in its initial stage
for multiple reasons such as difficulty in the handling of pathogenic bacteria as a template,
the large size of the organism leading to non-specific binding sites, and high resource
requirements for simulating such complex systems. Advancing predictive models are
available for cell membrane components of bacteria [114], and their structural data may be
employed to simulate MIP development. However, the branch of whole cell imprinting
still remains highly challenging.

5. In Silico Solvent Modelling

Porogen selection precisely determines the final surface morphology and pore size of
the MIPs [115]. As a rule of thumb, the solvent should cause the least interference with the
template–monomer (T–M) complex. The choice of solvents can vary from polar solvents
(water and acetonitrile) to non-polar solvents (chloroform and toluene) based on compat-
ibility with the polymerization components. Water, being highly polar, is not an ideal
solvent, as it generates maximum hydrogen-bond competition with the complex [44,99].
Computational methods allow the visualization of such effects, thereby preventing damage
to polymer functions. The solvation effect can be predictively studied by involving QM in
an implicit solvent model and MD in an explicit model (Figure 2). However, the choice of
implicit and explicit solvent modelling must be rationally incorporated.
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Figure 2. Schematic representation of solvent models used to study the effect on the complex. Three
different solvation models—implicit (or continuum), cluster/continuum (or hybrid implicit/explicit),
and fully explicit (a–c)—can be used to simulate complex interactions and compared with those in
vacuum environments (d). These simulations are arranged according to the computational time
involved. Reproduced from [116] with permission from Springer Nature.
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Implicit models treat the solvent as a structureless continuum accounting for certain
dielectric and interfacial properties, while explicit models describe the physical spatial
resolution by the actual addition of solvent molecules to the system. During imprinting,
solvent molecules comprise over 90% of the system space, and so explicit modelling is
important to assess the number of interacting particles and the number of degrees of
freedom; however, most of the MIP simulations only consider implicit solvent modelling
(Table 1). Omitting the explicit atomistic description of solvent prevents consideration
of hydrogen bonds with solvent, over-stabilized salt bridges and hydrogen bonds within
the solute, incorrect ion distribution, and unphysical sampling [117–120]. On the other
hand, due to this absence of viscosity, the conformational search of the T–M can become
faster. Ideally, during polymer formation, there are large atomic displacements that can
influence the solvation shell, and both the models may therefore be proportioned for a
better understanding of the process. Currently, the deciding factor in choosing the method
of solvent simulation relies on the system size, and with an increase in size, there is a
noticeable shift from implicit to explicit modelling.

Ideally, the medium should be compatible (miscible) with the polymerization mixture
components. Most studies demonstrate use of non-polar, aprotic porogens that can interact
less but dissolve the T–M to create a strong imprinting effect [121]. There are few templates
that require a polar environment, for example, biomolecules (particularly proteins) that
exhibit a conformational stability in aqueous solvents. The high polarity of the solvent
greatly affects the T–M complex, which necessitates solvent modelling. With the large
size of system, this is possible with MD simulations through the explicit addition of water
molecules. Since implicit modelling has mostly translated to accurate predictions for small
molecular templates, it will be interesting to combine it with protein imprint simulations;
however, the use of both models requires higher computational capacities.

An alternative derived from the epitope/peptide imprinting approach can be exten-
sively explored with the current computing potential. Notably, peptides can be designed
to be soluble in organic solvents that can enable flexible solvent selection that minimally
disrupts the T–M interactions. Comparing peptides with proteins, the size of computational
simulations can be reduced, and the accuracy of predictions can be readily improved by
combining both implicit and explicit solvent modelling. Some hybrid methodologies may
be employed to combinatorially report the density fluctuations of the solvent around the
T–M complex (explicit solvation) and give a reasonable description of the solvent behavior
(implicit solvation) [71,122] (Figure 2b).

The list of commonly simulated porogens does not include a new class of ionic liquids
or greener alternatives such as deep eutectic solvents (DES) and supercritical carbon dioxide
(scCO2) [94,123,124]. The predictions may be complex for DES as they have several uses
in molecular imprinting, not only as porogenic solvents but also as functional monomers,
cross-linkers, and modifiers; therefore, their structure needs to be appropriately optimized
and modelled [123,125].

6. In Silico Polymer Modelling

Majority of the computational MIP research based its predictions on the pre-polymeriz-
ation mixture to establish experimental correlations [126–128]. Although most studies do
establish a positive correlation, some have argued that no correlation is shown with binding
specificity (but binding capacity) [60]. Extensive simulation of the polymerization step is
necessary for the rational design of MIPs. The classical molecular simulations of polymers
can be categorized broadly into coarse-grained (CG) and atomistic models. The former
can be used to determine the structure/morphology for polymeric systems at a broad
range of conditions or polymer design parameters and is based on reducing some degrees
of freedom in the system by grouping selected atoms/groups of monomers into a CG
“bead” (Figure 3A,B). The latter may be used for the analysis of local monomer structure
or the high-frequency motions of individual atoms and elucidation of monomer-level
(re)arrangements, fluctuations, or interactions, within a disordered or ordered polymer
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system (Figure 3C). Atomistic models are comparatively accurate and computationally
demanding. These force-field-based methods are system specific and are generally limited
to length scales of 1−100 Å and time scales of 1 fs−100 ns [129] (Figure 3D).
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Figure 3. (A) Atomistic and CG representation of the hydrogel monomers. Solid beads represent the
atomistic model and correspond to carbon, nitrogen, oxygen, and hydrogen in cyan, blue, red, and
white, respectively. Translucent beads represent the different types of CG beads (polar, neutral, or
apolar). Reprinted with permission from [54], Copyright 2018, American Chemical Society. (B) A
solvated macromolecule surrounded by water molecules is shown schematically on the left, with the
water molecules represented atomistically close to the macromolecule (denoted as AA zone) and in a
CG mode that is farther from the macromolecule (denoted as CG zone), with a hybrid (HY) zone in
between the AA and CG zones. This transition is shown in the right figure as a function of radial
distance to the macromolecule. Reprinted with permission from [130], Copyright 2016, American
Chemical Society. (C) Atomistic models of copolymer structures constructed using methacrylic acid
(MAA) and methylmethacrylate (MMA) and observed for interaction with theophylline (THO). THO
molecule is visible inside the binding pocket. Color scheme: THO carbons (yellow), MAA carbons
(gray), MMA carbons (pink), oxygens (red), nitrogens (blue), hydrogens (white). Reprinted from [128],
Copyright 2006, with permission from Elsevier. (D) Application domains for molecular modelling at
various resolutions, including quantum, all-atom, coarse-grained, and mesoscale. Approximate time
scales and system sizes (lengths) are shown on the plot. By combining tools of various resolutions
into multiscale schemes, the application ranges that are covered, can be expanded. Reprinted with
permission from [131], Copyright 2016, American Chemical Society. (E) Coarse-grained simulation
of protein-imprinted hydrogels. Reprinted with permission from [54], Copyright 2018, American
Chemical Society.
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Macromolecular simulations based on CG can highlight the events of template aggre-
gation and matrix deformation [132–136], and those based on atomistic detail can present
the spatial arrangement of FMs influenced by templates and crosslinkers [37,137,138]. Ad-
ditionally, morphological differences may be observed in the imprinted sites after solvent
removal, for example, when volatile organic solvents are employed [139] or in the case of
imprinted hydrogels [54]. It may also be necessary to understand the dynamics in highly
rigid MIPs as opposed to lightly cross-linked polymers [135,140].

Predictive analysis for biomolecular imprinting is infrequently used to analyze the be-
havior of the macromolecular host and template, especially when a research gap already ex-
ists in understanding protein behaviors. Srebnik and coworkers moderately explored (glob-
ular) protein imprinted polymers using CG-lattice Monte Carlo (MC) simulations [140–142].
To resolve finer aspects elucidating the template behavior in the matrix, Zadok and Srebnik
additionally combined molecular dynamics (MD) to highlight their static and dynamic
behavior in MIPs and NIPs through simulation of the complexation, reaction, swelling,
washing, and rebinding (Figure 3E). Simulations are requisite for proteins, as they require a
flexible and biocompatible matrix for efficient transport but are expected to generate rigid
imprinted sites enabling good selectivity and affinity [54]. Although current contributions
have fairly elaborated on the imprint process, there is a lack of extensive analysis to de-
velop highly specific MIPs, which need to match the levels of natural antibodies, especially
for proteins.

MIP development has mostly been simulated as a bulk polymer, but surface imprint-
ing and solid-phase imprinting are advanced strategies that may follow different dynamics
of design. Typically, the proteins/templates are immobilized in both the cases, hence,
their surface will be differentially available to the polymerization components. Surface
imprinting on nanoparticles as opposed to planar/sensor surfaces can also produce differ-
ent interaction energies in the complex which have not been studied in silico. For this, a
combination of current MIP simulation methods and those generally applicable in polymer
sciences can inspire the predictive modelling of different types of imprinting strategies.
For example, computational modelling to characterize the behaviors and conformations
of polymers on spherical nanoparticles (Figure 4) or nanotubes, as reviewed by Gartner
and Jayaraman, can be used [129]. Similarly, MD simulations of polymers developed on
substrates to analyze interfacial structure, dynamics, energetics, and mechanical properties
can be exploited [143]. This can be extrapolated to study the behavior of MIPs developed
with surface imprinting on electrochemically and plasmonically active surfaces and can be
used to improve the imprint and sensor performance.
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Figure 4. Simulation snapshots of polymer grafted nanoparticles (silver beads for particles and blue
beads for grafted polymers) in an explicit homopolymer matrix (green beads). The left image shows
all components of the simulation box; the center image shows representative chain configurations for
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the grafted and matrix chains; and the right image is the simulation box showing only the polymer
grafted nanoparticles with all matrix chains hidden. Reprinted with permission from [144], Copyright,
2015, American Chemical Society.

7. In Silico Polymer Performance Evaluation

It is abundantly clear that there are numerous parameters that are required to be
optimized pre-, post-, and during polymerization, which has encouraged the use of chemo-
metrics involving the application of mathematical and statistical methods to better analyze
chemical data. This employs a set of factors, such as type and amount of monomers,
cross-linkers, initiator, solvents used for the target template(s), stoichiometric ratios, tem-
perature, and rebinding environment. These factors are used differentially in experimental
design methods such as fractional factorial, full factorial, central composite, Box–Behnken,
and Doehlert. The gathered data are subjected to statistical analysis such as analysis of
variance (ANOVA) and principal component analysis (PCA). Different methods used in the
multivariate calibration of data are multiple linear regression (MLR), principal component
regression (PCR), partial least-squares regression (PLSR), and artificial neural network
(ANN) [3,14].

Chemometric approaches are currently limited to experimental data analysis but can
be extended to computational data for better evaluation and predictions. An example
headed in this direction is given by Baggiani et al. who employed a semi-empirical AM1
method to obtain 16 molecular descriptors for 52 related phenols and used PCA to compare
it with the chromatographic selectivity of a pentachlorophenol MIP for the templated and
the non-specific phenols [145]. This indicates the amount of data sets that can be generated
and potentially evaluated in a ‘rational’ chemometric approach. Moreover, a comparison
of statistical analysis based on experiments and computations can possibly highlight the
efficiency of computational optimization at each step.

When MIP selectivity is considered as a factor, testing with non-specific templates is
a common practice but may be insufficient to thoroughly establish the MIP performance.
Several studies explore all six steps of MIP modelling and simulate the extent of interactions
with specific and non-specific templates (Table 1). However, pertaining to MIPs’ applica-
tion in either environmental, food, or biological systems, the specificity of the template
binding may be simulated as part of a complex matrix. Currently, polymer simulations are
performed in simple solvents but can be innovatively extended to modelled fluids based
on their intrinsic components. For instance, it is necessary to test MIPs for their ability to
ultimately bind in human saliva (as such or diluted) when they are developed as artificial
antibodies to target an oral biomarker/antigen [146–148]. Before actually proceeding to in
situ testing, an experimentally simulated artificial saliva can be used [149,150] composed
mainly of buffer ions, tween 20, xanthan gum, mucin, and amylase proteins [151], and this
in turn can be computationally mimicked by adding the respective atomic and crystal struc-
tures to the MD simulation box along with the modelled MIP. Variables such as the matrix
viscosity, density, concentration, and overall complexity will also need to be accounted for
to precisely predict the performance of the MIP [152].

MIP design can significantly progress with the available computational tools. For
better parameterization of the process, more in silico data are required, since most studies
have employed chemometrics only through experiments. The detailed understanding
offered by multivariate analysis can methodologically improve MIP performance analysis,
which is especially required in diagnostic applications.

8. Machine Learning for MIPs

The intervention of in silico molecular design with machine learning is accelerating
the development of novel materials. Algorithms may be trained to generate thousands of
hypothetical polymers based on the polymeric properties data and expertise from labora-
tory synthesis [153]. Furthermore, ML can enable prediction of characteristics of simulated
polymers. Correspondingly, a recent study by Lowdon and coworkers tested ML algo-
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rithms for the assessment of binding affinities of MIPs to various molecular species [154].
Several algorithms were provided and applied to available experimental data to train the
algorithms on the structures and binding affinities of various molecular species at varying
concentrations. The optimum algorithm was identified based on the match of the predicted
values and could be utilized for MIP affinity estimations.

As another example, AI models that can predict the folding and spatial structure of
proteins [155,156] may be extended to analyze protein folding in monomer solutions. ML
can innovatively assist the analysis of polymer variability based on the different conditions
used. For example, if the algorithm is trained based on research that uses similar monomers
but at different conditions of polymerization, ML can aid in reasoning the differences of
the resulting polymers in terms of imprinting factors and binding capacities.

While the application of ML and AI for polymer science is currently only at the
initial stages, their employment for MIPs may positively affect the dynamic development
presently observable in predictive MIP design if the interdisciplinary involvement of
material chemists and computer scientists is ensured.

9. Conclusions and Future Perspectives

The field of polymer chemistry is clearly evolving toward more sustainable synthesis
practices. Computational design that minimizes the experiments needed for obtaining opti-
mized structures and functions certainly assists these goals. As advanced software packages
and computational resources are more readily available, accessible, and accurate, predictive
modelling not only supports more targeted synthesis strategies but additionally limits the
use of chemicals and minimizes environmental impact vs. conventional ‘trial-and-error’
approaches. While the combined application of QM, MM, and MD renders the simulation
of complex macromolecular systems feasible, their full potential remains to be exploited
in molecular imprinting technology. While rational MIP design is increasingly used, it is
unquestionably not an all-encompassing solution. For some cases such as biological cell
imprinting—or in general, complex biological species—it may remain impractical to use
simulations. Alternatively, selected surface components of biological species that are being
templated can be modelled along with their interactions using advanced computational
capacities. Steps 4 to 6 of MIP optimization particularly demand more research efforts for
simulating novel MIP constructs, material characteristics, and synthesis strategies including
surface imprinting, solid-phase imprinting, etc. Computational models still yield idealized
scenarios and predominantly homogenous polymers; yet, they may not be able to reveal
the actual surface properties including morphology and/or pore size, which are obtained
at the various experimental conditions. Nonetheless, the likewise continuous progress in
modelling software packages and capabilities may allow an even more precise and rigorous
simulation of macromolecular synthesis in the near future.

Using in silico techniques for experimental design and advanced synthesis strategies
could lead to a more rational and traceable development of MIPs by devising standardized
modelling protocols that are scalable for translation to an industrial level. In addition,
novel polymerization strategies especially using, but not limited to, bio-based monomers
are required to be integrated into virtual monomer libraries to screen against the wide
range of target templates demanded by real-world application scenarios. Unlike the most
commonly used acrylate-based monomers, alternative building blocks exhibit different
characteristics and dynamics when dissolved, which requires innovative simulation strate-
gies for optimizing the pre-polymerization steps. Since current modelling strategies have
been demonstrated only for a limited set of monomers, solvents, and/or conditions, it will
be necessary to test and validate advanced modelling protocols with alternative molecular
building blocks. Likewise, the type of solvent models used during simulations—implicit,
explicit, or hybrid—is indeed crucial for computationally studying the prevailing complex
interactions. Consequently, simulations of the medium where MIPs are then deployed, and
its effect on MIP performance, will be an interesting future area to explore. This may clearly
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be expanded towards cases including, but not limited to, contaminated water models or
complex biological fluids.

MIPs remain among the most promising candidates for synthetic molecular recogni-
tion materials that may be experimentally and virtually tailored against a wide range of
templates relevant for applications in environmental monitoring/sensing, food analysis,
and clinical/medical diagnostics. However, with increasing dimensions of the template,
the complexity in experimental and computational design likewise expands. Hence, for
exceedingly ‘large systems’, currently a compromise between available computational
resources and accuracy of predictive design has to be found and decided on for the most
appropriate molecular modelling strategy in terms of obtained ‘resolution’, i.e., quantum,
all-atom, coarse-grained, or mesoscale. The authors are convinced that only the smart
interplay of different models will provide a sufficiently accurate mechanistic insight into the
enabling of useful predictions that may in future be termed a ‘MIPs-by-design’ approach.
The accelerating evolution of machine learning and artificial intelligence algorithms is
clearly creating paradigm shifts in every science domain including material/polymer sci-
ence; rational MIP design will certainly be among the beneficiaries of these developments,
facilitating not only a significantly shortened ‘time-to-product’ but also supporting more
sustainable synthesis strategies with minimal environmental impact.
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69. Sobiech, M.; Zołek, T.; Luliński, P.; Maciejewska, D. Separation of Octopamine Racemate on (R,S)-2-Amino-1-Phenylethanol
Imprinted Polymer—Experimental and Computational Studies. Talanta 2016, 146, 556–567. [CrossRef]

70. Chianella, I.; Lotierzo, M.; Piletsky, S.A.; Tothill, I.E.; Chen, B.; Karim, K.; Turner, A.P.F. Rational Design of a Polymer Specific for
Microcystin-LR Using a Computational Approach. Anal. Chem. 2002, 74, 1288–1293. [CrossRef]

71. Dong, C.; Li, X.; Guo, Z.; Qi, J. Development of a Model for the Rational Design of Molecular Imprinted Polymer: Computational
Approach for Combined Molecular Dynamics/Quantum Mechanics Calculations. Anal. Chim. Acta 2009, 647, 117–124. [CrossRef]

72. Khan, M.S.; Wate, P.S.; Krupadam, R.J. Combinatorial Screening of Polymer Precursors for Preparation of Benzo[α] Pyrene
Imprinted Polymer: An Ab Initio Computational Approach. J. Mol. Model. 2012, 18, 1969–1981. [CrossRef]

73. Tadi, K.K.; Motghare, R.V. Rational Synthesis of Pindolol Imprinted Polymer by Non-Covalent Protocol Based on Computational
Approach. J. Mol. Model. 2013, 19, 3385–3396. [CrossRef]

74. Khan, M.S.; Pal, S.; Krupadam, R.J. Computational Strategies for Understanding the Nature of Interaction in Dioxin Imprinted
Nanoporous Trappers. J. Mol. Recognit. 2015, 28, 427–437. [CrossRef]

75. Luo, X.; Li, C.; Duan, Y.; Zhang, H.; Zhang, D.; Zhang, C.; Sun, G.; Sun, X. Molecularly Imprinted Polymer Prepared by Pickering
Emulsion Polymerization for Removal of Acephate Residues from Contaminated Waters. J. Appl. Polym. Sci. 2016, 133, 43126.
[CrossRef]

76. Wong, A.; Foguel, M.V.; Khan, S.; de Oliveira, F.M.; Tarley, C.R.T.; Sotomayor, M.D.P.T. Development of an Electrochemical Sensor
Modified with MWCNT-COOH and MIP for Detection of Diuron. Electrochim. Acta 2015, 182, 122–130. [CrossRef]

77. Ayankojo, A.G.; Reut, J.; Ciocan, V.; Öpik, A.; Syritski, V. Molecularly Imprinted Polymer-Based Sensor for Electrochemical
Detection of Erythromycin. Talanta 2020, 209, 120502. [CrossRef]

78. Díaz-García, M.E.; Laíñ, R.B. Molecular Imprinting in Sol-Gel Materials: Recent Developments and Applications. Microchim. Acta
2005, 149, 19–36. [CrossRef]

79. Batista, A.D.; Rajpal, S.; Keitel, B.; Dietl, S.; Fresco-Cala, B.; Dinc, M.; Groß, R.; Sobek, H.; Münch, J.; Mizaikoff, B. Plastic
Antibodies Mimicking the ACE2 Receptor for Selective Binding of SARS-CoV-2 Spike. Adv. Mater. Interfaces 2022, 9, 2101925.
[CrossRef]

80. Qiu, C.; Xing, Y.; Yang, W.; Zhou, Z.; Wang, Y.; Liu, H.; Xu, W. Surface Molecular Imprinting on Hybrid SiO 2 -Coated CdTe
Nanocrystals for Selective Optosensing of Bisphenol A and Its Optimal Design. Appl. Surf. Sci. 2015, 345, 405–417. [CrossRef]

81. Wang, Y.; Wang, N.; Ni, X.; Jiang, Q.; Yang, W.; Huang, W.; Xu, W. A Core-Shell CdTe Quantum Dots Molecularly Imprinted
Polymer for Recognizing and Detecting p-Nitrophenol Based on Computer Simulation. RSC Adv. 2015, 5, 73424–73433. [CrossRef]

82. Mojica, E.-R.E. Screening of Different Computational Models for the Preparation of Sol-Gel Imprinted Materials. J. Mol. Model.
2013, 19, 3911–3923. [CrossRef]

83. Issa, A.A.; El-Azazy, M.; Luyt, A.S. Kinetics of Alkoxysilanes Hydrolysis: An Empirical Approach. Sci. Rep. 2019, 9, 17624.
[CrossRef] [PubMed]

http://doi.org/10.1016/j.bios.2015.03.001
http://doi.org/10.1039/C4AN02292K
http://doi.org/10.1039/b102426b
http://doi.org/10.1039/C5RA10367C
http://doi.org/10.1021/jp506157x
http://doi.org/10.1080/01496395.2017.1287197
http://doi.org/10.1016/j.comptc.2021.113215
http://www.ncbi.nlm.nih.gov/pubmed/33747754
http://doi.org/10.1039/c3an01721d
http://www.ncbi.nlm.nih.gov/pubmed/24516859
http://doi.org/10.1016/j.talanta.2014.05.029
http://doi.org/10.1007/s00894-016-3005-1
http://doi.org/10.1016/j.chroma.2018.05.038
http://doi.org/10.1016/j.talanta.2015.05.074
http://doi.org/10.1021/ac010840b
http://doi.org/10.1016/j.aca.2009.05.040
http://doi.org/10.1007/s00894-011-1218-x
http://doi.org/10.1007/s00894-013-1856-2
http://doi.org/10.1002/jmr.2459
http://doi.org/10.1002/app.43126
http://doi.org/10.1016/j.electacta.2015.09.054
http://doi.org/10.1016/j.talanta.2019.120502
http://doi.org/10.1007/s00604-004-0274-7
http://doi.org/10.1002/admi.202101925
http://doi.org/10.1016/j.apsusc.2015.03.150
http://doi.org/10.1039/C5RA06889D
http://doi.org/10.1007/s00894-013-1928-3
http://doi.org/10.1038/s41598-019-54095-0
http://www.ncbi.nlm.nih.gov/pubmed/31772267


Int. J. Mol. Sci. 2023, 24, 6785 21 of 23

84. Karim, K.; Cowen, T.; Guerreiro, A.; Piletska, E.; Whitcombe, M. A Protocol for the Computational Design of High Affi Nity
Molecularly Imprinted Polymer Synthetic Receptors. Glob. J. Biotechnol. Biomater. Sci. 2017, 3, 001–007. [CrossRef]

85. Busato, M.; Distefano, R.; Bates, F.; Karim, K.; Bossi, A.M.; López Vilariño, J.M.; Piletsky, S.; Bombieri, N.; Giorgetti, A. MIRATE:
MIps RATional DEsign Science Gateway. J. Integr. Bioinform. 2018, 15, 20170075. [CrossRef] [PubMed]

86. Sullivan, M.V.; Dennison, S.R.; Archontis, G.; Reddy, S.M.; Hayes, J.M. Toward Rational Design of Selective Molecularly Imprinted
Polymers (MIPs) for Proteins: Computational and Experimental Studies of Acrylamide Based Polymers for Myoglobin. J. Phys.
Chem. B 2019, 123, 5432–5443. [CrossRef] [PubMed]

87. Boroznjak, R.; Reut, J.; Tretjakov, A.; Lomaka, A.; Öpik, A.; Syritski, V. A Computational Approach to Study Functional
Monomer-Protein Molecular Interactions to Optimize Protein Molecular Imprinting. J. Mol. Recognit. 2017, 30, e2635. [CrossRef]

88. Chen, J.; Lewis, C.; Balamurugan, D.; Yang, Z.; Ai, L.; Cai, D. Theoretical Analysis of a High Performance Protein Imprint on a
Nanosensor. Sens. Biosens. Res. 2016, 7, 12–19. [CrossRef]

89. Fresco-Cala, B.; Rajpal, S.; Rudolf, T.; Keitel, B.; Groß, R.; Münch, J.; Batista, A.D.; Mizaikoff, B. Development and Characterization
of Magnetic Sars-Cov-2 Peptide-Imprinted Polymers. Nanomaterials 2021, 11, 2985. [CrossRef]

90. Rajpal, S.; Mizaikoff, B. An in silico Predictive Method to Select Multi-Monomer Combinations for Peptide Imprinting. J. Mater.
Chem. B 2022, 10, 6618–6626. [CrossRef]

91. Rajpal, S.; Mishra, P. Next Generation Biosensors Employing Molecularly Imprinted Polymers as Sensing Elements for in Vitro
Diagnostics. Biosens. Bioelectron. X 2022, 11, 100201. [CrossRef]

92. Zhu, Y.; Liu, R.; Huang, H.; Zhu, Q. Vinblastine-Loaded Nanoparticles with Enhanced Tumor-Targeting Efficiency and Decreasing
Toxicity: Developed by One-Step Molecular Imprinting Process. Mol. Pharm. 2019, 16, 2675–2689. [CrossRef]

93. Ostovan, A.; Ghaedi, M.; Arabi, M.; Yang, Q.; Li, J.; Chen, L. Hydrophilic Multitemplate Molecularly Imprinted Biopolymers
Based on a Green Synthesis Strategy for Determination of B-Family Vitamins. ACS Appl. Mater. Interfaces 2018, 10, 4140–4150.
[CrossRef]

94. Arabi, M.; Ostovan, A.; Li, J.; Wang, X.; Zhang, Z.; Choo, J.; Chen, L. Molecular Imprinting: Green Perspectives and Strategies.
Adv. Mater. 2021, 33, 2100543. [CrossRef]

95. Li, S.; Yang, K.; Zhao, B.; Li, X.; Liu, L.; Chen, Y.; Zhang, L.; Zhang, Y. Epitope Imprinting Enhanced IMAC (EI-IMAC) for Highly
Selective Purification of His-Tagged Protein. J. Mater. Chem. B 2016, 4, 1960–1967. [CrossRef]

96. Liu, J.; Yang, K.; Deng, Q.; Li, Q.; Zhang, L.; Liang, Z.; Zhang, Y. Preparation of a New Type of Affinity Materials Combining
Metal Coordination with Molecular Imprinting. Chem. Commun. 2011, 47, 3969–3971. [CrossRef]

97. Li, S.; Yang, K.; Liu, J.; Jiang, B.; Zhang, L.; Zhang, Y. Surface-Imprinted Nanoparticles Prepared with a His-Tag-Anchored Epitope
as the Template. Anal. Chem. 2015, 87, 4617–4620. [CrossRef]

98. Deng, H.; Wei, Z.; Wang, X.N. Enhanced Adsorption of Active Brilliant Red X-3B Dye on Chitosan Molecularly Imprinted Polymer
Functionalized with Ti(IV) as Lewis Acid. Carbohydr. Polym. 2017, 157, 1190–1197. [CrossRef]

99. Turner, N.W.; Jeans, C.W.; Brain, K.R.; Allender, C.J.; Hlady, V.; Britt, D.W. From 3D to 2D: A Review of the Molecular Imprinting
of Proteins. Biotechnol. Prog. 2006, 22, 1474. [CrossRef]

100. Culver, H.R.; Peppas, N.A. Protein-Imprinted Polymers: The Shape of Things to Come? Chem. Mater. 2017, 29, 5753. [CrossRef]
101. Bhakta, S.; Seraji, M.S.I.; Suib, S.L.; Rusling, J.F. Antibody-like Biorecognition Sites for Proteins from Surface Imprinting on

Nanoparticles. ACS Appl. Mater. Interfaces 2015, 7, 28197–28206. [CrossRef]
102. Bedwell, T.S.; Anjum, N.; Ma, Y.; Czulak, J.; Poma, A.; Piletska, E.; Whitcombe, M.J.; Piletsky, S.A. New Protocol for Optimisation

of Polymer Composition for Imprinting of Peptides and Proteins. RSC Adv. 2019, 9, 27849–27855. [CrossRef]
103. Gast, M.; Sobek, H.; Mizaikoff, B. Selective Virus Capture via Hexon Imprinting. Mater. Sci. Eng. C 2019, 99, 1099–1104. [CrossRef]

[PubMed]
104. Fresco-Cala, B.; Mizaikoff, B. Surrogate Imprinting Strategies: Molecular Imprints via Fragments and Dummies. ACS Appl. Polym.

Mater. 2020, 2, 3714–3741. [CrossRef]
105. Khumsap, T.; Corpuz, A.; Nguyen, L.T. Epitope-Imprinted Polymers: Applications in Protein Recognition and Separation. RSC

Adv. 2021, 11, 11403–11414. [CrossRef] [PubMed]
106. Altintas, Z.; Takiden, A.; Utesch, T.; Mroginski, M.A.; Schmid, B.; Scheller, F.W.; Süssmuth, R.D. Integrated Approaches Toward

High-Affinity Artificial Protein Binders Obtained via Computationally Simulated Epitopes for Protein Recognition. Adv. Funct.
Mater. 2019, 29, 1807332. [CrossRef]

107. Wyszomirski, M.; Prus, W. Molecular Modelling of a Template Substitute and Monomers Used in Molecular Imprinting for
Aflatoxin B1 Micro-HPLC Analysis. Mol. Simul. 2012, 38, 892–895. [CrossRef]

108. Schirhagl, R.; Hall, E.W.; Fuereder, I.; Zare, R.N. Separation of Bacteria with Imprinted Polymeric Films. Analyst 2012, 137,
1495–1499. [CrossRef]

109. Van Grinsven, B.; Eersels, K.; Akkermans, O.; Ellermann, S.; Kordek, A.; Peeters, M.; Deschaume, O.; Bartic, C.; Diliën, H.; Steen
Redeker, E.; et al. Label-Free Detection of Escherichia Coli Based on Thermal Transport through Surface Imprinted Polymers.
ACS Sens. 2016, 1, 1140–1147. [CrossRef]

110. Jenik, M.; Schirhagl, R.; Schirk, C.; Hayden, O.; Lieberzeit, P.; Blaas, D.; Paul, G.; Dickert, F.L. Sensing Picornaviruses Using
Molecular Imprinting Techniques on a Quartz Crystal Microbalance. Anal. Chem. 2009, 81, 5320–5326. [CrossRef]

111. Dickert, F.L.; Hayden, O. Bioimprinting of Polymers and Sol−Gel Phases. Selective Detection of Yeasts with Imprinted Polymers.
Anal. Chem. 2002, 74, 1302–1306. [CrossRef]

http://doi.org/10.17352/gjbbs.000009
http://doi.org/10.1515/jib-2017-0075
http://www.ncbi.nlm.nih.gov/pubmed/29897885
http://doi.org/10.1021/acs.jpcb.9b03091
http://www.ncbi.nlm.nih.gov/pubmed/31150581
http://doi.org/10.1002/jmr.2635
http://doi.org/10.1016/j.sbsr.2015.11.009
http://doi.org/10.3390/nano11112985
http://doi.org/10.1039/D2TB00418F
http://doi.org/10.1016/j.biosx.2022.100201
http://doi.org/10.1021/acs.molpharmaceut.9b00243
http://doi.org/10.1021/acsami.7b17500
http://doi.org/10.1002/adma.202100543
http://doi.org/10.1039/C5TB02505B
http://doi.org/10.1039/c0cc05317a
http://doi.org/10.1021/ac5047246
http://doi.org/10.1016/j.carbpol.2016.10.087
http://doi.org/10.1002/bp060122g
http://doi.org/10.1021/acs.chemmater.7b01936
http://doi.org/10.1021/acsami.5b11650
http://doi.org/10.1039/C9RA05009D
http://doi.org/10.1016/j.msec.2019.02.037
http://www.ncbi.nlm.nih.gov/pubmed/30889642
http://doi.org/10.1021/acsapm.0c00555
http://doi.org/10.1039/D0RA10742E
http://www.ncbi.nlm.nih.gov/pubmed/35423617
http://doi.org/10.1002/adfm.201807332
http://doi.org/10.1080/08927022.2012.667876
http://doi.org/10.1039/c2an15927a
http://doi.org/10.1021/acssensors.6b00435
http://doi.org/10.1021/ac8019569
http://doi.org/10.1021/ac010642k


Int. J. Mol. Sci. 2023, 24, 6785 22 of 23

112. Ren, K.; Zare, R.N. Chemical Recognition in Cell-Imprinted Polymers. ACS Nano 2012, 6, 4314–4318. [CrossRef]
113. Idil, N.; Mattiasson, B. Imprinting of Microorganisms for Biosensor Applications. Sensors 2017, 17, 708. [CrossRef]
114. Kim, S.; Patel, D.S.; Park, S.; Slusky, J.; Klauda, J.B.; Widmalm, G.; Im, W. Bilayer Properties of Lipid A from Various Gram-

Negative Bacteria. Biophys. J. 2016, 111, 1750–1760. [CrossRef]
115. Zhang, M.; Gu, L.; Kong, G.; Zheng, Y.; Han, Y.; Li, Z.; Shi, J.; Peng, J. Comparative Analysis of Atrazine Molecularly Imprinted

Polymers Using Acetonitrile and Toluene as Solvents. J. Appl. Polym. Sci. 2019, 136, 47190. [CrossRef]
116. Norjmaa, G.; Ujaque, G.; Lledós, A. Beyond Continuum Solvent Models in Computational Homogeneous Catalysis. Top. Catal.

2022, 65, 118–140. [CrossRef]
117. Zhang, J.; Zhang, H.; Wu, T.; Wang, Q.; van der Spoel, D. Comparison of Implicit and Explicit Solvent Models for the Calculation

of Solvation Free Energy in Organic Solvents. J. Chem. Theory Comput. 2017, 13, 1034–1043. [CrossRef]
118. Larsson, P.; Lindahl, E. A High-Performance Parallel-Generalized Born Implementation Enabled by Tabulated Interaction

Rescaling. J. Comput. Chem. 2010, 31, 2593–2600. [CrossRef]
119. Zhang, H.; Tan, T.; van der Spoel, D. Generalized Born and Explicit Solvent Models for Free Energy Calculations in Organic

Solvents: Cyclodextrin Dimerization. J. Chem. Theory Comput. 2015, 11, 5103–5113. [CrossRef]
120. Larsson, D.S.D.; van der Spoel, D. Screening for the Location of RNA Using the Chloride Ion Distribution in Simulations of Virus

Capsids. J. Chem. Theory Comput. 2012, 8, 2474–2483. [CrossRef]
121. Zin, L.C.; Silva, C.F.; Guimarães, L.; Nascimento, C.S. Oxybutynin-Imprinted Polymer: A Theoretical Investigation. Chem. Phys.

Lett. 2022, 799, 139640. [CrossRef]
122. Taylor, M.; Yu, H.; Ho, J. Predicting Solvent Effects on S N 2 Reaction Rates: Comparison of QM/MM, Implicit, and MM Explicit

Solvent Models. J. Phys. Chem. B 2022, 2022, 9047–9058. [CrossRef]
123. Madikizela, L.M.; Ncube, S.; Nomngongo, P.N.; Pakade, V.E. Molecular Imprinting with Deep Eutectic Solvents: Synthesis,

Applications, Their Significance, and Benefits. J. Mol. Liq. 2022, 362, 119696. [CrossRef]
124. Viveiros, R.; Karim, K.; Piletsky, S.A.; Heggie, W.; Casimiro, T. Development of a Molecularly Imprinted Polymer for a Pharma-

ceutical Impurity in Supercritical CO2: Rational Design Using Computational Approach. J. Clean. Prod. 2017, 168, 1025–1031.
[CrossRef]

125. Tolmachev, D.; Lukasheva, N.; Ramazanov, R.; Nazarychev, V.; Borzdun, N.; Volgin, I.; Andreeva, M.; Glova, A.; Melnikova, S.;
Dobrovskiy, A.; et al. Computer Simulations of Deep Eutectic Solvents: Challenges, Solutions, and Perspectives. Int. J. Mol. Sci.
2022, 23, 645. [CrossRef] [PubMed]

126. Wu, L.; Sun, B.; Li, Y.; Chang, W. Study Properties of Molecular Imprinting Polymer Using a Computational Approach. Analyst
2003, 128, 944–949. [CrossRef]

127. Wu, L.; Li, Y. Study on the Recognition of Templates and Their Analogues on Molecularly Imprinted Polymer Using Computational
and Conformational Analysis Approaches. J. Mol. Recognit. 2004, 17, 567–574. [CrossRef]

128. Monti, S.; Cappelli, C.; Bronco, S.; Giusti, P.; Ciardelli, G. Towards the Design of Highly Selective Recognition Sites into Molecular
Imprinting Polymers: A Computational Approach. Biosens. Bioelectron. 2006, 22, 153–163. [CrossRef]

129. Gartner, T.E.; Jayaraman, A. Modeling and Simulations of Polymers: A Roadmap. Macromolecules 2019, 52, 755–786. [CrossRef]
130. Stanzione, F.; Jayaraman, A. Hybrid Atomistic and Coarse-Grained Molecular Dynamics Simulations of Polyethylene Glycol

(PEG) in Explicit Water. J. Phys. Chem. B 2016, 120, 4160–4173. [CrossRef]
131. Kmiecik, S.; Gront, D.; Kolinski, M.; Wieteska, L.; Dawid, A.E.; Kolinski, A. Coarse-Grained Protein Models and Their Applications.

Chem. Rev. 2016, 116, 7898–7936. [CrossRef]
132. Srebnik, S.; Lev, O.; Avnir, D. Pore Size Distribution Induced by Microphase Separation: Effect of the Leaving Group during

Polycondensation. Chem. Mater. 2001, 13, 811–816. [CrossRef]
133. Yungerman, I.; Srebnik, S. Factors Contributing to Binding-Site Imperfections in Imprinted Polymers. Chem. Mater. 2006, 18,

657–663. [CrossRef]
134. Srebnik, S. Theoretical Investigation of the Imprinting Efficiency of Molecularly Imprinted Polymers. Chem. Mater. 2004, 16,

883–888. [CrossRef]
135. Srebnik, S.; Lev, O. Theoretical Investigation of Imprinted Crosslinked Silicates. J. Sol-Gel Sci. Technol. 2003, 26, 107–113. [CrossRef]
136. Srebnik, S.; Lev, O. Toward Establishing Criteria for Polymer Imprinting Using Mean-Field Theory. J. Chem. Phys. 2002, 116, 10967.

[CrossRef]
137. Henthorn, D.B.; Peppas, N.A. Molecular Simulations of Recognitive Behavior of Molecularly Imprinted Intelligent Polymeric

Networks. Ind. Eng. Chem. Res. 2007, 46, 6084–6091. [CrossRef]
138. Dourado, E.M.A.; Sarkisov, L. Emergence of Molecular Recognition Phenomena in a Simple Model of Imprinted Porous Materials.

J. Chem. Phys. 2009, 130, 214701. [CrossRef]
139. Herdes, C.; Sarkisov, L. Computer Simulation of Volatile Organic Compound Adsorption in Atomistic Models of Molecularly

Imprinted Polymers. Langmuir 2009, 25, 5352–5359. [CrossRef]
140. Levi, L.; Srebnik, S. Simulation of Protein-Imprinted Polymers. 1. Imprinted Pore Properties. J. Phys. Chem. B 2010, 114, 107–114.

[CrossRef]
141. Raim, V.; Zadok, I.; Srebnik, S. Comparison of Descriptors for Predicting Selectivity of Protein-Imprinted Polymers. J. Mol.

Recognit. 2016, 29, 391–400. [CrossRef]

http://doi.org/10.1021/nn300901z
http://doi.org/10.3390/s17040708
http://doi.org/10.1016/j.bpj.2016.09.001
http://doi.org/10.1002/app.47190
http://doi.org/10.1007/s11244-021-01520-2
http://doi.org/10.1021/acs.jctc.7b00169
http://doi.org/10.1002/jcc.21552
http://doi.org/10.1021/acs.jctc.5b00620
http://doi.org/10.1021/ct3002128
http://doi.org/10.1016/j.cplett.2022.139640
http://doi.org/10.1021/acs.jpcb.2c06000
http://doi.org/10.1016/j.molliq.2022.119696
http://doi.org/10.1016/j.jclepro.2017.09.026
http://doi.org/10.3390/ijms23020645
http://www.ncbi.nlm.nih.gov/pubmed/35054840
http://doi.org/10.1039/b212731h
http://doi.org/10.1002/jmr.688
http://doi.org/10.1016/j.bios.2006.05.017
http://doi.org/10.1021/acs.macromol.8b01836
http://doi.org/10.1021/acs.jpcb.6b02327
http://doi.org/10.1021/acs.chemrev.6b00163
http://doi.org/10.1021/cm000537b
http://doi.org/10.1021/cm050598f
http://doi.org/10.1021/cm034705m
http://doi.org/10.1023/A:1020701721529
http://doi.org/10.1063/1.1480447
http://doi.org/10.1021/ie061369l
http://doi.org/10.1063/1.3140204
http://doi.org/10.1021/la804168b
http://doi.org/10.1021/jp9087767
http://doi.org/10.1002/jmr.2538


Int. J. Mol. Sci. 2023, 24, 6785 23 of 23

142. Levi, L.; Srebnik, S. Simulation of Protein-Imprinted Polymers. 2. Imprinting Efficiency. J. Phys. Chem. B 2010, 114, 16744–16751.
[CrossRef]

143. Hou, D.; Yu, J.; Wang, P. Molecular Dynamics Modeling of the Structure, Dynamics, Energetics and Mechanical Properties of
Cement-Polymer Nanocomposite. Compos. B Eng. 2019, 162, 433–444. [CrossRef]

144. Martin, T.B.; Mongcopa, K.I.S.; Ashkar, R.; Butler, P.; Krishnamoorti, R.; Jayaraman, A. Wetting-Dewetting and Dispersion-
Aggregation Transitions Are Distinct for Polymer Grafted Nanoparticles in Chemically Dissimilar Polymer Matrix. J. Am. Chem.
Soc. 2015, 137, 10624–10631. [CrossRef] [PubMed]

145. Baggiani, C.; Anfossi, L.; Giovannoli, C.; Tozzi, C. Multivariate Analysis of the Selectivity for a Pentachlorophenol-Imprinted
Polymer. J. Chromatogr. B 2004, 804, 31–41. [CrossRef] [PubMed]

146. Alenus, J.; Ethirajan, A.; Horemans, F.; Weustenraed, A.; Csipai, P.; Gruber, J.; Peeters, M.; Cleij, T.J.; Wagner, P. Molecularly
Imprinted Polymers as Synthetic Receptors for the QCM-D-Based Detection of L-Nicotine in Diluted Saliva and Urine Samples.
Anal. Bioanal. Chem. 2013, 405, 6479–6487. [CrossRef]

147. Siavash Moakhar, R.; del Real Mata, C.; Jalali, M.; Shafique, H.; Sanati, A.; de Vries, J.; Strauss, J.; AbdElFatah, T.; Ghasemi, F.;
McLean, M.; et al. A Versatile Biomimic Nanotemplating Fluidic Assay for Multiplex Quantitative Monitoring of Viral Respiratory
Infections and Immune Responses in Saliva and Blood. Adv. Sci. 2022, 9, 2204246. [CrossRef]

148. Parnianchi, F.; Kashanian, S.; Nazari, M.; Peacock, M.; Omidfar, K.; Varmira, K. Ultrasensitive Electrochemical Sensor Based on
Molecular Imprinted Polymer and Ferromagnetic Nanocomposite for Bilirubin Analysis in the Saliva and Serum of Newborns.
Microchem. J. 2022, 179, 107474. [CrossRef]

149. Akgönüllü, S.; Battal, D.; Yalcin, M.S.; Yavuz, H.; Denizli, A. Rapid and Sensitive Detection of Synthetic Cannabinoids JWH-018,
JWH-073 and Their Metabolites Using Molecularly Imprinted Polymer-Coated QCM Nanosensor in Artificial Saliva. Microchem.
J. 2020, 153, 104454. [CrossRef]

150. Usha, S.P.; Shrivastav, A.M.; Gupta, B.D. A Contemporary Approach for Design and Characterization of Fiber-Optic-Cortisol
Sensor Tailoring LMR and ZnO/PPY Molecularly Imprinted Film. Biosens. Bioelectron. 2017, 87, 178–186. [CrossRef]

151. Ali, J.; Bong Lee, J.; Gittings, S.; Iachelini, A.; Bennett, J.; Cram, A.; Garnett, M.; Roberts, C.J.; Gershkovich, P. Development and
Optimisation of Simulated Salivary Fluid for Biorelevant Oral Cavity Dissolution. Eur. J. Pharm. Biopharm. 2021, 160, 125–133.
[CrossRef]

152. Gittings, S.; Turnbull, N.; Henry, B.; Roberts, C.J.; Gershkovich, P. Characterisation of Human Saliva as a Platform for Oral
Dissolution Medium Development. Eur. J. Pharm. Biopharm. 2015, 91, 16–24. [CrossRef]

153. Wu, S.; Kondo, Y.; Kakimoto, M.A.; Yang, B.; Yamada, H.; Kuwajima, I.; Lambard, G.; Hongo, K.; Xu, Y.; Shiomi, J.; et al.
Machine-Learning-Assisted Discovery of Polymers with High Thermal Conductivity Using a Molecular Design Algorithm. NPJ
Comput. Mater. 2019, 5, 66. [CrossRef]

154. Lowdon, J.W.; Ishikura, H.; Kvernenes, M.K.; Caldara, M.; Cleij, T.J.; van Grinsven, B.; Eersels, K.; Diliën, H. Identifying Potential
Machine Learning Algorithms for the Simulation of Binding Affinities to Molecularly Imprinted Polymers. Computation 2021, 9,
103. [CrossRef]

155. Sha, W.; Li, Y.; Tang, S.; Tian, J.; Zhao, Y.; Guo, Y.; Zhang, W.; Zhang, X.; Lu, S.; Cao, Y.C.; et al. Machine Learning in Polymer
Informatics. InfoMat 2021, 3, 353–361. [CrossRef]

156. Senior, A.W.; Evans, R.; Jumper, J.; Kirkpatrick, J.; Sifre, L.; Green, T.; Qin, C.; Žídek, A.; Nelson, A.W.R.; Bridgland, A.; et al.
Improved Protein Structure Prediction Using Potentials from Deep Learning. Nature 2020, 577, 706–710. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1021/jp108762t
http://doi.org/10.1016/j.compositesb.2018.12.142
http://doi.org/10.1021/jacs.5b05291
http://www.ncbi.nlm.nih.gov/pubmed/26237522
http://doi.org/10.1016/j.jchromb.2004.01.037
http://www.ncbi.nlm.nih.gov/pubmed/15093157
http://doi.org/10.1007/s00216-013-7080-1
http://doi.org/10.1002/advs.202204246
http://doi.org/10.1016/j.microc.2022.107474
http://doi.org/10.1016/j.microc.2019.104454
http://doi.org/10.1016/j.bios.2016.08.040
http://doi.org/10.1016/j.ejpb.2021.01.017
http://doi.org/10.1016/j.ejpb.2015.01.007
http://doi.org/10.1038/s41524-019-0203-2
http://doi.org/10.3390/computation9100103
http://doi.org/10.1002/inf2.12167
http://doi.org/10.1038/s41586-019-1923-7

	Introduction 
	Computational Modelling during Polymerization 
	In Silico Monomer Selection 
	In Silico Template Modelling and Selection 
	In Silico Solvent Modelling 
	In Silico Polymer Modelling 
	In Silico Polymer Performance Evaluation 
	Machine Learning for MIPs 
	Conclusions and Future Perspectives 
	References

