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Abstract: In pharmaceutical treatment, many non-cardiac drugs carry the risk of prolonging the QT
interval, which can lead to fatal cardiac complications such as torsades de points (TdP). Although
the unexpected blockade of ion channels has been widely considered to be one of the main reasons
for affecting the repolarization phase of the cardiac action potential and leading to QT interval
prolongation, the lack of knowledge regarding chemical structures in drugs that may induce the
prolongation of the QT interval remains a barrier to further understanding the underlying mechanism
and developing an effective prediction strategy. In this study, we thoroughly investigated the
differences in chemical structures between QT-prolonging drugs and drugs with no drug-induced QT
prolongation (DIQT) concerns, based on the Drug-Induced QT Prolongation Atlas (DIQTA) dataset.
Three categories of structural alerts (SAs), namely amines, ethers, and aromatic compounds, appeared
in large quantities in QT-prolonging drugs, but rarely in drugs with no DIQT concerns, indicating
a close association between SAs and the risk of DIQT. Moreover, using the molecular descriptors
associated with these three categories of SAs as features, the structure–activity relationship (SAR)
model for predicting the high risk of inducing QT interval prolongation of marketed drugs achieved
recall rates of 72.5% and 80.0% for the DIQTA dataset and the FDA Adverse Event Reporting System
(FAERS) dataset, respectively. Our findings may promote a better understanding of the mechanism
of DIQT and facilitate research on cardiac adverse drug reactions in drug development.

Keywords: drug-induced prolongation of QT interval; drug safety evaluation; structure–activity
relationship; machine learning; adverse outcome pathway

1. Introduction

Cardiotoxicity is one of the major concerns in clinical pharmaceutical treatments [1–3].
Apart from cardiac drugs, a number of non-cardiac drugs may prolong the QT interval,
which increases the likelihood of severe cardiac complications such as torsades de points
(TdP) [4]. Understanding the mechanisms underlying the drug-induced prolongation of
the QT interval is crucial, not only for preventing cardiovascular adverse events in clinical
practice but also for developing new drugs in the pharmaceutical industry [5–10].

Monitoring the increase in electrocardiogram (ECG) data, along with other patient
information such as gender, disease states, and concomitant use of other QT-prolonging
drugs, is a common approach in clinical settings to assess the potential risk that patients will
acquire a prolonged QT interval and develop TdP [2,11]. However, this approach is often
hindered by individual differences [12,13]. In preclinical settings, the well-known mecha-
nism of drug-induced QT prolongation (DIQT) is the inhibition activity of the repolarizing
potassium current IKr that is generated by the expression of the human ether-a-gogo-related
gene (hERG) [14–18]. The drug-mediated blockade of the hGRG gene channel will cause the
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inhibition of rapid delayed rectifying potassium current, resulting in a prolonged QT inter-
val and, in severe cases, developing into TdP. Based on this mechanism, the comprehensive
in vitro Proarrhythmia assay (CiPA) initiative recommends screening chemical agents that
may potentially prolong the QT interval by examining their effect on individual ion currents
in vitro and predicting the drug effects on repolarization and proarrhythmia risk by using
in silico methods [19]. Over the past decade, various machine learning methods, such as
support vector machines, random forests, and Bayesian networks, have been applied to
evaluate the risk of inducing cardiotoxicity of compounds by predicting the blocking effect
of compounds on hERG gene channels [20–28]. Additionally, deep learning algorithms have
been proposed to evaluate the risk of cardiotoxicity caused by hERG gene blockers and to
assess the cardiotoxicity of FDA-approved small molecular drugs in the Drugbank [29,30].
Despite the relatively high predictive performance achieved by these studies, few of them
provide deep insight into the chemical fragments, also known as structural alerts (SAs),
in drugs that may contribute to cardiotoxicity. It is still a challenge to further study the
underlying mechanism and develop an effective strategy for drug safety evaluation.

Therefore, in this study, we aim to identify the SAs in marketed drugs that prolong
the QT interval based on data from the Drug-Induced QT Prolongation Atlas (DIQTA),
which we developed in our previous study [31]. In DIQTA, the drugs were well stratified
into different risk levels based on their potential to cause QT interval prolongation, as
determined by FDA-approved drug labeling information. We thoroughly investigated the
differences in chemical structures between QT-prolonging drugs and drugs with no DIQT
concerns, and identified a set of SAs closely related to the high risk of prolongation of
the QT interval. The structure–activity relationship (SAR) model also performed well in
identifying marketed drugs with a high risk of DIQT when using the SAs as features. Our
findings will promote the development of adverse outcome pathway frameworks for the
drug-induced prolongation of the QT interval and facilitate research on cardiac adverse
drug reactions in drug development.

2. Results
2.1. Structural Differences between QT and Non-QT-Prolonging Drugs

We identified 24 chemical fragments (SAs) with large differences in chemical structures
between QT-prolonging drugs and no-DIQT-concern drugs, as shown in Table 1. These
24 SAs can be broadly categorized into three groups: amines, ethers, and aromatic com-
pounds. Amines, in particular, were found to be more prevalent in QT-prolonging drugs,
with a proportion at least 30% higher than that of the no-DIQT-concern drugs. Among
the amines, tertiary amines (ID: 1) had the highest difference in proportion between the
two categories, with a proportion of 61.1% in the QT-prolonging drugs and only 12.6%
in the no-DIQT-concern drugs. For tertiary aliphatic amines (ID: 3), they appeared in
over 50% of QT-prolonging drugs, but in less than 10% of no-DIQT-concern drugs. These
results suggest that amines, particularly tertiary amines, may be closely associated with
drug-induced prolongation of the QT interval. Similarly, for aromatic compounds, Ethers
(ID: 9) and Alkylarylethers (ID: 12) appeared in 47.2% and 34.0% of QT drugs, respec-
tively, while their proportions in the no-DIQT-concern drugs were only 17.9% and 11.6%,
respectively. Aryl halides (ID: 15) appeared in 37.5% and 13.7% of the QT-prolonging
drugs and no-DIQT-concern drugs, respectively. In addition, Sp3-hybridized carbon atoms
(2) (ID: 2) appeared in a higher proportion of QT-prolonging drugs, reaching 81.3%, while
their proportion in the no-DIQT-concern drugs was 37.9%. Figure 1 illustrates the distri-
bution of tertiary amines, alkylarylethers, and aryl halides among different therapeutic
categories of QT-prolonging drugs. All three of these SAs were predominantly found in
drugs classified under the therapeutic category of the nervous system (N), followed by
those in the therapeutic categories of anti-infectives for systemic use (J) and antineoplastic
and immunomodulating agents (L).
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Table 1. Twenty-four chemical fragments (SAs) with large differences in chemical structures between
QT-prolonging drugs and no-DIQT-concern drugs.

ID Class Name SA

Number of
QT-

Prolonging
Drugs

Proportion
of QT-

Prolonging
Drugs

Number of
Non-QT-

Prolonging
Drugs

Proportion
of Non-QT-
Prolonging

Drugs

Difference

1 amines tertiary amines
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Table 1. Cont.
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Table 1. Cont.

ID Class Name SA

Number of
QT-

Prolonging
Drugs

Proportion
of QT-

Prolonging
Drugs

Number of
Non-QT-

Prolonging
Drugs

Proportion
of Non-QT-
Prolonging

Drugs

Difference

22 halogen
derivatives
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Figure 1. (a) Distribution of drugs containing tertiary amines among different therapeutic categories 
of QT-prolonging drugs; (b) distribution of drugs containing alkylarylethers among different ther-
apeutic categories of QT-prolonging drugs; (c) distribution of drugs containing aryl halides among 
different therapeutic categories of QT-prolonging drugs. 

2.2. SAR Model Performance on DIQTA Dataset 
Based on the DIQTA dataset, we used traditional machine learning methods, includ-

ing logistic regression (LR), random forest (RF), support vector machine (SVM), and 
XGBoost, to develop the SAR model. The model was built using five-fold cross-validation, 
and the modeling process was repeated 1000 times to calculate the mean and variance of 
each prediction metric. Figure 2 shows the distribution of Matthews correlation coeffi-
cients (MCCs) and recall rates achieved by each algorithm. As shown in the figure, SVM 
achieved the highest MCC value and recall rate among all of the models. The detailed 
results are listed in Table 2, including accuracy, precision, recall score, MCC, f1 score, bal-
anced accuracy score (BACC), the area under the ROC curve (AUC), average precision 
score (AP), sensitivity (SE), and specificity (SP). From the table, it can be seen that based 
on chemical structure information, each model achieved a predictive accuracy of more 
than 75% in predicting drugs with a potential risk of QT interval prolongation, indicating 
that each model can effectively predict the potential risk of the QT prolongation of drugs 
based on chemical structure information. Among them, SVM achieved the highest accu-
racy of 80.6%. Meanwhile, the recall rate for positive samples (drugs with risk of QT in-
terval prolongation) was also the highest, reaching 87.0%. In addition, we also used SVM 
with 1000 iterations of five-fold cross-validation to build a model and predict the permu-
tation data. As shown in Figure 2 and Table 2, for randomly labeled datasets, the predic-
tion results of SVM were similar to the random results. 

Figure 1. (a) Distribution of drugs containing tertiary amines among different therapeutic categories
of QT-prolonging drugs; (b) distribution of drugs containing alkylarylethers among different thera-
peutic categories of QT-prolonging drugs; (c) distribution of drugs containing aryl halides among
different therapeutic categories of QT-prolonging drugs.

2.2. SAR Model Performance on DIQTA Dataset

Based on the DIQTA dataset, we used traditional machine learning methods, including
logistic regression (LR), random forest (RF), support vector machine (SVM), and XGBoost,
to develop the SAR model. The model was built using five-fold cross-validation, and the
modeling process was repeated 1000 times to calculate the mean and variance of each
prediction metric. Figure 2 shows the distribution of Matthews correlation coefficients
(MCCs) and recall rates achieved by each algorithm. As shown in the figure, SVM achieved
the highest MCC value and recall rate among all of the models. The detailed results
are listed in Table 2, including accuracy, precision, recall score, MCC, f1 score, balanced
accuracy score (BACC), the area under the ROC curve (AUC), average precision score (AP),
sensitivity (SE), and specificity (SP). From the table, it can be seen that based on chemical
structure information, each model achieved a predictive accuracy of more than 75% in
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predicting drugs with a potential risk of QT interval prolongation, indicating that each
model can effectively predict the potential risk of the QT prolongation of drugs based on
chemical structure information. Among them, SVM achieved the highest accuracy of 80.6%.
Meanwhile, the recall rate for positive samples (drugs with risk of QT interval prolongation)
was also the highest, reaching 87.0%. In addition, we also used SVM with 1000 iterations of
five-fold cross-validation to build a model and predict the permutation data. As shown in
Figure 2 and Table 2, for randomly labeled datasets, the prediction results of SVM were
similar to the random results.
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Table 2. Prediction results of RF, XGBoost, SVM, LR, and Permutation_Y.

XGBoost RF LR SVM Permutation_Y

Accuracy 0.758 ± 0.016 0.749 ± 0.017 0.770 ± 0.019 0.806 ± 0.014 0.540 ± 0.037
Recall score 0.837 ± 0.020 0.827 ± 0.019 0.822 ± 0.022 0.870 ± 0.017 0.695 ± 0.041

Precision score 0.779 ± 0.014 0.773 ± 0.015 0.801 ± 0.017 0.820 ± 0.014 0.602 ± 0.027
MCC 0.488 ± 0.034 0.469 ± 0.036 0.517 ± 0.039 0.591 ± 0.031 −0.001 ± 0.084
BACC 0.738 ± 0.017 0.729 ± 0.018 0.756 ± 0.019 0.790 ± 0.015 0.500 ± 0.039

F1 score 0.807 ± 0.013 0.799 ± 0.014 0.811 ± 0.016 0.844 ± 0.012 0.645 ± 0.030
AUC 0.738 ± 0.017 0.729 ± 0.018 0.756 ± 0.019 0.790 ± 0.015 0.500 ± 0.039
AP 0.750 ± 0.013 0.744 ± 0.014 0.766 ± 0.016 0.791 ± 0.013 0.603 ± 0.019
SE 0.837 ± 0.020 0.827 ± 0.019 0.822 ± 0.022 0.870 ± 0.017 0.695 ± 0.041
SP 0.640 ± 0.028 0.632 ± 0.032 0.691 ± 0.032 0.710 ± 0.026 0.305 ± 0.061

Next, we used SVM and 24 SAs with more than 20% differences between QT-prolonging
drugs and no-DIQT-concern drugs as features to identify drugs with the potential risk of
inducing QT interval prolongation. The model was still constructed using 1000 iterations of
five-fold cross-validation. We extracted the top 50 molecular descriptors ranked by their fea-
ture importance scores in descending order in SVM modeling (see Supplementary Table S1),
and selected 10 of these molecular descriptors as features that were closely associated with
the 24 SAs (see Table 3). Subsequently, the ten features were used to construct a SAR
model to classify QT-prolonging drugs and no-DIQT-concern drugs. Figure 3 showed the
prediction results using all features and only the ten features related to SAs. As can be
seen from the figure, although the predictive accuracy, recall rate, and MCC of the model
decreased after reducing the number of features, they were still 69.7%, 72.5%, and 0.376,
respectively, indicating that using SAs as structural features can effectively identify drugs
with a potential risk of QT interval prolongation.
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Table 3. Ten of these molecular descriptors as features that were closely associated with the 24 SAs.

Descriptor Description

D718 number of CH3X groups
D756 number of Al-O-Ar or Ar-O-Ar or R-O-C=X groups
D661 number of quaternary ammonium (aliphatic) groups
D759 number of tertiary aliphatic amine groups
D627 number of tertiary amides (aliphatic) groups
D130 number of halogen atoms in each molecule
D647 number of primary amines (aliphatic) groups *
D626 number of secondary amides (aromatic) groups
D757 number of Al-NH2 groups
D598 number of total tertiary C-sp3

* Aliphatic primary amines have a carbon with sp3 hybridization and two hydrogen atoms connected to the
nitrogen atom.
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2.3. SAR Model Performance on FAERS Dataset

We extracted 647 marketed drugs from the FAERS database that had at least one case
report of inducing QT interval prolongation. We used SVM models established in the
previous step to predict the potential risk of these drugs causing QT interval prolongation.
Since the drugs with no DIQT concerns were not included in this dataset, we calculated the
recall rate of the models. We sorted the 647 drugs by their reporting odds ratio (ROR) in
descending order and took the top N drugs to construct a data subset. We used the models
to predict the potential risk of QT interval prolongation for the drugs in the data subset,
with N starting at 50 and increasing by 50 drugs each time until all drugs were included.
This procedure allowed us to investigate the model performance in identifying drugs with
different risks of QT interval prolongation.

Figure 4 showed the predictive performance of the models using all features and the
models using ten SA-related features. Similarly to the results obtained via the DIQTA
dataset, the predictive performance of the model with all features was higher than that
of the ten-feature model. Both models achieved an 80.0% recall rate for identifying high-
risk QT-prolonging drugs (the top 50 drugs with high ROR values). As more low-risk
QT-prolonging drugs were included in the data subset, the recall rate of the full-feature
model and the ten-feature model decreased from 80.0% to 66.3% and 59.3%, respectively,
indicating that the models performed better in identifying high-risk QT-prolonging drugs
compared to identifying low-risk QT-prolonging drugs. The top ten QT-prolonging drugs
with the highest ROR values are listed in Table 4, of which eight drugs were correctly
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predicted as being positive. However, due to the limited number of features used, the
ten-feature model could not effectively identify low-risk QT-prolonging drugs.
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Table 4. The top ten QT-prolonging drugs with the highest ROR values.

Drug Name Odds Ratio ATC Code

Doxapram 398.298 R07
Cisapride * 272.797 A03
Ibutilide * 223.102 C01

Tropisetron * 113.799 A04
Trimebutine * 113.799 A03
Alfacalcidol * 106.213 M05, A11
Bedaquiline * 97.265 J04
Ethionamide 79.660 J04

Bepridil * 78.360 C08
Procainamide * 59.457 C01

* Drugs that were predicted as positives by our model.

To further validate the predictive performance of the SVM models, we selected the top
95 QT drugs with the highest ROR values as positive samples from the FAERS database
and 95 drugs that had not been reported to induce QT interval prolongation as negative
samples from the DIQTA database. The therapeutic categories of the 95 no-DIQT-concern
drugs were selected to be as consistent as possible with those of the 95 QT-prolonging
drugs. We used this dataset as an independent test set to further validate the full-feature
model and the ten-feature model. The results showed that the predictive accuracy of the
full-feature model and the ten-feature model were 85.3% and 73.3%, and the recall rates
were 81.1% and 77.9%, respectively, indicating that both models can effectively predict the
potential risk of prolonging the QT interval for marketed drugs.

3. Discussion

Cardiotoxicity is a major concern in clinical medications, and drug-induced QT interval
prolongation is a common occurrence in many therapeutic treatments, which may develop
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into severe arrhythmias, such as TdP. It is essential to establish a reliable strategy for
assessing the potential risk of inducing QT interval prolongation of drugs. FDA-approved
drug labeling information is determined after reviewing data from clinical trials and post-
marketing surveillance, and can reflect the severity of the risk of QT interval prolongation
induced by marketed drugs. In previous studies, we stratified QT-prolonging drugs and no-
DIQT-concern drugs based on FDA-approved drug labeling information and constructed
the DIQTA database. In this study, we compared the differences in chemical structures
between QT-prolonging drugs and no-DIQT-concern drugs in the DIQTA database and
identified three categories of SAs, namely amines, ethers, and aromatic compounds, related
to the high risk of QT interval prolongation. The proportion of these SAs in the structure
of QT-prolonging drugs is more than 20% higher than that in the no-DIQT-concern drugs,
with the proportion of amines in QT-prolonging drugs being at least 30% higher than that
in non-QT-prolonging drugs (Table 1). In the DIQTA database, more than 80% (79/96) of
the most-DIQT-concern drugs (drugs that might cause fatal or life-threatening arrhythmia)
contained these SAs, indicating that these three categories of SAs are closely related to the
occurrence of drug-induced QT interval prolongation. In previous studies, it had been
reported that the presence of tertiary amines, furan rings, and acetylene functional groups
may inhibit the cytochrome P450 (CYP) 3A4 pathway, leading to blocked drug metabolism
and accumulation in the body, ultimately causing cardiotoxicity [3,19,32–34]. For instance,
terfenadine, a drug used to treat allergy symptoms, may cause serious side effects including
delayed cardiac repolarization and ventricular tachycardia due to the accumulation of
terfenadine in the body when CYP3A4 activity was inhibited [35].

The 24 SAs related to high-risk QT interval prolongation could be useful in gaining a
better understanding of the mechanisms of drug-induced QT interval prolongation. The
adverse outcome pathway (AOP) for DIQT provides a conceptual framework that connects
the molecular initiating events (MIEs) to adverse outcomes (AOs) through a series of key
events (KEs). The compounds that contain the three categories of substances of concern
identified in our study could serve as chemical initiators, which trigger downstream KEs,
such as ion channel inhibition, leading to QT prolongation. The identification of chemical
initiators may guide the design of more effective in vitro and in vivo assays for predicting
DIQT. Moreover, our findings could be utilized to develop risk assessment strategies for
drug combinations that have the potential to cause QT interval prolongation.

In subsequent analysis, we used ten structural descriptors related to these 24 SAs
as features to establish an SVM model and predict the potential risk of drugs inducing
the prolongation of the QT interval. For the DIQTA dataset, the ten-feature model had
a prediction accuracy and recall rate of 69.7% and 72.5%, respectively, which were lower
than the prediction accuracy and recall rate (80.6% and 87.0%, respectively) obtained by the
full-feature model. However, for the prediction of drugs with the potentially high risk of QT
prolongation in the FAERS dataset (the top 50 drugs with high ROR values), both models
achieved a recall rate of 80.0%, indicating that the ten-feature model has good performance
in identifying drugs with a high risk of QT prolongation. Finally, for an independent test
set containing 95 QT-prolonging drugs and 95 no-DIQT-concern drugs, the ten-feature
model achieved a prediction accuracy of 73.7% and a recall rate of 77.9%. These results
indicated that the 24 SAs revealed in this study might facilitate artificial-intelligence-based
modeling for cardiotoxicity.

Additionally, there are some caveats that warrant further discussion. First, in the
DIQTA database, QT-prolonging drugs and the drugs with no DIQT concerns were strati-
fied based on FDA-approved drug labeling. If drug labeling from other countries, such as
European Union (EU) countries, were used, there may be differences in the stratification of
QT-prolonging drugs, which could ultimately lead to differences in SA identification. Sec-
ondly, our study instead revealed an association of a causality between the three categories
of SAs and a high risk of drug-induced prolongation of the QT interval. The presence of
these three categories of SAs in drug structures does not necessarily mean that the drugs
will definitely cause QT interval prolongation or other cardiac toxicity. It only indicates
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that the drugs may have a higher likelihood of inducing QT interval prolongation and
should be further evaluated for potential safety concerns. Finally, DIQT is a complex and
multifactorial phenomenon. Other patient risk factors such as age, sex, and electrolyte
imbalances can still cause QT interval prolongation during pharmaceutical treatment. Even
though the chemical structure of a drug is one of the main factors that induces QT interval
prolongation, it is still a challenge to establish a reliable machine learning model that pre-
dicts the risk of DIQT only based on chemical structures. It can be seen in Figure 4 that the
recall rate for predicting low-risk QT-prolonging drugs achieved by the ten-feature model
was only 59.3%. Therefore, it may be more effective to establish a model in future studies
that combines multiple features, including clinical factors, to predict the risk of DIQT.

4. Materials and Methods
4.1. Study Design

In this study, we compared the differences in chemical structures between QT-prolonging
drugs and drugs with no DIQT concerns, and identified 24 SAs that were closely associated
with QT interval prolongation. Next, we utilized the Mold2 package to convert the chemical
structures of the drugs into molecular descriptors, and established an SAR model based on
the molecular descriptors related to the 24 SAs as features to predict the potential risk of
prolonging the QT interval for drugs. Finally, the model was validated using the FAERS
dataset. Figure 5 depicts the process in detail.

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 10 of 15 
 

 

indicates that the drugs may have a higher likelihood of inducing QT interval prolonga-
tion and should be further evaluated for potential safety concerns. Finally, DIQT is a com-
plex and multifactorial phenomenon. Other patient risk factors such as age, sex, and elec-
trolyte imbalances can still cause QT interval prolongation during pharmaceutical treat-
ment. Even though the chemical structure of a drug is one of the main factors that induces 
QT interval prolongation, it is still a challenge to establish a reliable machine learning 
model that predicts the risk of DIQT only based on chemical structures. It can be seen in 
Figure 4 that the recall rate for predicting low-risk QT-prolonging drugs achieved by the 
ten-feature model was only 59.3%. Therefore, it may be more effective to establish a model 
in future studies that combines multiple features, including clinical factors, to predict the 
risk of DIQT. 

4. Materials and Methods 
4.1. Study Design 

In this study, we compared the differences in chemical structures between QT-pro-
longing drugs and drugs with no DIQT concerns, and identified 24 SAs that were closely 
associated with QT interval prolongation. Next, we utilized the Mold2 package to convert 
the chemical structures of the drugs into molecular descriptors, and established an SAR 
model based on the molecular descriptors related to the 24 SAs as features to predict the 
potential risk of prolonging the QT interval for drugs. Finally, the model was validated 
using the FAERS dataset. Figure 5 depicts the process in detail. 

 
Figure 5. Workflow of our study. 

4.2. DIQTA Dataset 
The Drug-Induced QT Prolongation Atlas (DIQTA, https://www.adrat-

las.com/DIQTA/, accessed on 22 February 2023) [31] stratified marketed drugs into differ-
ent categories based on the severity of their effects on QT interval, including most-DIQT-
concern drugs, moderate-concern drugs, ambiguous drugs, and no-DIQT-concern drugs. 
For structure comparison and model construction, we collected 144 drugs from the most-
DIQT-concern and moderate-DIQT-concern categories as positive samples and 95 drugs 
from the no-DIQT-concern drugs as negative samples for this study. 

4.3. FAERS Dataset 

Figure 5. Workflow of our study.

4.2. DIQTA Dataset

The Drug-Induced QT Prolongation Atlas (DIQTA, https://www.adratlas.com/DIQTA/,
accessed on 22 February 2023) [31] stratified marketed drugs into different categories
based on the severity of their effects on QT interval, including most-DIQT-concern drugs,
moderate-concern drugs, ambiguous drugs, and no-DIQT-concern drugs. For structure
comparison and model construction, we collected 144 drugs from the most-DIQT-concern

https://www.adratlas.com/DIQTA/
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and moderate-DIQT-concern categories as positive samples and 95 drugs from the no-
DIQT-concern drugs as negative samples for this study.

4.3. FAERS Dataset

The FDA Adverse Event Reporting System (FAERS) primarily contains post-marketing
surveillance data related to adverse events and medication errors associated with FDA-
regulated drugs [36]. We collected all reported cases from 2004 to 2021 for this study,
resulting in a total of 38,405,679 drug-event pairs. Please refer to our previous studies for
detailed information on the generation procedures [31,37]. We extracted 903 drugs reported
to have induced QT interval prolongation and identified 647 drugs with available chemical
structures for subsequent analysis.

To assess the severity of drug-induced QT interval prolongation for each drug, we
calculated the reporting odds ratio (ROR) using the following formula:

ROR =

( a
c
)(

b
d

) (1)

where a, b, c, and d are the numbers of cases defined in the Table 5.

Table 5. Contingency table for calculating the ROR.

Cases with Current ADR Cases without Current ADR

Cases with current drugs a b
Cases without current drugs c d

Based on their ROR values, the 647 drugs were ranked in ascending order and used
for SAR model validation.

4.4. Identification of Structural Alerts

After uploading SDF files for both QT-prolonging drugs and no-DIQT-concern drugs
to the ToxAlert platform in the Online Chemical Database (OCHEM, https://ochem.eu/
home/show.do, accessed on 22 February 2023) [38,39], we separately obtained structural
alerts (SAs) present in each category of drugs. In total, we identified 602 SAs from the
structures of QT-prolonging drugs, along with a list of drugs that contained each SA. We
also obtained 669 SAs from the no-DIQT-concern drugs and their corresponding drug lists.
By dividing the number of drugs in a specific SA’s list by the total number of drugs in the
category (QT or no-DIQT-concern drugs), we were able to calculate the proportion of each
SA in each of the two categories. We retained an SA if its proportion in QT-prolonging
drugs was 20% higher than its proportion in non-QT-prolonging drugs. As a result, we
kept 24 SAs for further analysis.

4.5. Calculation and Selection of Molecular Descriptors

The calculation of molecular descriptors was conducted using the Mold2 package
(https://www.fda.gov/science-research/bioinformatics-tools/mold2, accessed on
22 February 2023), which was developed by Dr. Tong at the National Center for Toxi-
cological Research (NCTR), US FDA [40–43]. The package provided a collection of 777 1D
and 2D molecular descriptors, and we utilized it to calculate the molecular descriptors
for each drug in the DIQTA and FAERS datasets. We applied a variance threshold of
0.001 to remove descriptors with low variability among the drugs, resulting in a final
set of 603 descriptors for SAR modeling. The input data were uploaded to GitHub
(https://github.com/LiSH7450/DIQT_model, accessed on 20 March 2023).

https://ochem.eu/home/show.do
https://ochem.eu/home/show.do
https://www.fda.gov/science-research/bioinformatics-tools/mold2
https://github.com/LiSH7450/DIQT_model
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4.6. SAR Model Construction

We used the support vector machine (SVM) algorithm [44] to predict the risk of drug-
induced QT prolongation based on the chemical structure of the drug. Based on the DIQTA
dataset, the SVM model with an RBF kernel was constructed by using 603 molecular
descriptors as features and five-fold cross-validation. The regularization parameter (c) and
the kernel width (γ) were optimized using a grid search method. Drugs with predicted
probabilities greater than 0.5 were considered to have a higher risk of causing QT interval
prolongation. To assess the robustness of the model, we conducted 1000 iterations of the
modeling process. To evaluate the performance of the model, we compared the performance
with other machine learning models, namely random forest (RF) [45], logistic regression
(LR) [46], and extreme gradient boosting (XGBoost) [47]. The parameters of these models
were also optimized using a grid search method, and all models were constructed using
1000 iterations of five-fold cross-validation. Additionally, we created a permutation dataset
as a negative control for SVM model construction by randomly permuting the labels
of samples.

4.7. Feature Selection

We evaluated the importance of each feature in an SVM model construction procedure
using the Shapley additive explanations (SHAP) algorithm, which was introduced by
Lundberg and Lee [48]. This algorithm was proposed to explain a model’s output by
assigning a score to each input feature, indicating how much that feature contributes to
the model’s prediction for a particular instance. We extracted the top 50 features that
contributed the most to the prediction results, and 10 out of the 50 features were found
to be closely associated with the 24 SAs. These ten features were used to construct the
SVM model. A ten-feature model was then constructed using the ten identified molecular
descriptors as features and 1000 iterations of five-fold cross-validation.

4.8. Evaluation of Model Performance

To evaluate the performance of the model, we used nine performance metrics in this
study, including accuracy, precision, recall score, Matthews correlation coefficient (MCC),
f1 score, balanced accuracy score (BACC), the area under the ROC curve (AUC), average
precision score (AP), sensitivity (SE), and specificity (SP).

accuracy =
TP + TN

TP + TN + FP + FN
(2)

recallrate =
TP

TP + FN
(3)

precision =
TP

TP + FP
(4)

MCC =
TP × TN − FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(5)

F1score =
2 × precision × recall rate

precision + recall rate
(6)

BACC =
(TPR + TNR)

2
(7)

AUC =
∫ 1

x=0
TPR

(
FPR−1(x)

)
dx (8)

AP =
∫ +∞

−∞
precision(x)dP[Y ≤ x] (9)
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SE =
TP

TP + FN
(10)

SP =
TN

TN + FP
(11)

TP, TN, FP, and FN stand for true positive, true negative, false positive, and false
negative, respectively. To evaluate the performance of the model, we conducted 5-fold
cross-validation and averaged the results over 1000 iterations.

5. Conclusions

In this study, we discovered a total of 24 SAs that are associated with high-risk QT-
prolonging drugs. The compounds containing these SAs can be used as molecular initiating
events to enhance the adverse outcome pathway related to QT interval prolongation. By
using these SAs as features, we can establish an SVM to effectively predict high-risk QT-
prolonging drugs. Our findings are expected to significantly improve research on cardiac
adverse drug reactions in drug development and reduce drug attrition due to drug-induced
prolongation of the QT interval.
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