
Citation: Hong, D.K.; Kho, A.R.; Lee,

S.H.; Kang, B.S.; Park, M.K.; Choi,

B.Y.; Suh, S.W. Pathophysiological

Roles of Transient Receptor Potential

(Trp) Channels and Zinc Toxicity in

Brain Disease. Int. J. Mol. Sci. 2023,

24, 6665. https://doi.org/10.3390/

ijms24076665

Academic Editors: Mohammad

Shahidullah and Paul James

Donaldson

Received: 3 March 2023

Revised: 30 March 2023

Accepted: 1 April 2023

Published: 3 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Review

Pathophysiological Roles of Transient Receptor Potential (Trp)
Channels and Zinc Toxicity in Brain Disease
Dae Ki Hong 1,2, A Ra Kho 3,4, Song Hee Lee 1, Beom Seok Kang 1, Min Kyu Park 1, Bo Young Choi 5,6

and Sang Won Suh 1,*

1 Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea;
dae.ki.hong@emory.edu (D.K.H.); sshlee@hallym.ac.kr (S.H.L.); ttiger1993@gmail.com (B.S.K.);
bagmingyu50@gmail.com (M.K.P.)

2 Department of Pathology and Laboratory Medicine, Emory University School of Medicine,
Atlanta, GA 30322, USA

3 Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, College of Medicine,
Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; arakho136@naver.com

4 Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
5 Department of Physical Education, Hallym University, Chuncheon 24252, Republic of Korea;

bychoi@hallym.ac.kr
6 Institute of Sport Science, Hallym University, Chuncheon 24252, Republic of Korea
* Correspondence: swsuh@hallym.ac.kr

Abstract: Maintaining the correct ionic gradient from extracellular to intracellular space via several
membrane-bound transporters is critical for maintaining overall cellular homeostasis. One of these
transporters is the transient receptor potential (TRP) channel family that consists of six putative
transmembrane segments systemically expressed in mammalian tissues. Upon the activation of TRP
channels by brain disease, several cations are translocated through TRP channels. Brain disease,
especially ischemic stroke, epilepsy, and traumatic brain injury, triggers the dysregulation of ionic
gradients and promotes the excessive release of neuro-transmitters and zinc. The divalent metal
cation zinc is highly distributed in the brain and is specifically located in the pre-synaptic vesicles
as free ions, usually existing in cytoplasm bound with metallothionein. Although adequate zinc is
essential for regulating diverse physiological functions, the brain-disease-induced excessive release
and translocation of zinc causes cell damage, including oxidative stress, apoptotic cascades, and
disturbances in energy metabolism. Therefore, the regulation of zinc homeostasis following brain dis-
ease is critical for the prevention of brain damage. In this review, we summarize recent experimental
research findings regarding how TRP channels (mainly TRPC and TRPM) and zinc are regulated in
animal brain-disease models of global cerebral ischemia, epilepsy, and traumatic brain injury. The
blockade of zinc translocation via the inhibition of TRPC and TRPM channels using known channel
antagonists, was shown to be neuroprotective in brain disease. The regulation of both zinc and TRP
channels may serve as targets for treating and preventing neuronal death.

Keywords: transient receptor potential (TRP) channels; zinc; ischemic stroke; epilepsy; traumatic
brain injury

1. Introduction
1.1. Overview: Transient Receptor Potential Channels in the Brain

The transient receptor potential (TRP) channels consist of six subfamilies with a total
of twenty-eight members. Subfamily includes the canonical (TRPC), melastatin (TRPM),
vanilloid (TRPV), ankyrin (TRPA), mucolipin (TRPML), polycystic (TRPP) and NOMPC-
like (TRPN, possess only invertebrate and fish, not in mammals) categories [1–3]. Activation
of these TRP channels through external or internal stimuli depolarizes membrane action
potential. Altered action potential induces an influx of calcium or zinc ions through voltage-
gated ion channels [4,5]. These channels are all highly expressed in the brain and regulate
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post-synaptically bound receptors and channels such as the N-methyl-D-aspartate receptor
(NMDAR), voltage-gated calcium channel, and acid-sensing ion channel (ASIC) [5–7].
All TRP channels consist of six putative transmembrane spanning domains (S1–S6) that
form a loop shape between the S5 and S6 domains [8,9]. Under physiological conditions,
these channels regulate neuronal and glial functions, including signal transduction, action
potential, development, and homeostasis [10].

The activation of TRP channels by various internal stimuli includes signal trans-
ductions and the chemical, biological, and (especially) intracellular storage of calcium
concentrations [11]. The alteration of cytosolic calcium concentrations through TRP chan-
nels plays especially diverse fundamental roles in the synaptic-vesicle exocytosis-induced
release of neurotransmitters, cell proliferation, and cell death [12,13]. Some TRP channels
regulate the concentration of diverse cations such as sodium, calcium, magnesium, and
zinc [4,14–18]. In this review, we provide current insights and experimental results related
to the physiological and pathophysiological roles of zinc entry with other cations through
the TRP channels, based on previous reports [19–21].

1.2. Transient Receptor Potential Canonical Channels (TRPC)

TRPCs. TRPCs, which consist of seven subunits (TRPC1–TRPC7), are expressed in
most brain regions and calcium-permeable cation channels. Notably, TRPC2 is a pseudo-
gene in humans and will not be discussed in this review [7]. The general roles of TRPCs
include regulating progenitor cell proliferation and enhancing neural survival affected
by neurotrophin-like brain-derived neurotrophic factor (BDNF) and neuronal growth by
guiding neurite outgrowth [22,23].

1. TRPC1. The activation of TRPC1 is initiated by metabotropic glutamate receptors
(mGluR1) in neurons, and the formation of excitatory post-synaptic potential is due
to TRPC1 functions [11,24,25]. TRPC1 also impacts the developing brain by directing
axonal growth [22,26]. In a previous study, short hairpin RNA (shRNA)-induced
knockdown of the TRPC1 gene revealed that the adult neural progenitor cell cycle in
the G1 phase was significantly decreased [27].

2. TRPC3. TRPC3 is also abundantly expressed in the brain, especially in the hippocam-
pus. The main function of TRPC3 is slow excitatory post-synaptic potential (EPSP)
and the progression of long-term depression (LTD) [28,29]. The function of TRPC3
is similar to that of TRPC1 which has different expression patterns (approximately
ten times that of TRPC3). In addition, TRPC3 gene deletion was related to greater
motor deficits compared with the wild type, but there were no differences in brain
development [28]. TRPC3 is activated by BDNF, an essential neurotrophic factor
for neuronal differentiation, maturation, and survival that possibly interacts with
tropomyosin receptor kinase B [30–32].

3. TRPC4 and TRPC5. The similarity between TRPC4 and TRPC5 is due to these genes
being homologs. Indeed, the TRPC4 and TRPC5 proteins share amino acid sequences
with an approximately 65 percent overlap [33]. The structural N-terminal (S1 domain
of the TRP channel) coil interacts with regulating microtubule dynamics and stath-
min [26]. TRPC4 and TRPC5 are activated by Gαi, a G-protein-coupled receptor, and
implicated in neuronal neurite growth and branching problems [34]. These findings
suggest that TRPC4 and TRPC5 are closely associated with the neuronal developmen-
tal pathways. Although the structures and functions of TRPC4 and TRPC5 are similar,
TRPC5 is activated by oxidative damage, and the early induction of a calcium influx
especially increases zinc [35].

4. TRPC6. TRPC6 is distributed in the molecular layer of the dentate gyrus and tyrosine–
hydroxylase-positive neurons in the substantia nigra [36,37]. The molecular struc-
ture of TRPC6 shares approximately 75% of amino acids with TRPC3 and TRPC7
(homomultimers or heteromultimers) [6,38]. A previous study demonstrated that
the overexpression of TRPC6 increases the numbers of branches and spines in hip-
pocampal neurons, while TRPC6 knockdown using RNA interference decreases these
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counts [39]. These results suggested that TRPC6 is related to functions of learning,
memory, and brain plasticity and confirmed that TRPC6 promotes dendritic growth
via the calcium/calmodulin-dependent kinase 4-cAMP response element-binding
protein (CREB) signaling pathway [40].

1.3. Transient Receptor Potential Melastatin (TRPM)

TRPMs. TRPMs consist of eight subunits (TRPM1–TRPM8) and are ubiquitously
expressed in tissues, including several brain regions. TRPMs are highly permeable to
cations including calcium, magnesium, and zinc, which easily pass and are implicated
in neuronal plasticity [4,16,41]. The N-terminal regions of TRPM (S1 domain) consist of
four melastatin homology regions that have roles in sensing external stimuli and channel
assembly [42,43]. The C-terminal regions of TRPM (S6 domain) are composed of the
coiled-coil domain, which regulates the pore gating process [44].

5. TRPM1 and TRPM3. The molecular structures of TRPM1 and TRPM3 are similar
in that these channels share about 75 percent of their amino acid sequences [45].
TRPM1 is mainly expressed in the retinal region, and the corresponding knockout
mouse presented impaired visual function [46]. TRPM3 is expressed in brain regions
involving the hippocampus, cortex, cerebellum, and choroid plexus, especially the
somatosensory neurons that regulate inflammation [47,48].

6. TRPM2. TRPM2 is highly expressed in the brain, especially in the hippocampus,
stratum, and cortex, where TRPM2 is preferentially distributed in the microglia and
macrophages [49–51]. As a non-selective cation channel, TRPM2 is permeable to di-
verse cations involving calcium and magnesium through the S5 to S6 domains [52,53].
The activation of TRPM2 is triggered by inflammatory cytokines, tumor necrotic
factor alpha (TNF-α)-mediated calcium overload, and cell damage cascades [54]. This
channel can also be activated by the intense stimulation of NMDAR and external
stimuli that depend on reactive oxygen species (ROS) and hydrogen peroxide via
intracellular poly ADP-ribose (ADPR) [55–58]. One pivotal role of TRPM2 is as an
oxidative stress-induced redox signaling sensitive cation-permeable channel [59]. The
antioxidant glutathione has an inhibitory effect on the current of TRPM2 in primary
cultured neurons through a thiol-independent mechanism [60]. LTD impairment was
shown in TRPM2 knockout mice, which significantly decreased expression of the
major regulator protein of excitatory synapses, post-synaptic density protein and the
α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor [41].

7. TRPM4 and TRPM5. TRPM4 is ubiquitously expressed in the heart, prostate, and
other tissues, while TRPM5 is primarily found in sensory receptor cells [61,62]. Both
have molecular similarities in their sequence homology (about 50 percent) and share
properties related to voltage-dependence, single-channel conductance, and channel
regulation [62,63].

8. TRPM7. The N-terminal of TRPM7 contains a serine–threonine alpha-kinase do-
main [64,65]. The alpha-kinase domain on the S6 region of TRPM7 regulates cell
growth and proliferation via eEF2-kinase/eEF2 or Akt/mTOR signaling [66,67].
TRPM7 is also a non-selective diverse cation channel that is permeable to zinc, magne-
sium, and calcium (order of permeability: zinc > magnesium > calcium) [68]. TRPM7
characteristics make it a target for brain injuries which activate oxidative stress [69]
and also make it highly permeable to calcium and zinc. The physiological functions
of TRPM7 are closely related in neurotransmitter release [70], proliferation, and cell
survival [67,71]. TRPM knockdown using shRNA in animals showed significantly
decreased synaptic density, memory function, and long-term potentiation under
physiological conditions [72].

1.4. Transient Receptor Potential Vanilloid (TRPV)

TRPV1. The TRPV subfamily consists of six subunits (TRPV1–TRPV6) and these chan-
nels have high permeability to calcium ion. In the brain, especially, TRPV1 is activated by
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diverse exo- and endogenous stimuli involving biotoxins and capsaicin [73,74]. Physiologi-
cal roles of TRPV1 are related to neural development and neurogenesis in the hippocampal
subgranular and subventricular zones which are active regions of neurogenesis [75]. Pre-
vious studies have reported that the TRPV1 agonist dihydrocapsaicin (DHC) attenuates
ischemic stroke-induced cortical injury through hypothermic effect [76–78]. TRPV1 expres-
sion is also increased in the hippocampal dentate gyrus after temporal lobe epilepsy [79].
TRPV1 antagonists, capsazepine or 5′-Iodoresiniferatoxin, have potential therapeutic use in
preventing excessive calcium entry and decreasing pain [80–82].

1.5. Physiological and Pathological Properties of Zinc in the Brain

Zinc is an essential cation abundantly distributed in all animal tissues, especially in
the central nervous system (CNS) and hippocampus. Most zinc is tightly bound to met-
alloproteins and present in the metallothionein form or free ionic form (Zn2+) within the
synaptic vesicles along with several neurotransmitters such as glutamate [83,84]. Loosely
bound zinc or Zn2+ is found in the synaptic vesicles and released by external or internal
stimuli to the synaptic cleft. Re-uptake occurs in nearby synaptic terminals for signal
transduction [85,86]. Synaptically located zinc is highly enriched in hippocampal mossy-
fiber terminals. In contrast, other CNS regions including the cerebellum and spinal cord
contain low concentrations of zinc [87]. Adequate concentrations of zinc are critical under
physiological conditions, as zinc is essential for cell division and DNA synthesis, as well as
to establish memory function [88,89]. However, in the case of brain diseases such as hypo-
glycemia, head trauma, epilepsy, and ischemic stroke, it was found that excessively released
zinc from synaptic vesicles is translocated and accumulated in the post-synaptic neurons
of the hippocampal pyramidal layer and dentate gyrus, as visualized by N-(6-methyl-8-
quinolye)-para-tolurnesulfonamide [90]. Zinc has bilateral roles in both physiological and
pathophysiological conditions, acting as a “double-edged sword”.

Zinc transporters (ZnTs), as well as Zrt- and Irt-like proteins (ZIPs), mediate Zn2+

transport from the cytosol to cell organelles or extracellular space. Most members of the
ZnT subfamily are ubiquitously located and expressed in cellular organelles, including
synaptic vesicles and the plasma membrane [91]. ZnT1 is expressed in the dendritic spine
and synaptic membrane [92] and was implicated in Zn2+ overload-induced neuronal and
glial damage, as well as brain disease [93,94]. The primary role of ZnT3 is regulating
vesicular zinc. Vesicular zinc was reported to be implicated in hippocampal neurogenesis
and cognitive function [95]. In a previous study, ZnT3 knockout-induced vesicular zinc
depletion significantly reduced adult hippocampal neurogenesis, and supplementary zinc
treatment remarkably enhanced progenitor cell proliferation and cognitive function [85]. An
autistic phenotype was also observed in ZnT3 knockout mice and significantly decreased
social interaction and novelty preference. The ZnT3 knockout brain was found to be larger
than that of the wild type (megalencephaly) due to overexpressed BDNF-induced neurite
outgrowth and increased neurogenesis [96].

Zinc plays an essential role in maintaining homeostasis, including the neurotransmit-
ter and neuromodulator regulating cycle and synaptic plasticity [97,98]. Zinc homeostasis
is destroyed by overloaded cellular zinc due to diverse brain diseases including ischemia,
head trauma, and epilepsy. Brain-injury-induced excessive release of endogenous zinc at
the glutamatergic postsynaptic neurons exacerbates pathogenesis. Zinc released by synap-
tic activity can cross the plasma membrane that is regulated by diverse membrane-bounded
channels involving the NMDAR, the glutamate receptor 2 (GluR2)-lacking AMPA/kinase
channel, the voltage-gated calcium channel, and the sodium–calcium exchanger [99,100].
The pathological properties of zinc in the brain are complex and complicated in that
increased zinc can be deleterious to neurons [101] and induce apoptotic damage [102]. In-
creased intracellular zinc acts as an ionic regulator of excitotoxic neuronal damage [90,103],
and brain-damage-mediated oxidative stress disassembles the loosely bound zinc from
metalloproteins (zinc-binding proteins), which are an essential means of maintaining the
zinc level in the brain; this leads to an increasing zinc concentration [104,105]. Intracellular
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organelles involving mitochondria, lysosomes, and the endoplasmic reticulum excessively
take up and store the increased intracellular zinc, which induces ROS production; con-
sequently, the ROS-induced oxidative damage triggers cell death [106–108]. One of the
possible aggravating cascades of zinc is overloaded zinc in the mitochondria. This causes
caspase-dependent apoptotic cascades through depolarization, and the cytochrome C
release via mitochondrial zinc contributes to the mitochondrial permeability transition
pore [109,110]. In addition, the lysosomal zinc concentration rises rapidly after external or
internal stimuli such as hydrogen peroxide exposure. Lysosomal zinc constructs a lysoso-
mal membrane; consequently, proteolytic factors are secreted to the cytoplasm and lead to
cell death [105].

However, pathological zinc-overloaded brain and spinal cord damage was attenuated
by ZnT3 knockout: (1) The intra-hippocampal injection of colchicine induced extensive
neuronal death, disturbance of axonal transport, destruction of the cytoskeletal structure,
and zinc accumulation. However, in ZnT3 knockout mice, colchicine-injection-induced
brain damage was strikingly attenuated [111]. (2) Myelin oligodendrocyte glycoprotein
35–55 peptide, Mycobacterium tuberculosis, and pertussis toxin-induced experimental au-
toimmune encephalomyelitis (EAE) caused neuronal demyelination, monocyte and neu-
trophil infiltration, immunoglobulin extravasation, and zinc accumulation. Vesicular zinc
depletion via ZnT3 knockout reduced EAE-induced spinal cord damage [112]. On the
other hand, from the perspective of clinical trials, chemotherapy can induce cognitive
impairment. The anti-cancer agent, paclitaxel, decreases vesicular zinc concentration and
hippocampal neurogenesis during the acute and chronic treatment period. Supplementing
zinc can attenuate chemotherapy (paclitaxel)-induced cognitive dysfunction [113].

Several studies have explored targeting excessively released zinc from synaptic vesicles
in neurological diseases to reduce brain damage. The zinc-chelating agent (1) extracellu-
lar zinc chelator, clioquinol (5-chloro-7-iodo-8-hydroxy-quinoline), has protective effects
against EAE-induced neuronal demyelination and spinal cord damage [114]. (2) Targeting
zinc and glutathione using N-acetyl-l-cysteine (NAC) attenuates hypoglycemia-induced
neuronal damage cascades, including zinc overload [115]. (3) Targeting zinc and AMPK us-
ing the novel developed compounds 1H10 and 2G11s in EAE and ischemic stroke reduced
spinal cord [116] and brain damage [117].

Following the above zinc-related published studies, this review considered the diverse
modulatory roles of zinc and the TRP channels in pathophysiological conditions in the brain.
Diverse divalent cations move into the intracellular space through most TRP channels,
which are also zinc permeable (Table 1).

Table 1. Zinc-permeable and sensitivity of TRP channels.

Channels Experimental Results References

TRPM2

TRPM2-knockout microglial cells prevented high zinc
exposure-induced zinc neurotoxicity. Hydrogen

peroxide-induced intracellular zinc accumulation and
ROS production were prevented in TRPM2-knockout

hippocampal neurons.

[118,119]

TRPM7 TRPM7 is highly permeable to zinc and overexpression
of TRPM7 exacerbates zinc toxicity. [68,120]

TRPA1 Zinc entering through TRPA1 activates TRPA1 and
causes pain and irritation via zinc toxicity. [121]

TRPV6 TRPV6 transports zinc and overexpressed TRPV6
contributes to increasing zinc intoxication. [122,123]

TRPC5 High zinc exposure-induced cellular toxicity through
delayed calcium entry was prevented by TRPC5 blocker. [35]

Previous studies have shown that brain injuries such as ischemia-, TBI-, epilepsy-, or
hypoglycemia-induced vesicular zinc release, or liberation of free zinc from zinc-binding
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metalloproteins, cause neuronal death cascades such as ROS production, glial activation and
apoptosis. These cascades are closely related to additional TRP channel activation and lead-
ing to dysfunction of ionic homeostasis and aggravation of zinc accumulation [7,120,124].
Next, we provide that regulation of TRP channels especially TRPM and TRPC can con-
tribute neuroprotection in diverse brain injuries such as cerebral ischemia, epilepsy, and
traumatic brain injury through antagonists of TRPM and TRPC based on previous studies.

2. TRP Channels and Zinc in Brain Disease
2.1. Cerebral Ischemia

Ischemic stroke is caused by various injuries in which a sudden cardiac-arrest-induced
decrease in the systemic blood flow or the blockage of brain vessels by blood clots causes a
cessation of brain perfusion. There is an extreme risk of neurological impairment including
cerebral infarction, neuronal loss, and behavioral dysfunction in global cerebral ischemia
(GCI) survivors following the return of spontaneous circulation [125,126]. Post-resuscitation
or in the thrombolytic phase after a GCI, additional ischemic injuries through blood reper-
fusion underlying pathophysiological cascades can cause brain damage through, e.g., free
radical formation, neuroinflammation, and altered ionic homeostasis [127,128] (Figure 1A).
The main ischemic problems are excessive neurotransmitter and neuromodulator release
from the synaptic vesicles, including glutamate, calcium, and zinc, causing influxes to
nearby postsynaptic neurons through a cation-selective channel. Overloaded calcium via
NMDAR was inhibited by increasing the TRPC6 in transgenic mice [129]. Inhibited TRPC6
degradation by hyperforin following ischemia activated the neuroprotective pathway
involving the CREB pathway to reduce brain damage [130]. One ischemic category, intrac-
erebral hemorrhage (ICH), is an intracranial bleeding stroke. ICH leads to the formation of
a glial scar that causes tissue damage, neuroinflammation, and toxic edema. The provoked
neuroinflammatory cytokines, such as neutrophils, macrophages, and chemokines, lead to
secondary injury following the primary ICH [131]. Thrombin in the hematoma treatment
in cultured astrocytes activated TRPC3 expression [132], and the TRPC3 inhibitor, Pyr3,
reduced astrocyte activation and behavior impairments following an ICH [133]. These
reports suggest that diverse TRP channels are closely associated with cerebral ischemia,
and targeting the TRP channels may be a therapeutic window for ischemic problems. In
addition, Hong et al. developed a novel zinc chelator, 2G11, based on an AMPK inhibitor,
compound C, through virtual screening [117]. AMPK is a well-known energy metabolism
regulatory factor; however, the high phosphorylation of AMPK has deleterious effects on
neurons, which activates neuronal nitrous oxide synthase (nNOS), and zinc excitotoxicity
induces pre-apoptotic factors such as LKB1 and Bim [134,135].

Previous studies have confirmed high accumulations of extracellular zinc in the intra-
neuronal space in cerebral ischemic animal models [136]. There are possible deleterious
cascades of overloaded zinc affecting the surrounding neurons or cellular organelles in
an ischemic condition. Extra- and intraneuronal zinc chelation by N,N,N′,N′-tetrakis(2-
pyridylmethyl)ethylenediamine) OG significantly reduced brain infarction, behavior im-
pairments, apoptotic cell damage including poly(ADP-ribose)polymerase-1 (PARP-1) cleav-
age, and PAR accumulation [137]. Overloaded zinc causes PARP activation, which is
an essential modulator for cell damage cascades from diverse stimuli. In addition, zinc
chelation in the ischemic condition contributed to decreasing ROS production, and the
inhibition of NADPH oxidase-derived ROS production decreased zinc translocation [138].
These previous studies suggest that zinc is closely associated with neuronal-death-inducing
cascades, and zinc translocation might be accelerated via zinc-related membrane-bounded
channels from the initiated cell-death process (Figure 1B).

TRPM7 has been implicated in the transport of cations such as calcium, magnesium,
and zinc. Aarts et al. demonstrated that oxygen–glucose deprivation-induced calcium over-
load and neuronal death were attenuated by using TRPM7 siRNA [69]. Sun et al. found
that the recombinant adeno-associated virus-mediated suppression of hippocampal TRPM7
offered neuroprotection against global ischemia [139]. These results suggest that TRPM7
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is closely related to brain injury, especially ischemic stroke. Several studies have investi-
gated the relationship between TRPM7 and zinc. Inoue et al. showed that an overdose of
extracellular zinc contributed to the activation of TRPM7 and increased intracellular zinc
accumulation in cultured cells. Moreover, knockdown of TRPM7 using TRPM7 shRNA
decreased zinc neurotoxicity [120]. Hong et al. applied known inhibitor of the TRPM7
channel, carvacrol (extracted from Origanum vulgare, a monoterpenoid phenol) [140,141],
to a GCI animal disease model. It is known that carvacrol also activates TRPA1 and
TRPV3 [142,143]. GCI was found to induce extensive neuronal death, zinc accumulation
from excessively released pre-synaptic vesicles, oxidative-damage-mediated lipid perox-
idation, and microglial and astroglial over-activation. Specifically, the authors observed
the results after increasing TRPM7 activation three days after GCI. Carvacrol was found to
offer neuroprotective effects against GCI by decreasing the expression of TRPM7 and zinc
accumulation [144] (Figure 1C).
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Figure 1. Proposed cascades for the neuroprotective effects of TRPM antagonists on global cerebral-
ischemia-induced neuronal death. (A) The main cause of brain ischemia is drastically halted blood
flow and the blockage of blood vessels. Deleterious mechanisms following brain ischemia are
neurotoxicity, glutamate excitotoxicity, and zinc overload. (B) A schematic drawing illustrating the
possible cascades via ischemia that can induce neuronal damage. Zinc that is excessively released
from pre-synaptic vesicles and accumulated through the TRPM channel can trigger ROS production,
thereby damaging the apoptotic pathway and DNA. Consequently, this accumulation can contribute
to neuronal damage. (C) Possible neuroprotective properties of TRPM antagonists. Reduced post-
synaptic zinc entering through the TRPM channel via antagonists can reduce neuronal damage.
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2.2. Epilepsy

Epilepsy is characterized by a lasting predisposition to experiencing spontaneous epilep-
tic seizures and suffering from unpredictable seizure behaviors [145,146]. The primary
mechanism that initiates epileptic seizures is not understood, but diverse types of brain
damage such as hypoxia, head trauma, and stroke contribute to promoting epileptic prob-
lems [147,148]. The signaling cascades in epilepsy are primarily caused by the disturbance
of the ionic homeostasis, and the neural circuits show highly increased excitation [149]
(Figure 2A). Although several risk factors can exacerbate epileptic brain damage, previ-
ous studies have focused on highly accumulated, zinc-mediated neurotoxicity [150–152]
(Figure 2B). Epileptogenesis is closely related to greater depolarization in neurons and a
high susceptibility to epileptic activity; the blockade of TRPC3 contributes to diminishing
these hyper-excitable effects [153]. Epilepsy induces the downregulation of TRPC6, which
increases seizure susceptibility and neuronal polarization. TRPC6 knockdown inhibited the
programed cell death in the hippocampus following status epilepticus (SE) [154].
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Figure 2. Proposed cascades for the neuroprotective effects of TRPM antagonists on epileptic
seizure-induced neuronal death. (A) The main cause of epileptic seizures is excessively released
excitatory-neurotransmitter-induced hyper-excitation and the dysfunction of neuronal action potential.
(B) Schematic drawing showing how the possible cascades via epileptic seizures induce neuronal
damage. Zinc that is excessively released from pre-synaptic vesicles and accumulated through the
TRPM channel can trigger ROS production and lead to the apoptotic pathway, thereby contribut-
ing to neuronal damage. (C) Possible neuroprotective properties of TRPM antagonists. Reduced
post-synaptic zinc entering through the TRPM channel via antagonists can reduce neuronal damage.
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A cascade of epileptic-seizure-induced hippocampal neuron death is also associated
with zinc concentration. ZnT3 null mice with kainate-induced epilepsy displayed decreased
neuronal loss in the hippocampal CA1 region in the acute phase [155], and the ZnT3-
reflected absence of vesicular zinc had more sensitivity following the epileptic seizure
score [156]. However, a chronic zinc supplementation diet in an epileptic seizure animal
model restored the cognitive and behavior outcomes, abnormal expression of GPR39, ZnT3,
and myelin basic protein (MBP) when compared with a zinc-deficient diet [157]. These
results suggest that consistent zinc supplementation induces positive outcomes after a
seizure, but in the early-time phase of a seizure, modulating zinc concentration may be a
therapeutic window for epileptic neuronal damage.

Khalil et al. demonstrated that carvacrol treatment after electrode-implantation-
induced recurrent SE protected against cognitive decline, hippocampal neuronal damage,
and early seizure frequency [158]. Jeong et al. applied the TRPM7 antagonist, carvacrol, to
a pilocarpine-induced epileptic seizure animal model. Epilepsy causes the overexpression
of TRPM7, excessive zinc accumulation, oxidative damage, immunoglobulin extravasation,
and neuronal death. Carvacrol has overall neuroprotective effects on all aspects of epilepsy
except for seizure-grade epilepsy (Racine stage). They also used 2-aminoethoxydiphenyl
borate (2-APB), known nonspecific TRP-channel modulator, 2-APB inhibits TRPM7 [159]
and TRPM2 [160] and also activates a number of TRPV channels [161,162]. Our previous
study focused on the inhibitory effect of 2-aminoethoxydiphenyl borate (2-APB) on TRPM7
and found that it significantly reduced TRPM7 overexpression, zinc translocation, and
neuronal damage [163] (Figure 2C).

2.3. Traumatic Brain Injury

Traumatic brain injury (TBI) is caused by external forces, such as accidents and vio-
lence, and causes disabilities in millions of people. TBI is a devastating brain injury that
contributes to neuronal loss and the subsequent dysfunction of memory and cognition.
When head-impact-induced primary injury occurs, the resulting immediate TBI can include
brain edema and swelling that does not immediately cause neuronal damage. However,
TBI evolves afterwards [164]. Secondary injury almost always follows the primary in-
jury and can lead to severe brain damage, especially zinc translocation and microglial
activation [165,166] (Figure 3A,B). There are several lines of evidence for suggesting a
therapeutic approach following TBI-induced neuronal death using hypothermia, applying
antioxidative compounds, and reducing the vesicular zinc [167–169]. Following TBI, there
are increases in the TRPM2 mRNA levels in the hippocampal and cortical regions [170].
Vehbi et al. reported that TRPM2 reduction using melatonin decreased oxidative stress,
apoptotic damage, and calcium influx after TBI [171].

Zinc is highly accumulated in postsynaptic neurons and causes neurotoxicity in the
brain. Pretreatment of the extracellular zinc chelator, calcium ethylenediaminetetraacetic
acid, increased the neuroprotection-related gene expression, including heme oxygenase-1
(HO-1), glutathione peroxidase 1 (GPX-1), and heat-shock protein 70 (HSP-70), and de-
creased apoptotic cell death following TBI [172]. However, a zinc-deficient diet contributes
to the disturbance of hippocampal neurogenesis following TBI, where progenitor cell
proliferation is immediately increased after a brain injury because of the repair process
during the compensative mechanisms [173]. Choi et al. reported that the metal chelator, 5-
chloro-7-iodo-8-hydroxy-quinoline (Clioquinol, CQ), reduced progenitor cell proliferation,
neuroblast production, and vesicular zinc distribution, reducing TBI-induced neuronal
damage [174].

Li et al. demonstrated the neuroprotective effects of carvacrol on cortical neurons with
TBI. Increased intracellular calcium concentrations through TRPM7 were attenuated by
carvacrol treatment. The results found that carvacrol treatment decreased calcium-overload-
induced cellular damage, including neuronal nitric oxide synthase (nNOS) expression [175].
Xu et al. used a controlled cortical impact (CCI)-induced TBI animal disease model. TRPM
suppression by shTRPM7 following TBI decreased TBI-induced neurological deficits, apop-
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totic cell death cascades including terminal deoxynucleotidyl transferase dUTP nick-end
labeling (TUNEL) staining, and cleaved caspase-3 expression [176]. Park et al. demon-
strated that the TRPC5 antagonist NU6027 has neuroprotective effects on a CCI-induced
severe TBI animal model. The authors found that NU6027 treatment after TBI attenuated
TBI-induced neuronal damage, oxidative stress, glial activation, and zinc translocation in
the hippocampal CA3 region. TRPC5 was known and defined as a calcium channel, but
these results suggest that zinc may also translocate through TRPC5 [177]. Lee et al. found
that carvacrol decreases TRPM7 expression after TBI and that TBI-induced neuronal dam-
age cascades including zinc accumulation were attenuated by carvacrol with the inhibition
of TRPM7. Carvacrol recovered neurological deficits and delayed neuronal loss 7 days after
TBI. The authors also demonstrated that the other TRPM7 antagonists 2-APB and NS8593
provide neuroprotective effects after TBI [166] (Figure 3C).
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Figure 3. Proposed cascades for the neuroprotective effects of TRPM antagonists on traumatic brain-
injury-induced neuronal death: (A) The main causes of TBI are external physical forces and stimuli.
TBI-induced primary damage produces brain edema, and swelling is caused instantly. Secondary
damage from primary insult leads to deleterious cellular cascades. (B) Schematic drawing showing
how the possible cascades via TBI induce neuronal damage. Excessively released zinc from pre-
synaptic vesicles and zinc accumulated through the TRPM channel can trigger ROS production and,
thereby, trigger further activation of TRPM, leading to an increase in the intracellular zinc concen-
tration. This concentration of zinc contributes to neuronal damage. (C) Possible neuroprotective
properties of TRPM antagonists. Reduced post-synaptic zinc entering through the TRPM channel via
antagonists can reduce neuronal damage.

3. Conclusions

The process of neurons being damaged after several brain injury types involves
diverse extra- and intracellular detrimental cascades, mainly the homeostasis disturbance-
induced dysregulation of cellular functions. Recent preclinical studies have found that the
physiological and pathological properties of TRP channels and zinc have deleterious effects
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in brain diseases. This review focused on both alterations in the ionic gradient between
extra and intracellular spaces through TRP channels and the translocation of zinc with ionic
influxes. Blocking these channels was found to have neuroprotective properties in multiple
brain disease conditions and represents a promising therapeutic avenue. Additionally,
the regulation of zinc concentration is essential for the prevention of brain injury because
zinc overload can contribute to, or exacerbate, brain damage following different types of
such injuries. Several reports explain that using zinc as a neurotoxic component in brain
disease and regulating zinc concentration levels unveils a therapeutic approach. On the
other hand, consistent zinc supplementation recovers behavior outcomes in animal disease
models and clinical trials. Therefore, in this review we suggest that modulation of the zinc
concentration in each brain disease or time-dependent phase is an effective approach to
solving brain injury-induced neuronal damage; moreover, targeting risk factors for these
devastating brain disorders could represent an effective option for treating or preventing
ischemic, epileptic, and traumatic brain-injury-induced neuronal death.
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