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Abstract: The ion pairs [Cs+•TtX3
−] (Tt = Pb, Sn, Ge; X = I, Br, Cl) are the building blocks of all-

inorganic cesium tetrel halide perovskites in 3D, CsTtX3, that are widely regarded as blockbuster
materials for optoelectronic applications such as in solar cells. The 3D structures consist of an anionic
inorganic tetrel halide framework stabilized by the cesium cations (Cs+). We use computational
methods to show that the geometrical connectivity between the inorganic monoanions, [TtX3

−]∞,
that leads to the formation of the TtX6

4− octahedra and the 3D inorganic perovskite architecture is
the result of the joint effect of polarization and coulombic forces driven by alkali and tetrel bonds.
Depending on the nature and temperature phase of these perovskite systems, the Tt···X tetrel bonds
are either indistinguishable or somehow distinguishable from Tt–X coordinate bonds. The calculation
of the potential on the electrostatic surface of the Tt atom in molecular [Cs+•TtX3

−] provides physical
insight into why the negative anions [TtX3

−] attract each other when in close proximity, leading to
the formation of the CsTtX3 tetrel halide perovskites in the solid state. The inter-molecular (and
inter-ionic) geometries, binding energies, and charge density-based topological properties of sixteen
[Cs+•TtX3

−] ion pairs, as well as some selected oligomers [Cs+•PbI3
−]n (n = 2, 3, 4), are discussed.

Keywords: tetrel halide perovskites; DFT calculations; MESP and QTAIM analyses; geometries and
energetics; tetrel bond; alkali bond; ion-pair chemistry

1. Introduction

All-inorganic [1–3] and organic–inorganic [4–7] metal halide perovskites are a special
class of semiconducting materials used in photovoltaics [8], photodetectors [9], and pho-
tocatalysis [10,11]. The continuing development of a variety of these materials has been
well documented [12–14]. The hybrid organic–inorganic metal halide perovskites have
appeared in a variety of dimensions, nD (n = 0–3) [15–18], as have the all-inorganic tetrel
halide perovskites [19–21].

The well-known 3D organic–inorganic metal halide perovskites have the generic for-
mula ATtX3 (A = MA+, methylammonium [CH3NH3

+]; FA+, formamidinium [HC(NH2)2
+];

Tt = Pb, Sn, Ge; X = Cl, Br, I). The all-inorganic counterparts are obtained when the A-site
cation is replaced by an inorganic moiety, such as Cs+, Rb+, or K+, for example. The first type
has been somewhat misleadingly referred to as organo-metal halide perovskites [8,9,17,22];
they are now referred to as single metal halide perovskites [23,24], with generic formula
ABX3, where A is a monovalent cation, B is a divalent metal cation, and X is a monovalent
halide anion [25]. ATtX3 comprises an anion (TtX3

−) and a cation A+, with Tt formally in
its +2-oxidation state.

Three-dimensional metal halide perovskites form cage-like structures [15,16], while
2D [26], 1D [17], and 0D [17,27] perovskites form layered-, chain-, and quantum dot-like
structures, respectively. At first, positively charged inorganic or organic moieties (e.g., Cs+

or MA+) are incorporated inside a negatively charged inorganic architecture. The inorganic
skeleton (i.e., [TtX3

−]∞) of the crystal in 3D is formed from a negatively charged repeating
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unit ([TtX3
−]) and these are linked to each other in an infinite array in the presence of the

inorganic or organic cations. Why these negatively charged units are repeated in an infinite
crystal appears not to have been discussed in the perovskite literature, nor have their
bond-specific roles. A number of studies have shown that the extrema of the valence and
conduction bands in these 3D materials are driven by orbital contributions arising from the
inorganic framework formed by the M and X atoms, and the A-site cation is not involved
in contributing to or elevating the functionality of these materials [28,29]. However, other
studies have demonstrated that the organic cation plays an important role in determining
the hole density of some low-dimensional metal halide perovskites [30]. Indeed, there has
been some controversy concerning the actual role played by the A-site cation [31–35].

The aim of this study is to shed light on one of the pressing issues mentioned above.
In particular, we shall demonstrate that when a TtX3

− (X = Cl, Br, I) anion is placed near
the electrostatic field of an inorganic cation, such as Cs+, they not only like each other by
a coulombic attraction, but the electric field of the positively charged moiety Cs+ is able
to polarize the charge density on the electrostatic surface of TtX3

−. This results in the
formation of electron density-deficient (positive) sites on the electrostatic surface of TtX3

−

in [Cs+•TtX3
−] (Tt = Pb, Sn, Ge; X = I, Br, Cl, F) ion pairs, except when Tt = Si; these are

the building blocks of the 3D structure of CsTtX3. The strength of these positive sites on
Tt is sufficient to attract nucleophiles on the surfaces of the halogen derivative on another
similar interacting unit of TtX3

−, and a repetition of this process results in the formation of
an infinite inorganic framework in the presence of Cs+ ions. We show that the attractive
interaction between a pair of TtX3

− units in a pair of ion pairs is nothing other than a “tetrel
bond” [36]. The physical chemistry of the tetrel bond, and other non-covalent interactions
(e.g., the alkali bond [37]), in a variety of [Cs+•TtX3

−] ion pairs and in the [Cs+•PbI3
−]n

(n = 2, 3, 4) oligomers is discussed.
A tetrel bond occurs in chemical systems when there is evidence of a net attractive

interaction between an electrophilic region associated with a covalently or coordinately
bonded tetrel atom (or atoms) in a molecular entity and a nucleophilic region in another, or
the same, molecular entity [36]. In other words, the tetrel bond occurs when an electrophilic
σ-hole on the surface of the Tt atom in a molecular entity R–Tt is in coulombic engagement
with the nucleophile on the same or another molecular entity. An electrophilic σ-hole is
an electron density-deficient region of positive electrostatic potential that appears on the
electrostatic surface of an atom A opposite to the R–A covalent bond and has the ability to
sustain an attractive bonding engagement with the negative site [38–41].

This study employs Density Functional Theory (DFT) and focuses primarily on the ion-
pair systems of [Cs+•PbI3

−]n (n = 1, 2, 3, 4), but Quantum Theory of Atoms in Molecules
(QTAIM) and Molecular Electrostatic Surface Potential (MESP) calculations are also per-
formed on [Cs+•TtX3

−] (Tt = Si, Ge, Sn X = F, Cl, Br) ion pairs that are supposedly the
building blocks in 3D tetrel halide perovskites. The study shows that the formation of the
inorganic framework and the geometric stability of cesium tetrel halide perovskite systems
arise from the same underlying interactions, tetrel and alkali bonds. Crystalline cesium
tetrel halide perovskites were found by searching the Inorganic Crystal Structure Database
(ICSD) [42,43] and can also be found on the Materials Project Database [44].

2. Results
2.1. Illustrative Crystal Geometry of Cesium Tetrel Halide Perovskites

The crystal structures of CsGeX3 (X = Cl, Br, I) have been known for some time [45].
The crystal structure of the high-temperature Pm3m phase of CsPbI3 was reported in
2008 [46], while the low-temperature orthorhombic structures Pmnb (ICSD ref: 27979), Pbnm
(ICSD: 434338; 21955) [47], Pnam (ICSD ref: 264725) [48], and Pnma (ICSD ref: 32301–32314;
161480; 29350; 27484; 20759; 17016) [49] of the same system have been known since 1959.
Regardless of the nature of the temperature phase, the TtX6

4− framework is common,
featuring corner-sharing octahedra. These are tilted in the low-temperature phases along
the crystallographic axes but linearly arranged in the high-temperature cubic phase [6,50,51].
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These features are evident in the orthorhombic, tetragonal, and cubic phases of CsSnI3 (see
Figure 1a–c, respectively). They are also reminiscent of cesium lead halide perovskites,
CsPbI3. The high-to-low temperature phases of CsPbI3 [52] are called the α (645K), β
(510K), and γ (325K) phases, with space groups Pm3m, P4/mbm, and Pbnm, respectively.
A common feature of these systems is that the TtX3

− anions are linked to each other
through tetrel bonds, a feature revealed in this study, and these bonds are responsible for
the formation of the 3D inorganic frameworks. All these perovskite systems mentioned
above are semiconductors, and several of them have found application in photovoltaics.
However, the black orthorhombic form of CsSnI3 features p-type metallic behavior with
low carrier density, despite an optical band gap of 1.3 eV [53].
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Figure 1. Mixed polyhedral and ball-and-stick models of crystal structures of the semiconductor
CsSnI3 in the low- and high-temperature phases: (a) orthorhombic (γ-phase); (b) tetragonal (β-phase);
(c) cubic (α-phase) [54]. Atom labeling is shown in (a). Each polyhedron represents the SnI6

4−

octahedron. The ICSD reference code is shown in each case.

(a) Cesium Tetrel Iodide Perovskites

The unit-cell (top) and cage-like (bottom) structures of cesium tetrel iodide perovskites,
CsTtI3 (Tt = Pb, Sn and Ge), are shown in Figure 2a–c. The unit cell, an ion pair, [Cs+•TtI3

−],
when periodically expanded, reveals a cage-like structure. The formation of the latter is
driven by Tt···I tetrel bonds, which are equivalent and linear when Tt = Pb and Sn and
quasi-linear and non-equivalent when Tt = Ge. For instance, the distances associated with
the Tt–I coordinate bonds within the [TtI3

−] fragment and Tt···I tetrel bonds between
a [TtI3

−] pair are 3.145 and 3.110 Å in cubic (Pm-3m) CsPbI3 (Figure 2a) and CsSnI3
(Figure 2b), respectively. Because of the small size of the Ge cation, CsGeI3 perovskite is
not cubic (Figure 2c) and crystalizes in the rhombohedral space group R3m. Each of the
three equivalent Ge–I coordinate bonds within the [GeI3

−] fragment is 2.747 Å, and each of
the three equivalent Ge···I tetrel bonds between four [GeI3

−] fragments linked with each
other in the CsGeI3 is 3.262 Å. The latter are directional but quasi-linear, ∠I–Ge···I = 169.3◦,
which is equivalent to the tilting angle, ∠Ge···I–Ge = 169.3◦, of the octahedra along each of
the three principal axes. There is no structure of CsSiI3 deposited in the ICSD.

In order to shed some light on the why the entirely negative anions [TtI3
−] attract

each other, thus forming tetrel bonds between them (Figure 2, bottom), we performed both
QTAIM and MESP analyses. The molecular graphs of cesium tetrel iodide perovskite ion
pairs, [Cs+•TtI3

−] (Tt = Si, Ge, Sn and Pb), are shown in Figure 3a–d. The topology of the
bond paths suggests that Tt–I coordinate bonds, characterized by solid lines, are shorter
and stronger than the Cs···I close contacts, described by dotted lines; this is in line with the
charge density values at their corresponding bcps, meaning that the Cs···I close contacts
are weaker than the Tt–I coordinate bonds. Focusing on CsPbI3 as a representative example
of this series, each PbI3

− unit, which is a face of the PbI6
4− octahedron, is involved in an

attractive coulombic interaction with Cs+, thereby forming the ion pair [Cs+•PbI3
−]. As

shown in Figure 2a (bottom), a single cation simultaneously interacts with eight PbI3
−
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faces of eight PbI6
4− octahedra, forming a cage-like structure, with Cs+ trapped inside the

cage formed by the eight PbI6
4− octahedra. In other words, the arrangement between the

anion and the cation in CsPbI3 is such that each face of the corner-shared PbI6
4− octahedra

hosts a Cs+ cation (cf. Figure 2a).
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Figure 3. (a–d) QTAIM-based molecular graphs of cesium tetrel halide perovskite ion pairs,
[Cs+•TtI3

−] (Tt = Si, Ge, Sn, and Pb), obtained with [ωB97XD/def2-TZVPPD]. Values represent
the charge density (ρb/au) at the Tt–I and Cs···I bond critical points. Atoms, bond paths, and bond
critical points are shown as large spheres, solid or dotted lines in atom color, and tiny spheres in
green, respectively.

The question that immediately arises as to why the cesium tetrel halide perovskites
with Tt = Pb, Sn, and Ge have been synthesized, but not with Tt = Si. This is answered
below. In short, it is the result of the nucleophilic nature of the electrostatic potential on the
surface of Si in molecular [Cs+•SiI3

−] that prevents self-assembly of these recurring units.
Two distinct features can be readily seen from Figure 4. First, the tetrel atom in the ion

pairs carries either a negative or a positive potential (VS,max < 0 or VS,max > 0) along the out-
ermost extension of each I–Tt bond. In specific, VS,max > 0 in [Cs+•PbI3

−], [Cs+•SnI3
−], and

[Cs+•GeI3
−], becomes progressively less positive, and switches to VS,max < 0 in [Cs+•SiI3

−].
This is the result of the polarizing field induced by Cs+ when it is placed close to the
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[TtI3
−] anion. The polarization of the surface charge density of Tt in [TtI3

−] is accompa-
nied by an appreciable transfer of charge from the iodide to Cs+ cation, varying between
0.085 and 0.116 e. This causes the charge density on the surface of Tt to be rearranged in
such a manner as to produce depleted regions of charge density on its surface. The charge
density-depleted regions appear along the outermost extensions of the I–Tt bonds when
Tt = Pb, Sn, or Ge, but not when Tt = Si. These charge density regions on the tetrel atoms
along the extension of the three I–Tt bonds are characteristic of σ-holes since they appear
opposite to the I–Tt σ coordinate bonds; thus, σ-holes on Tt are electrophilic in [Cs+•PbI3

−],
[Cs+•SnI3

−], and [Cs+•GeI3
−] (VS,max > 0; see Figure 4a–c) but nucleophilic in [Cs+•SnI3

−]
(VS,max < 0; Figure 4d).
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Secondly, a local most minimum of potential, VS,min, is found on the Tt atom in each
[Cs+•TtI3

−], appearing on its surface along the outer extension of the C3v axis. It is posi-
tive in [Cs+•PbI3

−] and [Cs+•SnI3
−] and negative in [Cs+•GeI3

−] and [Cs+•SnI3
−]. The

strength of the minimum of potential decreases in the order Pb (VS,min = 18.1 kcal mol−1) < Sn
(1.2 kcal mol−1) < Ge (−6.8 kcal mol−1) < Si (−19.2 kcal mol−1). This indicates that Pb
and Sn are entirely electrophilic, unlike Ge and Si. The MESP graphs also suggest that
the stereochemically active lone pair of the Tt sites are squeezed onto the surfaces of the
iodides when Tt = Pb and Sn, but not when Tt = Ge and Si. This conclusion is in accordance
with a previous study where it was suggested that “a stereochemically active lone pair
of electrons of the Pb atom may lie between the two I atoms in the plane” [55]. It was
recently argued that the s2 lone pair on heavy main-group elements in their lower oxidation
states is responsible for the emergence of polar ground states in some ferroic materials and
causes a crystallographically hidden, locally distorted state that appears upon warming,
a phenomenon referred to as emphanisis [56]. Others have argued that PbO and PbS in
both the rocksalt and litharge structures, which have distorted Pb2+ octahedra, are not the
result of chemically inert, stereochemically active lone pairs, but instead are the result of
asymmetric electron densities that rely on direct electronic interaction with the coordinated
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anions [57]. Further discussion on the importance of stereochemically active lone pairs on
Pb in Pb(II) halide compounds can be found elsewhere [58].

The local most maximum potential on the surface of Cs+ in the ion pairs is positive,
VS,max > 0, and Cs+ becomes increasingly more electrophilic down the series [Cs+•PbI3

−],
[Cs+•SnI3

−], [Cs+•GeI3
−], and [Cs+•SiI3

−]. This is expected, as Si is relatively more
electronegative in the tetrel series, hence, the ability of Cs+ to polarize electron density of
small-sized Tt decreases. In all cases, both the lateral and axial portions of the halide atoms
in [TtI3

−] are entirely negative, with VS,min < 0, as seen in Figure 4a–d.
Our QTAM results in Figure 3 and Table 1 suggest that the Si–I bonds have appreciable

covalency, whereas the Tt–I (Tt = Ge, Sn, and Pb) in [Cs+•TtI3
−] have a more ionic character.

The Si–I bonds are characterized by negative values of both ∇2ρb and Hb at the Si–I bcps.
Although the Tt–I (Tt = Ge, Sn, and Pb) bonds possess ionic character, the negative Hb
values at the Tt–I bcps are indicative of some measure of covalency. These coordinate
bonds clearly have mixed bonding character. On the other hand, the cesium-centered
charge-assisted alkali bonds, Cs···I, possess closed-shell character (∇2ρb > 0 and Hb > 0)
and the charge density at the Cs···I bcps is significantly smaller than that at the Tt–I bcps.

Table 1. Selected QTAIM-based topological charge density properties at Tt–I and Cs···I bcps in
[Cs+•TtI3

−] (Tt = Si, Ge, Sn, Pb), obtained with [ωB97XD/def2-TZVPPD].

Species Bond Type ρb/a.u. ∇2ρb/a.u. Hb/a.u.

Cs+•SiI3
− Cs···I 0.0110 0.0292 0.0008

Si–I 0.0629 −0.0515 −0.0293

Cs+•GeI3
− Cs···I 0.0104 0.0285 0.0009

Ge–I 0.0570 0.0064 −0.0188

Cs+•SnI3
− Cs···I 0.0108 0.0284 0.0008

Sn–I 0.0484 0.0386 −0.0119

Cs+•PbI3
− Cs···I 0.0104 0.0274 0.0008

Pb–I 0.0451 0.0536 −0.0088

(b) Cesium Tetrel Bromide Perovskites

The cesium tetrel bromide perovskites, [CsTtBr3] (Tt = Pb, Sn, Ge), have been reported
in different temperature crystalline phases, except for [CsSiBr3]; the structures of the high-
temperature cubic phase are shown in Figure 5. This is probably because the surface of the Si
atom along the Br–Si bond extensions is entirely negative, so the Si atom in the [Cs+•SiBr3

−]
ion pair is unable to coulombically attract the nucleophilic bromide in a neighboring unit.
This is supported by the MESP plots of [Cs+•TtBr3

−] shown in Figure 6. They suggest
that the surface of Pb in [Cs+•PbBr3

−] is entirely positive along and around the outermost
extension of the Br–Pb bonds (VS,max = 21.5 kcal mol−1 and VS,min = 0.8 kcal mol−1). That
of Sn in [Cs+•SnBr3

−] is appreciably positive (VS,max = 10.5 kcal mol−1) along and weakly
negative (VS,min = −0.5 kcal mol−1) around the outermost extension of the Br–Sn bonds.
In [Cs+•GeBr3

−], the surface of Ge is weakly positive along and appreciably negative
around the outermost extension of the Br–Ge bonds. However, in the case of [Cs+•SiBr3

−],
the VS,max and VS,min on Si are all negative. For all four ion pairs, both the axial and
equatorial portions of the Br atom along and around the Tt–Br extensions are nucleophilic
(VS,min = −25.1 kcal mol−1).

The topological charge density characteristics of the Tt–Br and Cs···Br bcps in the ion
pairs [Cs+•TtBr3

−] (Tt = Si, Ge, Sn, Pb) (Figure 7a–d and Table 2) were found to be very
similar to those observed for the Tt–I and Cs···I bcps in [Cs+•TtI3

−] (Table 1). However, the
charge densities at the Tt–Br and Cs···Br bcps in [Cs+•TtBr3

−] were slightly larger; hence
the strength of the Tt–Br and Cs···Br bonds are marginally stronger than the Tt–I and Cs···I
bonds in [Cs+•TtI3

−]. The values of ∇2ρb are negative at the Si–Br bcps and positive at the
Tt–Br (Tt = Ge, Sn, Pb) bcps, as seen in Figure 7 and listed in Table 2. The extent of charge
transfer from the anion to the cation lies between 0.092 and 0.095 e.
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Table 2. Selected QTAIM-based topological charge density properties at Tt–Br and Cs···Br bcps of
[Cs+•TtBr3

−] (Tt = Si, Ge, Sn, Pb), obtained with [ωB97XD/def2-TZVPPD].

Species Bond Type ρb/a.u. ∇2ρb/a.u. Hb/a.u.

Cs+•SiBr3
− Cs···Br 0.0122 0.0377 0.0011

Si–Br 0.0689 −0.0310 −0.0371
Cs+•GeBr3

− Cs···Br 0.0122 0.0374 0.0011
Ge–Br 0.0662 0.0314 −0.0245

Cs+•SnBr3
− Cs···Br 0.0119 0.0363 0.0011

Sn–Br 0.0547 0.0811 −0.0121
Cs+•PbBr3

− Cs···Br 0.0116 0.0352 0.0011
Pb–Br 0.0514 0.0918 −0.0092

(c) Cesium Tetrel Chloride Perovskites

The solid-state structures of CsTtCl3 (Tt = Ge, Sn, and Pb) are known, whereas that of
[CsSiCl3] has not been reported. The connectivity between the [TtCl3−] units that lead to
the formation of the TtCl64− octahedra in the solid state are evident in all three structures
shown in Figure 8a–c. The six Tt–Cl bonds in each polyhedron are equivalent in CsPbCl3
and CsSiCl3 (2.803 Å and 2.752 Å, respectively), showing that there is very little difference
between the three Tt···Cl tetrel and three Tt–Cl coordinate bonds in these systems. In
the case of CsGeCl3, three of the coordinate bonds are different to the other three; the
three Ge–Cl coordinate bond distances are equivalent (2.415 Å each; Figure 8c, bottom)
that are appreciably shorter than the three Ge···Cl tetrel bonds (r(Ge···Cl) = 3.036 Å and
∠Cl–Ge···Cl = 172.1◦).
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case. The nature of the tetrel bond is marked in the structure of CsGeCl3 (bottom, right).

The fact that tetrel bonding plays a vital role in assembling the [TtCl3−] units, which
leads to the development of the cage-like inorganic framework, is evident from the results
of the MESP analysis shown in Figure 9a–c for the ion pairs [Cs+•TtCl3−]. Each of the
three Cl–Tt bonds in each ion pair in [Cs+•TtCl3−] (Tt = Pb, Sn) contains electron density-
deficient regions along the Cl–Tt bond extensions (σ-holes) with positive electrostatic
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potentials. However, the potential is weakly negative in [Cs+•GeCl3−] along the three
Cl–Ge bond extensions (VS,max = −0.6 kcal mol−1 each, Figure 9c) and strongly negative
along the three Cl–Si bond extensions in [Cs+•SiCl3−] (VS,max = −10.6 kcal mol−1). It is
clear from these results that the formation of CsTtCl3 (Tt = Pb, Sn) perovskite systems in 3D
is expected when repeating units of [Cs+•TtCl3−] ion pairs are in close proximity. This kind
of assembly is unlikely when [Cs+•TtCl3−] (Tt = Ge and Si) pairs are in close proximity
because of coulombic repulsion between the halogen of an ion pair in close proximity to
the negative tetrel site in a neighboring unit.
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Figure 9. (a–d) The [ωB97Xd/def2-TXVPPD] level potential on the electrostatic surface of
[Cs+•TtCl3−] (Tt = Pb, Sn, Ge, Si) ion pairs, mapped on their corresponding 0.001 a.u. isoelec-
tronic density envelopes. The Tt atom in [Cs+•TtCl3−] faces the reader. Selected local most maxima
and minima of potential (VS,max and VS,min) represented by tiny circles in red and blue, respectively,
are depicted. Values are given in kcal mol−1.

We, and others, have shown on several occasions that caution needs to be exercised
when the potential of a σ-hole on an atom in a molecular entity is near neutral. In such a
case, a higher isoelectronic density envelope may be required for mapping the potential
since the choice of isoelectronic density envelope is arbitrary. Indeed, this is the case
with [Cs+•GeCl3−]. When the 0.001 a.u. isoelectronic density was used for mapping,
the potential associated with each of the three σ-hole holes on Ge was weakly negative
(VS,max = −0.6 kcal mol−1). However, when a 0.0015 a.u. isoelectron density was used, the
VS,max of the σ-holes on the same atom was positive, VS,max = 4.4 kcal mol−1. The positive
nature of the σ-hole on Ge explains why Ge in [Cs+•GeCl3−] is capable of attracting the
negative portion on the Cl atoms in a neighboring interacting ion-pair, thus leading to
the formation of CsGeCl3 perovskite crystals in the crystalline phase [45]. By contrast,
changing the value of the isodensity envelope did not change the negative character of the
σ-holes on the Si atom along the Cl–Si bond extensions; thus, CsSiCl3 structures should not
be formed when the ion pairs are repeated periodically.

There is a potential maximum on the Cs atom in the ion-pair that appears along
the extension of the C3v axis. Its origin could be due to a weak Tt···Cs interaction in
[Cs+•TtCl3−] (Tt = Si, Ge, Sn, Pb), as well as the formation of three equivalent Cs···Cl alkali
bonds. The surface of Cs is strongly positive relative to that of Tt in each [Cs+•TtCl3−]
(Tt = Si, Ge, Sn, Pb), which rationalizes why the cation lies at the center of the inorganic
tetrel halide cage, thus interacting simultaneously with the lone-pair dominant regions of
coordinate halides on each of the eight faces of eight octahedra (each sitting at the corner of
a cage, Figure 8).

The formation of the alkali bonds in each ion pair, which is expected to mimic what
occurs in the crystal (vide infra), is evident in the molecular graphs shown in Figure 10a–d
and Table 3. The accumulation of charge density at the Cs···Cl bcps is weaker than that
at the Tt–Cl bcps. For the latter, it trends as Pb–Cl < Sn–Cl < Ge–Cl < Si–Cl, and, with
∇2ρb > 0 and Hb < 0 (see values in Table 3), these bonds have mixed bonding character. This
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feature is clearly distinguishable from that of the alkali bonds that are largely electrostatic
in character (∇2ρb > 0 and Hb > 0).
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Figure 10. (a–d) QTAIM-based molecular graphs of cesium tetrel chloride perovskite ion-pairs,
[Cs+•TtCl3−] (Tt = Pb, Sn, Ge and Si), obtained with [ωB97XD/def2-TZVPPD]. Values represent
the charge density (ρb/au) at the Tt–Cl and Cs···Cl bond critical points. Atoms, bond paths, and
bond critical points are shown as large spheres, solid/dotted lines in atom color, and tiny spheres in
green, respectively.

Table 3. Selected QTAIM-based topological charge density properties at Tt–Cl and Cs···Cl bcps of
[Cs+•TtCl3−] (Tt = Si, Ge, Sn, Pb) ion pairs, obtained with [ωB97XD/def2-TZVPPD].

Species Bond Type ρb/a.u. ∇2ρb/a.u. Hb/a.u.

Cs+•SiCl3− Cs···Cl 0.0136 0.0472 0.0017
Si–Cl 0.0754 0.0502 −0.0400

Cs+•GeCl3− Cs···Cl 0.0136 0.0468 0.0016
Ge–Cl 0.0746 0.0778 −0.0287

Cs+•SnCl3− Cs···Cl 0.0133 0.0455 0.0016
Sn–Cl 0.0621 0.1268 −0.0147

Cs+•PbCl3− Cs···Cl 0.0131 0.0445 0.0016
Pb–Cl 0.0581 0.1311 −0.0111

(d) Cesium Tetrel Fluoride Perovskites

The structures of [Cs+•TtF3
−] are similar to the other cesium halide perovskite ion

pairs discussed above. While the formation of these ion-pair systems is likely in the gas
phase, they are not all stable in the crystalline phase. The instability of these perovskite
structures is arguably due to the mismatch between the cavity of the fluoride-based in-
organic perovskite cage formed from the repeating units of [TtF3

−] and the radial size
of Cs+. This is not the case for CsPbF3, as seen in Figure 11a, the structure of which was
reported in 1956 (cubic, Pm3m, ICSD ref: 30739 [59]) and 2001 (ICSD refs: 93438–93439).
Smith et al. [60] have suggested that CsPbF3 is the only experimentally synthesized AMF3
fluoride perovskite with a polar ground state. Our search of the ICSD showed that CsSnF3
is not cubic (space group: P121/n1(14) [61]) and hence is a non-perovskite (Figure 11b).
The authors of that study suggested that this system exhibits a ‘zero-dimensional’ crystal
structure with isolated SnF3

− anions separated by Cs+ cations; again, this is not surprising
since the size of the cage formed by the repeating units of the SnF3

− anion is too small to
accommodate the guest Cs+. The ICSD does not contain structures of CsTtF3 (Tt = Ge, Sn),
but it catalogues crystals such as Cs2GeF6 and Cs3GeF7, suggesting that the small size of
fluoride, its low polarizability, and its high electronegativity lead it to form other types of
crystal structures.
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Figure 11. The crystal structure of (a) cesium lead fluoride perovskite [CsPbF3] (ICSD ref: 93439) and
(b) low-dimensional cesium tin fluoride [CsSnF3] (ICSD ref: 236903).

The results of our MESP calculations, shown in Figure 12, are in accordance with these
rationalizations. They suggest the feasibility of the formation of [CsTtF3] (Tt = Pb and
Sn) structures in the solid state since the surfaces of the Tt site in the [Cs+•TtF3

−] ion-pair
systems are highly electrophilic, with the former more so than the latter. Specifically, the
surface of Pb in [Cs+•PbF3

−] is entirely positive along and around the F–Pb bond extensions
(Figure 12a), whereas that of Sn is positive only along the F–Sn bond extensions, while
the region around the outer extension of the C3v axis is highly nucleophilic (Figure 12b).
These positive sites are able to engage in a coulombic attraction with the negative site on
the halogen of a neighboring unit to form structures of the types shown in Figure 11a,b,
respectively. This is not the case when Tt = Ge and Si, the surfaces of which are entirely
negative in [Cs+•GeF3

−] and [Cs+•SiF3
−] (see Figure 12c,d), respectively.
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Figure 12. (a–d) The [ωB97Xd/def2-TXVPPD] computed potential on the electrostatic surface of
[Cs•TtF3] (Tt = Pb, Sn, Ge, Si), mapped on their corresponding 0.001 a.u. isoelectronic density
envelopes. The Tt atom in Cs•TtF3 faces the reader. Selected local most maxima and minima of
potential (VS,max and VS,min) represented by tiny circles in red and blue, respectively, are depicted.
Values are given in kcal mol−1.

The formation of [Cs+•TtF3
−] (Tt = Si, Ge, Sn, and Pb) ion pairs is also evident

in the QTAIM-based molecular graphs shown in Figure 13a–d. In all cases, the ∇2ρb
at the Tt–F bcps are positive, showing that they are closed-shell interactions and ap-
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preciably ionic. The values of ∇2ρb at Tt–F bcps across the series follow the order
[Cs+•SiF3

−] > [Cs+•GeF3
−] > [Cs+•SnF3

−] > [Cs+•PbF3
−], which parallels the trend in the

negative Hb values for the same bonds (Table 4); Hb < 0 indicates that the bonds possess
some covalency. The character of these coordinate interactions deduced from ∇2ρb and Hb
values are not the same as that found for the Cs···F bcps. For the latter, the sign of both
∇2ρb and Hb are positive (Table 4), indicative of closed-shell (non-covalent) interactions.
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Figure 13. (a–d) QTAIM-based molecular graphs of cesium tetrel fluoride perovskite ion pairs,
[Cs+•TtF3

−] (Tt = Si, Ge, Sn, and Pb), obtained with [ωB97XD/def2-TZVPPD]. Values represent the
Laplacian of the charge density (∇2ρb/au) at the Tt–F and Cs···F bond critical points. Atoms, bond
paths, and bond critical points are shown as large spheres, solid/dotted lines in atom color, and tiny
spheres in green, respectively.

Table 4. Selected QTAIM-based topological charge density properties at Tt–F and Cs···F bcps of
[Cs+•TtF3

−] (Tt = Si, Ge, Sn, Pb) ion pairs, obtained with [ωB97XD/def2-TZVPPD].

Species Bond Type ρb/a.u. ∇2ρb/a.u. Hb/a.u.

Cs+•SiF3
− Cs···F 0.0181 0.0813 0.0028

Si–F 0.1060 0.6096 −0.0327
Cs+•GeF3

− Cs···F 0.0196 0.0868 0.0028
Ge–F 0.1070 0.5044 −0.0316

Cs+•SnF3
− Cs···F 0.0197 0.0861 0.0026

Sn–F 0.0911 0.4285 −0.0209
Cs+•PbF3

− Cs···F 0.0202 0.0878 0.0026
Pb–F 0.0828 0.3707 −0.0152

2.2. Oligomers of the [Cs+•PbI3
−] Ion Pair

We have sectioned the supercell structure of cubic CsPbI3 (Figure 2a, bottom), and
extracted the binary, trinary, and tertiary clusters in 1D. These were fully energy minimized
at the same level of theory, [ωB97XD/def2-TZVPPD]. The geometries of the resulting
[Cs+•PbI3

−]2 dimer and [Cs+•PbI3
−]3 trimer are shown in Figure 14a,b, respectively,

together with their corresponding QTAIM-based molecular graphs in Figure 14c,d, respec-
tively. The Pb–I bonds found in the crystal (top) are significantly elongated in the gas phase
(bottom) (cf. Figure 14a,b). The ∠Pb–I···Pb angles between the ion pairs in cubic CsPbI3
are linear, but non-linear in the gas-phase structure, leading to significant deformation
passing from the solid-state structure to the gas-phase dimer and trimer. This discrepancy
between the gas-phase and the solid-state geometries is not very surprising given that the
role of packing forces is absent in the former. Interestingly, both the gas phase structures
resemble the tilting of edge-sharing Pb–I chains in 1D, observed in the case of 3D CsPbI3.
The ∠Pb–I···Pb angles are between 150◦ and 154◦ (Figure 14a,b, bottom), close to that seen
between the edge-shared [PbI6]4− octahedra that are tilted relative to the corner-sharing
octahedra in the low-temperature orthorhombic structure of CsPbI3 (∠Pb–I–Pb = 148.1◦

along the a-axis and 156.88◦ along the c-axis; ICSD ref: 17016 [49]). On the other hand, and
as noted above, the tetrel bonds between the ion pairs are longer than the Pb–I coordinate
bonds and are quasi-linear (∠I–Pb···I = 166.8◦ in [Cs+•PbI3

−]2 (Figure 14a) and 166.3◦

and 167.3◦ in [Cs+•PbI3
−]3 (Figure 14b). The physical chemistry of 1D CsPbI3 has been

experimentally investigated [62–64]. It was shown that in the orthorhombic (Pnma) γ-phase,
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the PbI6
4− octahedra tilted around all three pseudocubic axes, a−a−c+, which is different to

the tilt observed in the tetragonal (P4/mbm), a0a0c+, β-phase [65], and the bandgap increases
with an increase in the octahedral tilting when the temperature cools down, allowing for
the emergence of β-CsPbI3 and γ-CsPbI3 [66].

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 13 of 25 
 

 

2.2. Oligomers of the [Cs+•PbI3−] Ion Pair 
We have sectioned the supercell structure of cubic CsPbI3 (Figure 2a, bottom), and 

extracted the binary, trinary, and tertiary clusters in 1D. These were fully energy mini-
mized at the same level of theory, [ωB97XD/def2-TZVPPD]. The geometries of the result-
ing [Cs+•PbI3−]2 dimer and [Cs+•PbI3−]3 trimer are shown in Figure 14a and 14b, respec-
tively, together with their corresponding QTAIM-based molecular graphs in Figure 14c 
and 14d, respectively. The Pb–I bonds found in the crystal (top) are significantly elongated 
in the gas phase (bottom) (cf. Figure 14a and 14b). The ∠Pb–I···Pb angles between the ion 
pairs in cubic CsPbI3 are linear, but non-linear in the gas-phase structure, leading to sig-
nificant deformation passing from the solid-state structure to the gas-phase dimer and 
trimer. This discrepancy between the gas-phase and the solid-state geometries is not very 
surprising given that the role of packing forces is absent in the former. Interestingly, both 
the gas phase structures resemble the tilting of edge-sharing Pb–I chains in 1D, observed 
in the case of 3D CsPbI3. The ∠Pb–I···Pb angles are between 150° and 154° (Figure 14a,b, 
bottom), close to that seen between the edge-shared [PbI6]4− octahedra that are tilted rela-
tive to the corner-sharing octahedra in the low-temperature orthorhombic structure of 
CsPbI3 (∠Pb–I–Pb = 148.1° along the a-axis and 156.88° along the c-axis; ICSD ref: 17,016 
[49]). On the other hand, and as noted above, the tetrel bonds between the ion pairs are 
longer than the Pb–I coordinate bonds and are quasi-linear (∠I–Pb···I = 166.8° in 
[Cs+•PbI3−]2 (Figure 14a) and 166.3° and 167.3° in [Cs+•PbI3−]3 (Figure 14b). The physical 
chemistry of 1D CsPbI3 has been experimentally investigated [62–64]. It was shown that 
in the orthorhombic (Pnma) γ-phase, the PbI64− octahedra tilted around all three pseudo-
cubic axes, a−a−c+, which is different to the tilt observed in the tetragonal (P4/mbm), a0a0c+, 
β-phase [65], and the bandgap increases with an increase in the octahedral tilting when 
the temperature cools down, allowing for the emergence of β-CsPbI3 and γ-CsPbI3 [66]. 

 
Figure 14. Illustration of sections from the cubic crystal of CsPbI3 (top) and the [ωB97XD/def2-
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−]3
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(c,d) are the QTAIM molecular graphs, together with the Laplacian of the charge density at the bcps
(a.u.) of the corresponding systems, respectively.

The results of our QTAIM analysis for the [Cs+•PbI3
−]2 dimer (and [Cs+•PbI3

−]3
trimer) are given in Table 5. The Pb–I coordinate bonds in the [Cs+•PbI3

−]2 dimer (and
[Cs+•PbI3

−]3 trimer) are characterized by ρb, ∇2ρb and −Hb values in the ranges of
0.0411–0.0472 (0.0379–0.0474), 0.0511–0.0116 (0.0509–0.0549), and 0.0071–0.007 (0.0058–0.0097) a.u.,
respectively. The corresponding values for the Cs···I alkali bonds were 0.0075–0.0116
(0.0069–0.0103), 0.0020–0.0301 (0.0186–0.0269), and −0.0008 (−0.0008) a.u., respectively.
Although the former bonds possess a non-negligible amount of covalent character, the latter
are purely electrostatic interactions. Their characteristics are comparable to those of I–Pb···I
tetrel bonds (ρb = 0.0139 a.u., ∇2ρb = 0.0260 a.u., and −Hb = 0.0001 a.u). The [Cs+•PbI3

−]3
trimer has two non-equivalent I–Pb···I tetrel bonds (3.554 and 3.597 Å, Figure 14b), with
ρb = 0.0152 (0.0143) a.u., ∇2ρb = 0.0279 (0.0265) a.u., and Hb ≈ 0.00001 a.u for the shorter
(longer) bonds. The detailed nature of ∇2ρb at various bcps is shown in Figure 14c,d for
the [Cs+•PbI3

−]2 dimer and [Cs+•PbI3
−]3 trimer, respectively.
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Table 5. Selected QTAIM-based charge density properties at Pb–I, Cs···I, and Pb···I bcps of
[Cs+•PbI3

−]2 and [Cs+•PbI3
−]3 oligomers, obtained with [ωB97XD/def2-TZVPPD].

Property [Cs+•PbI3−]2 [Cs+•PbI3−]3

Pb–I coordinate bond
ρb/a.u. 0.0411–0.0472 0.0379–0.0474

∇2ρb/a.u. 0.0511–0.0116 0.0509–0.0549
Hb/a.u. −(0.0071–0.0072) −(0.0058–0.0097)

Cs···I alkali bond
ρb/a.u. 0.0075–0.0116 0.0069–0.0103

∇2ρb/a.u. 0.0020–0.0301 0.0186–0.0269
Hb/a.u. 0.00078 0.00078

Pb···I tetrel bond
ρb/a.u. 0.0139 0.0152 (0.0143) a

∇2ρb/a.u. 0.0260 0.0279 (0.0265) a

Hb/a.u. 0.00013 −0.000083 (0.000018) a

a Properties correspond to two non-equivalent tetrel bonds (see text for discussion).

We confirmed the formation of I–Pb···I tetrel bonds in [Cs+•PbI3
−]2 and [Cs+•PbI3

−]3
oligomers using MESP results, Figure 15a,b. This signifies that one of the positive σ-holes
on the surface of Pb in the [Cs+•PbI3

−] ion pair (Figure 4a) is annihilated because it is
engaged with the entirely negative (iodide) site in the neighboring ion pair through an
electrostatic interaction, leading to the formation of an I–Pb···I tetrel bond. This causes a
change in the potential minima and maxima on the surfaces of the two ion-pair entities at
the equilibrium geometry of the oligomer.
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at the bcps). Regardless of the nature of the bonding interactions involved, the sign of Vb 
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Figure 15. The [ωB97Xd/def2-TXVPPD] computed potential on the electrostatic surface of the
(a) [Cs+•PbI3

−]2 dimer and (b) [Cs+•PbI3
−]3 trimer, mapped on their corresponding 0.001 a.u.

isoelectronic density envelopes. The top and bottom panels represent that Pb and Cs sites of each
Cs•PbI3 ion-pair in the dimer/trimer are facing the viewer, respectively. Selected local most maxima
and minima of potential (VS,max and VS,min) represented by tiny circles in red and blue, respectively,
are depicted. Values are given in kcal mol−1.
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An interesting feature of the [Cs+•PbI3
−]4 tetramer is that the Pb–I bonds are no longer

equivalent, as found in cubic CsPbI3 in 3D (Figure 4a), but comparable with those found in
the [Cs+•PbI3

−]2 dimer and [Cs+•PbI3
−]3 trimer (vide supra). Again, this is the result of the

gas phase, where the role of the periodic boundary condition is nullified and no packing
forces act on the system. The [Cs+•PbI3

−] ion pairs are free to interact with each other
in the gas phase at 0 K, causing the linear Pb–I–Pb bonds found in the cubic structure of
CsPbI3 to change appreciably in a manner so as to adopt a significantly distorted geometry
very similar to that observed in the low-temperature orthorhombic phase of the system
(vide supra).

The molecular graphs of two different orientations of the [Cs+•PbI3
−]4 tetramer are

shown in Figure 16a (with values of the potential energy density, Vb) and Figure 16b
(∇2ρb at the bcps). Regardless of the nature of the bonding interactions involved, the
sign of Vb is always negative and, hence, stabilizing. Values of ∇2ρb are all positive,
indicating that the bonding interactions are of the closed-shell type. While the relationship
Eb(QTAIM) = − 1

2 Vb may be empirical, it suggests that the I–Pb···I tetrel bond is stronger
than the Cs···I alkali bond (Eb(QTAIM) values of 4.0 kcal mol−1 vs. 1.5 kcal mol−1).
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itive (see the four green regions in Figure 16c), and one of them, which is not involved in 
the formation of the tetrel bond (Figure 16c, top left), conceives three σ-holes on its surface; 
these can accept nucleophiles when in close proximity to another three ion pairs. By con-
trast, the Cs ions are highly electrophilic. These unequivocally provide evidence of the 
fact that the formation of the 3D network of the cage-like structures of cesium tetrel halide 
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Figure 16. The QTAIM-based molecular graphs of the [Cs+•PbI3
−]4 tetramer, showing the (a) po-

tential energy density (Vb) and (b) ∇2ρb values at various bcps. Atoms, bond paths, and bond
critical points are shown as large spheres, solid/dotted lines in atom color, and tiny spheres in green,
respectively. (c,d) represent two views of the same tetramer in which the Tt atoms in the former and
the Cs atoms in the latter are facing the viewer. Selected local most maxima and minima of potential
(VS,max and VS,min) represented by tiny circles in red and blue, respectively, are depicted in (c,d), with
values shown in kcal mol−1. The atomic positions shown in the molecular graphs are the same as
those in the MESP plots.
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The formation of both Pb···I tetrel bonds and Cs···I alkali bonds between four units
of the [Cs+•PbI3

−] ion pairs in the [Cs+•PbI3
−]4 tetramer can also be understood from

the MESP plots shown in Figure 16c,d. Upon assembly, the σ-hole on three Pb atoms
in three ion pairs of the tetramer is annihilated upon its attractive engagement with the
iodide atom of a neighboring ion pair, thus forming Pb···I tetrel bonds. The four tetrel
centers are positive (see the four green regions in Figure 16c), and one of them, which is not
involved in the formation of the tetrel bond (Figure 16c, top left), conceives three σ-holes
on its surface; these can accept nucleophiles when in close proximity to another three
ion pairs. By contrast, the Cs ions are highly electrophilic. These unequivocally provide
evidence of the fact that the formation of the 3D network of the cage-like structures of
cesium tetrel halide perovskites are the result of σ-hole-centered tetrel-bonded interactions
between [PbI3

−] anions in the presence of Cs+. The physical chemistry of tetrel bonds
also plays a significant role in stabilizing 1D CsPbI3, a material suitable for stable X-ray
detection (sensitivity = 2.37 mC·Gy−1·cm−2, resistivity = 7.4 × 109 Ω·cm, and carrier
mobility–lifetime product = 3.63 × 10−3 cm2·V−1 [62]).

2.3. Stabilization Energy

The interaction energies and intermolecular bond distances between [Cs+] and [TtX3
−]

for all the sixteen [Cs+•TtX3
−] ion pairs are summarized in Table 5. They are very large

compared to ordinary non-covalent interactions but comparable with the binding ener-
gies of anion-molecule interactions. The charge-assisted tetrel bonds reported recently
had energies (in kcal mol−1) as large as −93.43 [I4Ge···F−], –112.15 ([I4Si···F−]), and
−84.05 ([I4Pb···F−]) with [CCSD/def2-TZVPPD], which were very close to those calculated
with [ωB97X-D/def2-TZVPPD] [67]. Large interaction energies were also reported for tetrel
bonds [62], halogen bonds [68], hydrogen bonds [68], and pnictogen bonds [69] in other
anion–molecule complexes. The large interaction energies, Eb and Eb(BSSE), summarized in
Table 5 are expected since a large part of the contribution arises from coulombic interaction
between two interacting charged moieties. The binding energies are also comparable with
those reported for similar halide perovskite ion-pairs at the [CCSD(T)/cc-pVTZ] level of
theory [70].

For a series with a given halogen derivative [Cs+•TtX3
−], the interaction energies

increase as the atomic size of the tetrel derivative increases (Si < Ge < Sn < Pb). This
trend agrees well with the increasing strength of the σ-hole on Tt across the series for a
given type of halogen derivative (see, for examples, Figure 4 for [Cs+•TtI3

−], Figure 6 for
[Cs+•TtBr3

−], Figure 9 for [Cs+•TtCl3−], and Figure 12 for [Cs+•TtF3
−]).

For a given tetrel derivative, the interaction energy increases as the atomic size of the
halogen increases ([Cs+•TtF3

−] > [Cs+•TtCl3−] > [Cs+•TtBr3
−] > [Cs+•TtI3

−]). For each
series shown in Table 6, the largest interaction energy is calculated for cesium lead halide
perovskite ion pairs, probably a consequence of the high polarizability of Pb compared to
the other three tetrel derivatives. Among all the ion pairs examined, the ion pair of cesium
lead fluoride perovskite, [Cs+•PbF3

−], is the strongest. This is expected since fluorine
in the inorganic moiety [PbF3

−] is the most electronegative and electron-withdrawing of
the halogens; hence, it strongly interacts with Cs+, which, therefore, cannot create strong
σ-holes on Pb in [Cs+•PbF3

−]. All these trends remain valid regardless of whether Eb or
Eb(BSSE) is considered since the BSSE is calculated to be very small.

As a rule of thumb, it is expected that the interaction energy increases as the in-
termolecular distance between interacting moieties decreases. However, this is not the
case with the ion pairs explored in this study, where we find the opposite trend. The
interaction energy for a given halogen derivative between [Cs+] and [TtX3

−] increases
when increasing the intermolecular distance between them (Table 6). This is not the
case for ion pairs with a given tetrel derivative; here, the interaction energy increases
([Cs+•TtF3

−] > [Cs+•TtCl3−] > [Cs+•TtBr3
−] > [Cs+•TtI3

−]) when decreasing the inter-
molecular bond distance ([Cs+•TtF3

−] < [Cs+•TtCl3−] < [Cs+•TtBr3
−] < [Cs+•TtI3

−]), as
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seen in Table 5. The interaction energy associated with the alkali bonds as a function of
bond distance for [Cs+•TtX3

−] is shown in Figure 17.

Table 6. The [ωB97Xd/def2-TXVPPD]-level uncorrected and BSSE-corrected binding energies (Eb and
Eb(BSSE), respectively) and alkali and coordinate bond distances (r(Cs···X) and r(Tt–X), respectively)
of [Cs+•TtX3

−] (Tt = Si, Ge, Sn, Pb; X = F, Cl, Br, I) ion pairs.

Ion Pair Eb (kcal mol−1) Eb(BSSE) (kcal mol−1) r(Cs···X) (Å) r(Tt–X) (Å)

[Cs+•SiI3
−] −96.07 −96.05 3.759 2.635

[Cs+•GeI3
−] −97.10 −97.02 3.770 2.723

[Cs+•SnI3
−] −99.13 −99.11 3.785 2.889

[Cs+•PbI3
−] −100.89 −100.87 3.798 2.969

[Cs+•SiBr3
−] −98.13 −98.00 3.539 2.403

[Cs+•GeBr3
−] −100.66 −100.50 3.544 2.500

[Cs+•SnBr3
−] −102.51 −102.38 3.561 2.668

[Cs+•PbBr3
−] −104.84 −104.72 3.578 2.754

[Cs+•SiCl3−] −99.92 −99.81 3.373 2.226
[Cs+•GeCl3−] −103.37 −103.24 3.377 2.335
[Cs+•SnCl3−] −105.74 −105.63 3.392 2.506
[Cs+•PbCl3−] −108.68 −108.58 3.403 2.600
[Cs+•SiF3

−] −106.99 −106.91 2.914 1.706
[Cs+•GeF3

−] −115.46 −115.37 2.881 1.852
[Cs+•SnF3

−] −120.61 −120.54 2.885 2.033
[Cs+•PbF3

−] −126.32 −126.24 2.876 2.144
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(Tt = Sn, Ge, Sn, Pb; X = F, Cl, Br, I) ion pairs.

The uncorrected binding energy of the tetrel bonds in the [Cs+•PbX3
−]2 dimer,

[Cs+•PbX3
−]3 trimer, and [Cs+•PbX3

−]4 tetramer shown in Figures 15 and 16 are −20.7,
−21.3, and −22.4 kcal mol−1, respectively. These were obtained by subtracting the total
electronic energy of the oligomer from two, three, and four times the total electronic energy
of the [Cs+•PbX3

−] ion pair, indicating that the binding energy is nearly additive. However,
these may not be solely due to the tetrel bonds since each Cs+ ion in each [Cs+•PbX3

−]
ion pair also contributes to the binding of the resulting oligomer through Cs···I alkali
bonds. From these results, it is apparent that the empirical relationship Eb(QTAIM) =− 1

2 Vb
is not applicable to tetrel bond energies since it largely underestimates the magnitudes.
The relationship might be useful for some hydrogen-bonded systems [71], but may not
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be generalized to other non-covalent interactions such as the tetrel bonds explored in
this work.

3. Discussion

This study was undertaken to reveal the underlying reasons why the TtX3
− units inter-

act to form the inorganic cage-like tetrel halide frameworks of 3D cesium halide perovskites.
We have shown that the connectivity between the TtX3

− anions that lead to the formation
of the 3D infinite inorganic framework, [TtX3

−]∞, is driven by the inorganic cation, Cs+,
through the effects of both electrostatic polarization and coulombic attraction. The joint
involvement of electrostatic polarization and coulombic attraction causes redistribution
of the charge density profile on the electrostatic surfaces of the molecular tetrel halide
perovskites, resulting in the development of positive σ-holes on the Tt atom in the TtX3

−

anions in the ion pairs [Cs+•TtX3
−] (Tt = Ge, Sn, Pb). This is accompanied by appreciable

amount of charge transfer from the halides of the TtX3
− anions to Cs+ when they are in

close proximity. The σ-holes formed on the Tt atom, therefore, are able to simultaneously
attract the negative halogens from three interacting TtX3

− anions, thus leading to the
formation of TtX6

4− octahedra, the underlying framework of the 3D CsTtX3 cesium tetrel
halide perovskites. The tetrel bonds formed are hidden between the anion moieties in the
solid state structures, and to demonstrate their presence requires appropriate theoretical
methods such as the QTAIM and MESP models.

There has been a failure to experimentally produce 3D tetrel halide perovskites when
Tt = Si. We have explained this failure using the results of the MESP model. The underlying
reason is the lack of an appreciable positive potential on the Si atom along the X–Si
bond extensions in the molecular ion pair, [Cs+•SiX3

−]. Therefore, Si is incapable of
engaging with the negative halogen in a neighboring unit because of the columbic repulsion
between them.

Although the fluorinated ion-pair systems displayed electrophilic regions when Tt = Pb
and Sn, the latter does not form a perovskite structure because of the small size of the cavity
formed by repeating [SnF3

−] units, a cavity that cannot accommodate the inorganic cation.
This might explain why CsSnF3 crystalizes in low-dimension. By contrast, the results of the
MESP model have showed that CsGeF3 and CsSiF3 perovskites cannot be formed in the
crystalline phase because the Tt along the F–Tt bond extensions in the [Cs+•SiF3

−] (Tt = Ge,
Si) ion pair has negative σ-holes. These negative σ-holes would repel the entirely negative
fluorine atom(s) in a neighboring interacting unit(s), preventing the formation of Tt···F
(Tt = Ge, Si) tetrel bonds. This also explains why the crystal structures of CsSiF3 (Tt = Ge,
Si) are unknown.

4. Materials and Methods
Computational Details

The geometries of sixteen ion pairs, [Cs+•TtX3
−] (Tt = Pb, Sn, Ge, Si; X = I, Br, Cl,

F), were fully energy-minimized, followed by frequency calculations. The most stable
conformer was considered. The ωB97XD functional [72] as implemented in the Gaussian
16 code [73], together with the def2-TZVPPD basis set retrieved from the EMSL basis set
library [74], was employed. ωB97XD is known as a range-separated functional and is
capable of capturing both short-range and long-range interactions. Minenkov et al. have
demonstrated that the ωB97XD functional outperforms other commonly used DFT func-
tionals (PBE and TPSS, M06 and M06L) and also produces relatively small statistical errors
when considering the overall structure and inter-nuclear distances [75]. All ion-pair geome-
tries were at an energy minimum, confirmed by positive harmonic vibrational frequencies.
Default convergence criteria (viz. tight SCF convergence and ultrafine integration grid)
were invoked.

Similar calculations, as above, were also performed for a dimer, a trimer, and a tetramer
of [Cs+•PbI3

−], which we refer to as the [Cs+•PbI3
−]n (n = 2, 3, 4) oligomers, to demonstrate

the charge density topologies of alkali and tetrel bonding interactions responsible for the
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formation of the 3D network of CsPbI3. The nature of physical chemistry revealed for these
systems might be transferable to other oligomers when Pb in [Cs+•PbI3

−]n (n = 2, 3, 4) is
replaced, for example, by Sn and Ge.

Relativistic spin-orbit coupling (SOC) is an important feature of tetrel halide perovskite
semiconductors containing heavy atoms such as Pb because its inclusion affects the band
structure without affecting the crystal geometry [76]. In particular, the inclusion of SOC can
affect the direct character of the band gap transition between the extrema of valence and
conduction band states, especially for periodic systems containing Pb [77]. This effect, called
the Rashba–Dresselhaus effect [78], is observed specifically in non-centrosymmetric environ-
ments and can be directly measured by angle-resolved X-ray photoemission spectroscopy.
However, because our calculations are aperiodic and do not involve the calculation of the
band structures of the molecular entities considered, the effect of SOC was not taken into
account, in line with several recent studies [67,79–82].

The uncorrected and BSSE-corrected interaction energies (Eb and Eb(BSSE), respec-
tively) of the ion pairs [Cs+•TtX3

−] were calculated using Equations (1) and (2), respectively.
BSSE refers to the basis set superposition error, evaluated using the counterpoise procedure
of Boys and Bernardi [83], and ET [Cs+•TtX3

−], ET [Cs+] and ET [TtX3
−] are the total

electronic energies of the respective species.

Eb [Cs+•TtX3
−] = ET [Cs+•TtX3

−] − ET [Cs+] − ET [TtX3
−] (1)

Eb (BSSE) = Eb [Cs+•TtX3
−] + BSSE (2)

QTAIM [84] calculations were performed at the same level of theory described above.
Properties such as the charge density (ρb), the Laplacian of the charge density (∇2ρb), and
the total energy density (Hb) at the (3, −1) bond critical points (bcps), critical points where
the gradients of ρ(r) vanish, were analyzed. The latter two properties at bcps provide
insight into the closed-shell and/or open-shell nature of an interaction between a pair
of atomic basins in molecular and intermolecular entities. For instance, the positive and
negative signs of∇2ρb were utilized to demonstrate the closed- and open-shell interactions,
respectively, which were identified between the inorganic anion and cation and between the
anions [85–89]. Similarly, the positive and negative signs of Hb (Hb = Gb + Vb) were utilized
to provide insight into the absence and presence of a covalent interaction between the cor-
responding moieties, respectively [86,90]. This relies on the fact that a positive Hb indicates
a prevalence of the gradient kinetic energy density Gb over the potential energy density
Vb, which is typical of non-covalently bonded interactions [91–93]. We have also used the
empirical formula Eb(QTAIM) = − 1

2 Vb [71] to calculate the binding energy associated with
the various non-covalent interactions identified in the ion-pairs investigated.

The MESP calculations [94–99] were performed with [ωB97XD/def2-TZVPPD], utiliz-
ing the fully relaxed geometries of the ion pairs and oligomers. The signs and magnitudes
of the potential extrema were computed using the 0.001 a.u. isoelectronic density envelope
of the ion pairs. The magnitude of potential is a measure of the strength, whereas its
(positive and negative) signs were used to provide insight into regions of charge density
depletion and concentration on the electrostatic surfaces of the ion pairs, respectively. That
is, th corresponding signs of the local most maxima and minima of potential (VS,max and
VS,min, respectively) were utilized to arrive at these conclusions. For instance, the sign of
both VS,max and VS,min can either be positive or negative, or sometimes even neutral. When
positive, it is generally assumed that the region on the surface that accompanies this is
electrophilic and, hence, may be suitable for accepting electron density from an interacting
electron donor in close proximity. When it is negative, the region on the surface of the
molecular entity that features this is nucleophilic and, hence, may be capable of donating
electron density to an interacting electrophile when in close vicinity. However, it should be
kept in mind that all negative or positive sites on the surface of the molecular entity may or
may not always be capable of engaging in attractive interaction with a region that features
the opposite reactive profile.
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An electrophilic σ-hole on atom A lying opposite to the R–A covalent bond is char-
acterized when the sign VS,max is positive (VS,max > 0) [97,100]. Similarly, a nucleophilic
σ-hole on atom A in R–A is observed when VS,max is negative (VS,max < 0) [97,100]. For
instance, the σ-hole on F in H–F and H3C–F is negative, whereas that on X in H3C–X,
X3C–X, and F5CX (X = Cl, Br, I) is positive. The underlying equation details and applicabil-
ity of the MESP model to understand non-covalent interactions have appeared in several
studies [67,95,96,99,101–107], hence we do not repeat them here.

AIMAll [108] and MultiWfn [109] codes were used for MESP and QTAIM analyses.
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