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Abstract: Agriculture involving industrial fertilizers is another major human made contributing
factor to soil pH variation after natural factors such as soil parent rock, weathering time span, climate,
and vegetation. The current study assessed the potential effect of cell-free supernatant (CFS) obtained
from Bacillus subtilis EB2004S and Lactobacillus helveticus EL2006H cultured at three pH levels (5, 7, and
8) on potato (var Goldrush) growth enhancement in a greenhouse pot experiment. The results showed
that CFSs obtained from B. subtilis EB2004S and L. helveticus EL2006H cultured at pH 5 significantly
improved photosynthetic rates, stomatal conductance, root fresh weight, and whole plant fresh weight.
interactive effects of pot pH and that of CFSs obtained from pH 5 influenced chlorophyll, plant height,
and shoot and whole plant fresh weight. Moreover, treatment 52EB2004S~0.4% initiated early
tuberization for potato grown at pH 7 and 8. Potato grown at pH 5, which received a 72EB2004S~0.4%
CFS treatment, had greater whole plant fresh and dry weight than that treated with L. helveticus
EL2006H CFS and a positive control. Taken together, the findings of this study are unique in that it
probed the effect of CFS produced under differing pH conditions which revealed a new possibility to
mitigate stresses in plants.

Keywords: plant growth-promoting microbes; cell-free supernatant; pH–microbe–plant interaction;
biostimulant; soil acidity and alkalinity

1. Introduction

Soil pH (a measure of the activity of hydrogen ions in soil solution) affects all chemical
and geochemical processes in the soil with ultimate impact on the soil nutrient supply,
affecting survival and performance of both plants and microbes. Plant growth under natural
environmental settings relies on, among other things, pH as a master variable; geospatial
variations show strong correlation with plant species richness [1], including variability
among soil profile horizons [2,3]. This makes pH a first variable to be checked whenever
plants do not perform as expected, whether under field conditions or under controlled
environment conditions, such as greenhouses, making it analogous to a patient’s body
temperature check during diagnosis by medical doctors [4]. Microbes exert activities largely
through soil enzymes, the presence and activities of which are influenced by pH [5–7].
Soil pH is additionally important in biodegradation processes in the environment and
has shown its importance in the degradation of compounds such as atrazine [8]. The
dominant chemical indicator for soil health is generally pH, which is often a function of
inherent parent rock, weathering time span, climate, and vegetation [4,9]. In this respect
pH influences soil health and, subsequently, crop plant growth and yield; the United States
Department of Agriculture (USDA) categorized soil pH as: acidic (ultra < 3.5, extreme
3.5–4.4, very strong 4.5–5.0, strong 5.1–5.5, moderate 5.6–6.0, and slight 6.1–6.5), neutral
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(6.6–7.3), and alkaline (slight 7.4–7.8, moderate 7.9–8.4, strong 8.5–9.0, and very strong
>9.0) (Burt, 2014). This corresponds to the known optimum growth requirements for most
terrestrial plants which fall within a range of pH 6.5–8.0 [9]. Therefore, optimum plant
growth potential is generally between 6.5 (slightly acid) and 7.5 (slightly alkaline).

Many soils naturally tend to acidify over time due to rainwater, leaching of excess
nitrates, applications of fertilizers (urea and anhydrous ammonia), land use, and decom-
position of organic matter [3,10], while alkalization results from accumulation of large
amounts of carbonates in the soil [11,12]. The pH-related soil challenges have continued to
intensify with time as a result of agriculture and other human activities, such as mining.
A range of intervention practices have been implemented and their efficacy is evaluated
at different capacities, with the most utilized soil acidity amendment practice being lim-
ing [13], a process that helps in raising soil pH to revitalize soil for crop production and
other soil–plant interactions including nutrient uptake. Liming is a site-specific soil acidity
amendment technique which lacks long-term sustainability as it is highly influenced by
cost–benefit analysis and economics [13]. An encouraging direction in dealing with various
stresses and their effects on plant production is the emergence of ecofriendly activities, in
particular, the use of microbes and microbial-related products to confer resilience in the
face of multivarious plant stress challenges, including acidity and alkalinity [12,14].

Potato is currently the fourth most important food crop in the world after wheat, rice,
and corn [15,16]. Shifts in food preferences and affordability influence increased production
of one crop over another. Potato is among the crops whose consumption has steadily
increased in recent years, replacing other crops which were previously dominant [17]. The
projected increase in consumption of potato in the future demands sustainable means of
production to avoid environmental decline. North American farmers, including Canadians,
for instance, apply higher doses of synthetic fertilizers, especially phosphorus (P), to ensure
potato nutrient requirements are met [18,19]. The fact that potato is low in P use efficiency
has led to build-up of P levels in soils [20]. The use of microbes or microbial products to
facilitate availability of the 70 to 90% of P already available in soils [21], but unavailable
to plants, is one of the ways which would help reduce the build-up of P in the soils.
However, compound fertilizers are known to lower soil pH, leading to diminished soil
health. It is therefore imperative to use plant growth-promoting microbes (PGPMs) [22]
and PGPM-based products [23,24] along with other techniques, such as biochar, mulching,
and rotational cropping [25,26].

The association of plants and microbes is clear in both positive and negative effects.
Plant growth-promoting microbes (PGPMs) use various mechanisms for plant growth
promotion which include bioactive compound (phytohormones, peptides, and volatile
compounds) production, mineral solubilization, N2 fixation, enhanced nutrient use [27],
and production of growth-stimulating signal compounds [28]. Mechanisms related to
antagonistic behavior and/or antibiosis also indirectly enhance plant growth and stress
tolerance [28,29]. Given the current understanding of these ecosystem services, the full
force of the considerable potential benefits is yet to be determined. It is known that the
efficacy of PGPM inoculation depends on soil pH, ability of the microbe to compete with the
native strains, temperature, and host specificity [30]. Microbial strains, therefore, contribute
to alleviating effects of stresses on plants such as nitrogen deficiency [31], drought [32,33],
salinity [34–36], acidity, and alkalinity [12,37]. However, the use of microbes or microbial
products in dealing with acidity and alkalinity stress in plants is still fragmented. The
current study evaluating two plant growth-promoting strains, Bacillus subtilis EB2004S and
Lactobacillus helveticus EL2006H previously evaluated by Msimbira et al. [38], is among the
very few studies of this nature. The study has specifically focused on understanding the
effect of using CFSs of the strains on potato, cultured at a range of pH levels, rather than
using live cells of the microbes. This study was motivated by the fact that live microbes
suffer multiple constraints when applied directly, including competition with microbes
already in the soil and other environmental stresses [39], pH included. In this study, potato
growth performance was assessed specifically in response to pH and CFSs obtained from



Int. J. Mol. Sci. 2023, 24, 6620 3 of 22

B. subtilis EB2004S and L. helveticus EL2006H, two of the principal strains of a microbial
consortium produced by EVL Inc. (http://www.evlbiotec.com, accessed on 10 February
2023), a Canadian company.

2. Results
2.1. The Effect of pH and CFS Treatments on Potato Growth and Physiological Variables

Leaf greenness indices are important both in understanding growth and overall per-
formance of plants. Potato plants’ leaf area (LA) and leaf greenness (LG) in this study
indicated dependence on pH and CFS treatments. The results from the two-way ANOVA
revealed significant effects of pH on LG for both experiments in the first 30 DAP (Table 1).
The LG index was significantly higher at pH 5, measured as 45.89 and 50.57 SPAD units for
Experiments 1 and 2, respectively (Table 1). At 45 DAP no significant difference between
the treatments and their controls was observed from Experiment 1, while in Experiment
2, pH and CFS treatments influenced the LG (Table 1). At 45 DAP 71EL2006H∼1% CFS
treatment from L. helveticus EL2006H cultured at pH 7 had a significantly higher LG (46.63
SPAD units) than both positive controls (Table 1). All the treatment and pH levels exhibited
reduced greenness index at 45 DAP.

LA contributes greatly to the physiological performance of plants, relating to photo-
synthesis, evapotranspiration, and plant growth. There was neither an effect of pH nor CFS
treatment in Experiment 1, but in Experiment 2 the interactive effect of potato growth pH
and CFS was the contributor to the variation (Table 2).

Photosynthetic rates measurement at 30 and 45 DAP, respectively, varied significantly
between pH levels in Experiment 1 in the first 30 DAP. At 45 DAP the effect of CFS treatment
was prominent in that 52EB2004S~0.4% CFS obtained from B. subtilis EB2004S cultured
at pH 5 caused a greater photosynthetic rate (12.33 µmol m−2 S−1) than the controls and
other CFS treatments in Experiment 1 (Table 1). The effect of pH at 45 DAP for Experiment
1 was not significant, as it had been at 30 DAP (Table 1). There were no significant effects of
either pH or CFS treatments in Experiment 2 (Table 1).

A two-way ANOVA at 30 DAP for Experiment 1 revealed significantly higher stomatal
conductance (0.07 mol m−2 S−1) at pH 5 compared to that recorded at pHs 7 and 8 (Table 1).
However, stomatal conductance was not affected by CFS treatments. Fifteen days later,
within the same experiment and in addition to the pH effect, a CFS treatment effect was
significant at p < 0.001 in that 52EB2004S~0.4% from B. subtilis EB2004S cultured at pH 5
resulted in higher stomatal conductance (0.10 mol m−2 S−1) than positive and negative
controls (Table 1). The same CFS resulted in higher values of stomatal conductance than
a treatment with L. helveticus EL2006H (Table 1). In Experiment 2, CFSs from neither B.
subtilis EB2004S nor L. helveticus EL2006H influenced stomatal conductance; only pH had
an effect (Table 1).

Stem diameter and plant height are important growth indices of potato. The current
study measured differences in stem diameter as influenced only by pH in Experiment
2 at both 30 and 45 DAP, while no effect of the treatment combination was detected in
Experiment 1 (Table 1). Contrasting results were revealed in that at 30 DAP potato grown
at pH 8 showed greater stem diameter, while at 45 DAP those from pH 5 had gained more
stem diameter. Data analysis on potato plant height in this study indicated no significant
effect of CFS treatment in either experiment at 30 or 45 DAP (Table 1).

The comparison between CFS treatments and their controls indicated significant
differences at p < 0.05, for both experiments. In Experiment 2, SFW was significantly
affected by pH, but not CFS. The effect of pH 5 resulted in greater SFW (120.76 g plant−1)
compared to pH 8 (102.05 g plant−1) (Table 2). After drying the shoots, their weights were
recorded and analyzed. In Experiment 1, CFS treatments and pH did not affect shoot dry
matter (SDM) (Table 2).

http://www.evlbiotec.com
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Table 1. A two-way ANOVA on the response of potato to CFS and pH treatments on selected growth (stem diameter and plant height) and physiological (chlorophyll,
photosynthesis, and stomatal conductance) variables under greenhouse conditions. Experiment 1 represents CFS treatments obtained at pH 5; Experiment 2
represents CFS treatments obtained at pHs 7 and 8.

Experiment Factors Stem Diameter Plant Height Chlorophyll Photosynthesis Stomatal Conductance

1

CFS Treatments (mm) (cm) SPAD Units (µmol m−2 sec−1) molm−2s−1

30 DAP 45 DAP 30 DAP 45 DAP 30 DAP 45 DAP 30 DAP 45 DAP 30 DAP 45 DAP

H2OCONT 7.15 ± 0.30 8.39 ± 0.368 25.7 ± 1.6 a 47.9 ± 2.0 44.49 ± 0.8 43.32 ± 0.7 8.08 ± 0.2 b 10.66 ± 0.61
bc 0.06 ± 0.004 0.06 ± 0.003

bc

51EL2006H∼1% 7.30 ± 0.42 8.37 ± 0.456 27.0 ± 1.5 a 51.5 ± 1.9 45.23 ± 0.7 44.07 ± 0.76 8.41 ± 0.4 ab 11.23 ± 0.63
ab 0.06 ± 0.006 0.07 ± 0.006 b

51MRSCONT∼ 7.67 ± 0.24 8.33 ± 0.361 28.9 ± 1.2 a 51.4 ± 2.2 45.31 ± 0.7 44.45 ± 0.47 7.68 ± 0.3 b 9.88 ± 0.53 bc 0.05 ± 0.004 0.04 ± 0.003 c

52EL2006H∼0.4% 7.64 ± 0.25 8.63 ± 0.364 28.4 ± 1.2 a 49.7 ± 2.1 46.18 ± 0.6 45.93 ± 0.35 8.49 ± 0.4 ab 10.78 ± 0.56
abc 0.06 ± 0.009 0.06 ± 0.004

bc
52MRSCONT∼Positive
control 7.39 ± 0.30 8.34 ± 0.365 29.7 ± 1.5 a 52.1 ± 2.6 45.25 ± 0.5 43.76 ± 0.62 7.97 ± 0.3 b 9.42 ± 0.33 c 0.06 ± 0.007 0.05 ± 0.003 c

52EB2004S∼0.4% 7.45 ± 0.29 8.55 ± 0.188 29.5 ± 1.4 a 50.6 ± 1.9 43.51 ± 0.6 44.42 ± 0.66 9.27 ± 0.4 a 12.33 ± 0.7 a 0.06 ± 0.006 0.1 ± 0.011 a
52M13CONT∼Positive
control 8.02 ± 0.36 8.60 ± 0.344 22.4 ± 1.1 b 45.2 ± 2.4 44.18 ± 0.8 44.35 ± 0.55 8.12 ± 0.2 b 9.69 ± 0.45 bc 0.06 ± 0.004 0.05 ± 0.003

bc
pH
5 7.81 ± 0.20 8.74 ± 0.158 28.4 ± 0.9 50.2 ± 1.2 45.89 ± 0.3 a 44.44 ± 0.34 9.03 ± 0.2 a 10.57 ± 0.37 0.07 ± 0.004 a 0.07 ± 0.005 a

7 7.37 ± 0.18 8.43 ± 0.246 27.5 ± 0.9 50.1 ± 1.5 44.09 ± 0.5 b 44.05 ± 0.45 8.08 ± 0.2 b 10.32 ± 0.38 0.05 ± 0.003 b 0.06 ± 0.003
ab

8 7.37 ± 0.22 8.20 ± 0.266 26.4 ± 1.0 49.1 ± 1.5 44.65 ± 0.4 b 44.49 ± 0.41 7.75 ± 0.2 b 10.83 ± 0.4 0.05 ± 0.003 b 0.05 ± 0.003 b
p-values
pH 0.2868 0.2866 0.297 0.8354 0.0136 0.6955 0.0004 0.6297 0.0046 0.0121
CFS Treatments 0.6784 0.9931 0.0033 0.33 0.1168 0.1006 0.0537 0.0066 0.9453 <0.0001
Interaction 0.3251 0.942 0.0009 0.7959 0.0047 0.3081 0.5901 0.6361 0.8756 0.5838

2

H2OCONT∼Negative
control 9.67 ± 0.22 9.3788 ±

0.353
29.22 ± 0.9

bcd 55.7 ± 1.0 48.27 ± 0.82 46.77 ± 0.53 a 12.3 ± 0.60 12.8 ± 0.66 0.09 ± 0.009 0.09 ± 0.01

72EB2004S∼0.4 % 10.17 ± 0.23 10.13 ± 0.284 32.16 ± 1.05 a 55.8 ± 1.6 47.22 ± 1.25 45.52 ± 0.48
abc 12.2 ± 0.68 13.19 ± 0.66 0.09 ± 0.012 0.09 ± 0.009

72M13CONT∼Positive
control 9.8 ± 0.29 9.8077 ±

0.317
30.66 ± 1.27

abc 54.4 ± 1.5 48.48 ± 1.17 44.59 ± 0.45 c 12.42 ± 0.59 13.91 ± 0.70 0.09 ± 0.010 0.09 ± 0.008

71EL2006H∼1 % 10.03 ± 0.30 9.7177 ±
0.396

31.77 ± 1.27
ab 56.9 ± 1.9 48.18 ± 0.84 46.63 ± 0.38 a 12.94 ± 0.68 13.73 ± 0.61 0.08 ± 0.008 0.09 ± 0.016

71MRSCONT∼Positive
control 9.82 ± 0.20 9.5727 ±

0.303 29 ± 0.85 cd 56.0 ± 1.4 49.35 ± 0.58 46.22 ± 0.74
ab 11.64 ± 0.63 12.85 ± 0.60 0.08 ± 0.008 0.09 ± 0.01

83EB2004S∼0.2 % 10.18 ± 0.24 10.052 ±
0.314 27.77 ± 0.83 d 55.2 ± 1.1 48.46 ± 1.14 46.36 ± 0.42

ab 11.99 ± 0.68 14.54 ± 0.62 0.09 ± 0.012 0.12 ± 0.01

83M13CONT∼Positive
control 9.21 ± 0.17 9.26 ± 0.216 21.55 ± 1.16 e 50.7 ± 1.6 46.83 ± 1.34 44.93 ± 0.61

bc 12.08 ± 0.54 14.03 ± 0.70 0.09 ± 0.01 0.11 ± 0.012
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Table 1. Cont.

Experiment Factors Stem Diameter Plant Height Chlorophyll Photosynthesis Stomatal Conductance
CFS Treatments (mm) (cm) SPAD Units (µmol m−2 sec−1) molm−2s−1

pH
5 9.53 ± 0.12 b 10.2 ± 0.198 a 29.57 ± 0.72 54.7 ± 1.0 50.57 ± 0.43 a 46.94 ± 0.33 a 12.45 ± 0.39 12.87 ± 0.47 0.11 ± 0.008 a 0.08 ± 0.006 b
7 9.79 ± 0.13 ab 9.42 ± 0.184 b 28.54 ± 1.01 55.2 ± 0.9 48.3 ± 0.68 b 45.52 ± 0.33 b 12.42 ± 0.33 13.57 ± 0.41 0.08 ± 0.005 b 0.09 ± 0.006 b
8 10.2 ± 0.2 a 9.48 ± 0.221 b 28.52 ± 0.8 55.0 ± 1.1 45.47 ± 0.67 c 45.12 ± 0.35 b 11.8 ± 0.49 14.3 ± 0.36 0.08 ± 0.007 b 0.11 ± 0.008 a
p-values
pH 0.0095 0.0166 0.4053 0.9415 <0.0001 0.0006 0.4956 0.0555 0.0162 0.0025
CFS Treatments 0.063 0.4053 <0.0001 0.1222 0.4699 0.0162 0.9004 0.394 0.6465 0.3426
Interaction 0.4793 0.9914 0.0003 0.598 0.0043 0.8664 0.9991 0.2057 0.9451 0.079

Columns indicate mean values (±SE). Dissimilar letters in a column represent significant variation (p = 0.05, LSD) and bold numbers are significant p-values.

Table 2. A two-way ANOVA on the response of potato to CFS and pH treatments on leaf area, shoot fresh weight (SFW*), shoot dry matter (SDM*), root fresh weight
(RFW*), root dry matter (RDM*), whole plant fresh weight (WPFW*), and whole plant dry matter (WPDM*) under greenhouse conditions. Experiment 1 represents
CFS treatments obtained at pH 5; Experiment 2 represents CFS treatments obtained at pHs 7 and 8.

Experiment Factors Leaf Area SFW SDM RFW RDM WPFW WPDM

CFS Treatments (cm2) (g Plant−1) (g Plant−1) (g Plant−1) (g Plant−1) (g Plant−1) (g Plant−1)

1

H2OCONT∼Negative control 1548.23 ± 114.11 117.89 ± 5.53 a 12.15 ± 0.51 48.17 ± 1.83 b 7.77 ± 1.08 166.07 ± 5.98 abc 19.93 ± 1.12

51EL2006H∼1% 1657.10 ± 76.03 108.63 ± 5.63 ab 12.53 ± 0.96 52.1 ± 1.93 ab 7.89 ± 0.93 160.74 ± 6.44
bcd 20.42 ± 0.66

51MRSCONT∼Positive control 1539.28 ± 98.13 118.55 ± 4.01 a 13.00 ± 0.57 52.76 ± 1.28 ab 8.55 ± 1.31 171.31 ± 4.44 ab 21.56 ± 1.09
52EL2006H∼0.4% 1614.25 ± 86.47 120.32 ± 4.45 a 13.55 ± 0.71 55.12 ± 1.43 a 8.8 ± 1.27 175.45 ± 4.57 a 22.36 ± 1.26
52MRSCONT∼Positive control 1456.31 ± 110.13 103.13 ± 4.88 b 11.69 ± 0.87 52.27 ± 2.18 ab 8.3 ± 1.21 155.40 ± 6.57 cd 19.99 ± 1.00
52EB2004S∼0.4% 1612.54 ± 78.82 116.52 ± 2.91 a 12.58 ± 0.55 56.25 ± 2.29 a 8.97 ± 1.25 172.78 ± 4.00 ab 21.56 ± 1.17
52M13CONT∼Positive control 1380.04 ± 114.75 102.82 ± 4.55 b 12.12 ± 0.77 47.76 ± 2.22 b 7.8 ± 1.04 150.58 ± 5.62 d 19.92 ± 0.74
pH
5 1642.81 ± 60.26 120.03 ± 3.35 a 12.86 ± 0.47 50.67 ± 1.35 b 9.09 ± 0.8 170.70 ± 3.89 a 21.95 ± 0.72 a
7 1509.37 ± 72.86 112.91 ± 2.43 a 13.00 ± 0.45 54.57 ± 1.04 a 8.38 ± 0.74 167.48 ± 2.79 a 21.39 ± 0.64 a
8 1479.70 ± 57.16 104.72 ± 3.22 b 11.70 ± 0.47 50.95 ± 1.43 b 7.42 ± 0.68 155.67 ± 4.07 b 19.12 ± 0.58 b
p-values
pH 0.1844 0.0007 0.1033 0.0469 0.3325 0.0041 0.0069
CFS Treatment 0.4787 0.0062 0.6183 0.0117 0.9855 0.0034 0.4452
Interaction 0.9912 0.0203 0.4197 0.3315 0.9972 0.0265 0.5673
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Table 2. Cont.

Experiment Factors Leaf Area SFW SDM RFW RDM WPFW WPDM

CFS Treatments (cm2) (g Plant−1) (g Plant−1) (g Plant−1) (g Plant−1) (g Plant−1) (g Plant−1)

2

H2OCONT∼Negative control 1312.98 ± 36.47
bc 108.28 ± 4.86 8.07 ± 0.48 44.85 ± 1.65 b 3.02 ± 0.17 ab 153.15 ± 5.57 a 11.13 ± 0.61 ab

72EB2004S∼0.4 % 1532.2 ± 49.84 a 117.1 ± 7.66 9.56 ± 0.77 44.84 ± 1.1 b 3.01 ± 0.15 ab 161.96 ± 8.29 a 12.60 ± 0.88 a

72M13CONT∼Positive control 1384.71 ± 48.74
b 111.27 ± 6.42 8.65 ± 0.52 45.1 ± 1.15 b 3.03 ± 0.14 ab 156.4 ± 7.02 a 11.71 ± 0.63 ab

71EL2006H∼1 % 1431.94 ± 49.87
ab 120.53 ± 5.61 9.42 ± 0.57 49.29 ± 1.15 a 3.27 ± 0.16 a 169.83 ± 5.53 a 12.72 ± 0.68 a

71MRSCONT∼Positive control 1369.52 ± 44.06
b 115.98 ± 3.92 9.47 ± 0.45 47.8 ± 1.72 ab 3.33 ± 0.19 a 163.81 ± 4.3 a 12.84 ± 0.56 a

83EB2004S∼0.2 % 1362.88 ± 46.11
b 111.56 ± 5.50 8.77 ± 0.6 47.18 ± 1.54 ab 3.43 ± 0.14 a 158.76 ± 6.27 a 12.21 ± 0.72 a

83M13CONT∼Positive control 1222.79 ± 73.1 c 95.17 ± 7.24 7.5 ± 0.72 40.3 ± 1.66 c 2.63 ± 0.16 b 135.51 ± 7.87 b 10.15 ± 0.85 b
pH
5 1370.59 ± 33.57 120.76 ± 3.54 a 9.35 ± 0.40 44.62 ± 0.89 3.19 ± 0.09 165.4 ± 4.02 a 12.57 ± 0.48
7 1351.12 ± 33.30 111.43 ± 3.91 ab 8.69 ± 0.44 44.97 ± 0.97 2.95 ± 0.10 156.42 ± 4.55 ab 11.68 ± 0.52
8 1399.87 ± 39.07 102.05 ± 4.14 b 8.29 ± 0.33 47.29 ± 1.13 3.16 ± 0.12 149.37 ± 4.54 b 11.47 ± 0.41
p-values
pH 0.5307 0.0021 0.1084 0.0614 0.1991 0.0199 0.1551
CFS Treatment 0.0008 0.0505 0.0616 0.0002 0.0083 0.0061 0.0393
Interaction 0.00258 0.0946 0.0008 0.0014 0.0203 0.0277 0.0009

Columns indicate mean values (±SE). Dissimilar letters in a column represent significant variation (p = 0.05, LSD) and bold numbers are significant p-values.



Int. J. Mol. Sci. 2023, 24, 6620 7 of 22

The highest root fresh weight (RFW) (56.25 g plant−1) resulted from treatment with
52EB2005S~0.4% CFS of B. subtilis EB2004S cultured at pH 5, numerically greater than
the positive and negative controls, but statistically not different from treatment with
52EL2006H~0.4% CFS of L. helveticus EL2006H also cultured at pH 5, which resulted in
55.12 g plant−1 (Table 2). The potato growth pH affected (increased) RFW (54.57 g plant−1)
at pH 7 for Experiment 1 with respect to pHs 5 and 8 (Table 2). Analysis of the data of
root dry matter (RDM) showed no statistical differences among the treatment factors in
Experiment 1, indicating no possible influence on the variable (Table 2). The whole plant
dry matter (WPDM) was affected mainly by pH for Experiment 1, where higher pH 8
recorded the least weight (19.12 g plant−1) (Table 2).

2.2. The Interactive Effect of pH and CFS Treatments on Potato Growth and Physiological Variables

For Experiment 1, pH and CFS treatment interaction was significant for plant height and
leaf greenness/chlorophyll at 30 DAP, SFW, and WPFW (Tables 1 and 2 and Figure 1A–D).
The interaction of 52EB2005S~0.4% CFS with the potato grown at pHs 5 and 8 resulted in
a significant (p < 0.0001) plant height compared to the positive control receiving the same
treatment combination (Figure 1A). Leaf greenness, on the other hand, was significantly
influenced by the interaction of potato grown at pH 8 with a 52EL2006H∼0.4% CFS treatment
with higher greenness over 51EL2006H∼1% CFS treatment which had a higher concentration
but less effect (Figure 1B). Interaction effect also contributed to the variations in SFW and
WPFW in Experiment 1 (Figure 1C,D). Furthermore, the interactive effect of pH and CFS
treatment contributed significantly to the SFW differences of Experiment 1 (Figure 1C). In
Experiment 1, pH, CFS treatments, and their interaction affected WPFW (Table 1, Figure 1D).

In Experiment 2, CFS treatments 72EB2005S~0.4%, 83EB2005S~0.2%, and 71EL2006H
~1% were evaluated for their effect on potato growth under greenhouse conditions. The
pH and CFS treatment interactions were significant in plant height and leaf greenness/
chlorophyll at 30 DAP, leaf area, shoot dry matter, root fresh and dry weight, and whole
plant fresh and dry weight (Tables 1 and 2, Figure 2A–H). Increased plant height was
observed because of interaction of potato grown at pH 5 and the 72EB2005S~0.4% CFS
treatment compared to all controls. On the other hand, there was a numerically higher
plant height influenced by 71EL2006H~1% CFS treatment over all controls. Surprisingly,
the interaction of growing potato at pH 7 and 71MRSCONT∼1% resulted in the tallest
plants at pH 7 (Figure 2A). Relative leaf greenness had less variation because of pH and
CFS treatment interaction as indicated in Figure 2B. Potato shoot dry matter (SDM) level
was substantially high at pH 5 for 72EB2005S~0.4% CFS treatment (Figure 2C) as well as the
leaf area for the same treatment combination (Figure 2D). There were significant interaction
effects on potato RFW in Experiment 2 which involved CFS obtained from B. subtilis
cultured at pHs 7 and 8 and L. helveticus cultured at pH 7 (Figure 2E). RFW was numerically
high over the positive control for a combination of pH 8 and 71EL2006H~1% CFS treatment
and significantly above the negative control (Figure 2E). Similarly, in Experiment 2 CFS
treatments had significant effects on RFW in that 72EL2006H~0.4% resulted in greater
(49.29 g plant−1) levels than all other treatments, although not statistically different from
the positive control (Table 2). Specifically, 83EB2005S~0.2% CFS treatment interacted with
potato grown at pH 7, resulting in significantly higher RFW over its positive control, but
numerically similar to other treatments and controls. A higher RDM over the positive
control was a result of 83EB2005S~0.2% CFS treatment and potato grown at pH 7 (Figure 2F).
Consistently, 72EB2005S~0.4% CFS treatment was associated with accumulated higher
WPFW and WPDM over the positive control (Figure 2G,H). Furthermore, visual observation
of the roots showed the presence of tubers being already formed for the plants at pHs 7
and 8 treated with 52EB2005S~0.4% CFS of B. subtilis EB2004S cultured at pH 5 (Figure 3A),
while 52EL2006H~1% CFS and 52EL2006H~0.4% CFS did not influence early tuberization
(Figure 3B,C).
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Figure 1. The interaction effect of pH and CFS treatments obtained from the cultured L. helveticus and
B. subtilis (Experiment 1) at pH 5 on (A) potato plant height; (B) leaf greenness measured in SPAD
units; (C) shoot fresh weight (SFW*); and (D) whole plant dry matter (WPDM*) under greenhouse
conditions. Values are expressed in their respective units and means, dissimilar letters indicate
significant (p = 0.05, LSD) differences among treatments. Error bars represent standard error of means
(SEM).
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error of means (SEM). 
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Figure 2. The interaction effect of pH and CFS treatments obtained from the cultured L. helveticus
and B. subtilis (Experiment 2) at pHs 7 and 8 on potato; (A) plant height; (B) leaf greenness measured
in SPAD units; (C) leaf area; (D) shoot dry matter (SDM*); (E) root fresh weight (RFW*); (F) root dry
matter (RDM*); (G) whole plant fresh weight (WPFW); and (H) whole plant dry matter (WPDM*)
under greenhouse conditions. Values are expressed in their respective units and means, dissimilar
letters indicate significant (p = 0.05, LSD) difference among treatments. Error bars represent standard
error of means (SEM).
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3. Discussion

Ways to avoid the constraints on PGPM inoculation could be the use of CFS in re-
placement of microbial cells in promoting plant growth and stress tolerance [24,40]. Pre-
vious studies have elucidated the importance of pH on the growth and development of
potato [41,42]. The effect of PGPMs on enhancing potato growth has been an area of study
in recent years considering the use of sustainable means to increase productivity of plants.
While many questions remain unanswered regarding the best deployment of PGPMs and
PGPM products to ensure effective output, more questions arise even from the unanswered
questions. Even though the potential of microbes has not been fully explored with respect
to potato growth promotion, the use of live microbes has faced difficulties in attaining
their full potential for plant growth stimulation, as reported under both laboratory and
controlled environment conditions [39]. The use of CFS from PGPMs, a relatively new
approach, has gained interest. A specific focus of this study was to assess the potential of
CFS from B. subtilis EB2004S and L. helveticus EL2006H produced at pHs 5, 7, and 8 applied
on potato plants subjected to similar levels of pH.

3.1. Effect of CFS Treatment and pH on Leaf Greenness (LG), Leaf Area (LA), Photosynthetic Rate,
and Stomatal Conductance

A non-destructive measure of chlorophyll, such as through use of the SPAD meter,
helps in monitoring plant performance over time with analysis of a wide range of other
plant growth and development variables. Previous studies have shown that habitat pH
does not influence leaf greenness for Spiraea alba and Spiraea tomentosa [43,44]; on the con-
trary, the current study on potato has indicated that lower pH increases leaf greenness
significantly compared to higher pH. It is known that SPAD values are related to nitrogen
concentration in plant tissues [45], which could be related to increased solubility of nutri-
ents in the Hoagland solution at lower rather than higher pHs. In the current study SPAD
was used to determine the relative greenness of leaves at 30 and 45 DAP as an assessment
of response to microbial CFS treatment. The general observation is that during the first 30
DAP the interactive effect of pH and CFS treatment combinations was prominent, but 15
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days later at 45 DAP, there was no significant effect of these treatments in Experiment 1,
while in Experiment 2, what was prominent was the effect of the main factors of pH and
CFS. Previously, leaf greenness in potato has shown direct influences on tuber yield [46,47],
suggesting that CFS influence on chlorophyll has potential to influence yield as well, as
seemed to be the case in the current work. The reason for the disappearance of the effect
could be related to plants being at their vegetative stage initially and having commenced
flowering when later measurements occurred. The decrease in the SPAD index values
recorded at 45 DAP might be associated with the growth stage of potato (flowering/tuber
initiation), which requires more nutrients. Studies in other crops reported increased chloro-
phyll content as the result of CFS application, such as Enterococcus faecium with Cucumis
melo [48] and Fusarium tricinctum RSF-4L with Oryza sativa [49]. This report, to the best
of our knowledge, provides the first data on potato with respect to the effect of CFS on
LG; it is known that at high pH there is usually decreased availability of nutrients from
the soil colloids as well as from watering solutions. Specifically, Ca, Fe, Mg, Mn, and P
become more limited, which reduces chlorophyll content in plants [50]; this study shows
that at pH 8 the leaf greenness SPAD readings were significantly lower than the pH 5 and 7
readings. Furthermore, the apoplast has an average pH of around 5.5, comparatively lower
than that of the cytoplasm, which is around 7 [51,52], which creates a gradient allowing
flow of nutrients. In cases of higher pH the root apoplast pH increases, causing disruption
of the gradient, hence impairing nutrient translocation [53].

With regard to LG, the LA is an important plant variable that is responsible for how
much light is intercepted for photosynthesis and how much water can escape through
evapotranspiration and ultimately contributes meaningfully to plant growth [54]. Like
many plant ecology and physiology investigations, this study assessed the effects of CFS
and pH on LA as it has been a good estimator of plant nutrition and ultimately assists
in understanding plant growth and yield potential [55,56]. This study indicated that
72EB2004S~0.4% CFS treatment significantly increased LA in potato grown at pH 5 (Fig-
ure 2D). Even though the underlying mechanisms of pH and CFS treatment interaction
for the current findings are not directly clear, it could suggest that similar mechanisms
used by live PGPMs might be responsible for increased LA [52,57]. The use of CFS as a
biostimulant has been increasing owing to the resulting enhancement of plant growth and
development [36,40].

Photosynthetic rate is extremely important in growth and development of plants.
This variable is influenced by many factors including the time of the day, chlorophyll
content, LA, LG, number of optimal conditions the plant is experiencing at a particular
time, and stage of growth of the plant. The pH of the medium in which a plant is growing
influences nutrient availability, potentially leading to insufficient, optimum, and excessive
availabilities [58], which translates to proper and improper plant growth and performance
if variations are significant. However, the response of plants to pH variation differs among
plant species as does their photosynthetic rate [58]. In the current study, at 45 DAP the
effect of CFS treatment was prominent, in that 52EB2004S~0.4% CFS treatment resulted in
a higher photosynthetic rate (12.33 µmol m−2 S−1) than the controls and other L. helveticus
EL2006H CFS treatments. While this is the first time CFS from B. subtilis EB2004S cultured
at suboptimal pH 5 has been applied on potato to observe its effect on photosynthesis, a
comparatively similar approach has been reported on the effect of fungal CFS of Penicillium
citrinum KACC43900, having resulted in increased photosynthesis following a foliar spray
on Carex kobomugi [59].

A close relationship between the photosynthetic rate and stomatal conductance took
the same trajectory with respect to CFS treatment on potato. Significantly higher stomatal
conductance (0.07 mol m−2 S−1) at pH 5 compared to that recorded at pHs 7 and 8 for
Experiment 1 (Table 1) was the first indicator that hydrogen ion (H+) concentration has an
impact on this variable. With the relationship between photosynthetic rate and stomatal
conductance having been broadly studied, including for potato [60], it is not surprising
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to find a similar effect of 52EB2004S~0.4% CFS treatment resulting in higher stomatal
conductance levels (0.10 mol m−2 S−1) than positive and negative controls.

3.2. Effect of CFS Treatment and pH on Potato Plants’ Stem Diameter and Height

Plant stem diameter and height are the best indicators of plant vigor and growth,
including in potato. Stem diameter in the current study at 30 DAP was only influenced
by CFS treatment obtained from pHs 7 or 8 only in Experiment 2 (Table 1). Potato stem
diameter is known to have positive correlation with number of leaves which together
contribute to number of tubers produced [61]. In this study, knowing that factors such as
tuber size influence plant height [62], uniformity of tubers before sowing was considered to
ensure uniformity at the beginning of treatment application. The use of CFSs from Bacillus
sp. CaSUT007 and Bacillus subtilis EA-CB0575 increased shoot length for Manihot esculanta
and Musa spp. [63,64]. Interestingly, the application of 52EB2004S~0.4% CFS treatment on
potato grown at pHs 5 and 8 resulted in significantly (p = 0.0009) higher plant height than
its positive control, but similar heights to the negative control. Moreover, the interaction of
potato grown at pH 5 with a 72EB2004S~0.4% CFS treatment caused significantly higher
plant height than the negative control, and a height numerically above the positive control.
This is, most likely, the first report of CFS treatments of the same microbe cultured at
different pH conditions contributing to enhanced potato plant height. The main effector
compounds contributing to such plant height enhancement have been associated with
indole acetic acid (IAA) and extracellular proteins [63,64] although specific microbe to
plant signals are possible [28]. The protein profiling of the strains’ CFSs used in this study
revealed the presence of proteins with diverse functions, including some with unknown
functions [65] potentially supporting the observed effects. Specifically, B. subtilis EB2004S
CFS obtained from pH 5 secreted chain B selenosubtilisin, the only upregulated protein [65],
which might have been crucial in protecting potato root cells from pH damage, resulting in
enhanced plant growth. This is further emphasized by the increased biological activities
related to cellular detoxification, cell division, and response to stress only expressed with
CFS of B. subtilis EB2004S obtained at pH 5, which indicated selenosubtilisin protein was
involved. Furthermore, the fact that selenosubtilisin is involved in amide hydrolysis [66]
might have increased the presence of ammonia in the CFS and hence increased available
nitrogen for plant uptake which resulted in enhanced plant growth.

3.3. Effect of CFS Treatment and pH on Potato Shoot Fresh Weight (SFW), Shoot Dry Matter
(SDM), Root Fresh Weight (RFW), and Root Dry Matter (RDM)

The increase in biomass for plants is a part of increased plant growth. Application
of microbial CFSs has been reported to improve plant biomass accumulation and stress
tolerance [67]. Studies using CFS have identified notable phytohormones potentially re-
sponsible for plant growth promotion, mostly IAA, while extracellular proteins, peptides,
and siderophores are also known to play important roles. A study by Buensateai, Som-
pong, Thamnu, Athinuwat, Brauman, and Plassard [63] showed that CFS from Bacillus
sp. CaSUT007 had significant effects in increasing shoot and root length and ultimate
whole plant biomass of cassava. Moreover, application of CFS from B. subtilis EA-CB0575
on banana plants resulted in increased plant dry weight [64]. In this study, the highest
SFW was recorded in potato grown at pH 5 treated with 52EL2006H~0.4% CFS, followed
by those grown with a combination effect of pH 8 and a 52EB2004S~0.4% CFS treatment
(Figure 1D). This is also reflected in previous studies indicating that CFS can increase plant
fresh and dry weight, however, variation in pH conditions during culture of the microbes
is a contributing factor.

The effects of pH in the current study are in accordance with a previous study which
showed potato at pH 5 had more biomass than those grown at pHs lower than 5 and higher
than 7 [68]. The findings of this study are consistent with previous work using the same
CFSs on tomato and corn seedling growth variables [40] which involved the same strains
and same concentrations of the CFSs. Moreover, the visual observation of the roots showed
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potato treated with a 52EB2004S~0.4% CFS treatment grown at pHs 7 and 8 had tubers,
indicating that the CFS might have influenced early tuberization. The effect of rhizobacteria
on early tuberization has been reported to be through enhanced lipoxygenase activities [69],
but the mechanisms of CFS activity are yet to be identified in this regard. However, the
CFS of B. subtilis EB2004S cultured at pH 5 as reported previously in Msimbira et al. [65]
had increased ABC-F family ATP-binding-cassette proteins which are usually responsible
for solute transport around membranes and stress tolerance, leading to enhanced growth
and to early tuberization. However, selective activity on early tuberization of as a result of
52EB2005S~0.4% CFS treatment for potato grown at pHs 7 and 8 and not at pH 5 requires
further confirmation.

Roots are important plant organs and, apart from being responsible for water and nu-
trient acquisition, they also function by anchoring the plant in soil or growth medium [70].
In potato, the functions are further extended to tuber formation from special belowground
structures (stolons) [71,72] as opposed to grains. Root fresh weight was influenced by
52EB2005S~0.4% CFS treatment which resulted in the relatively high weight of 56.25 g
plant−1 (Table 1). The interactive effect of potato grown at pH 7 in combination with appli-
cation of 83EB2004S~0.4% CFS treatment resulted in increased RFW and RDM (Figure 2E,F).
That CFS caused increases in root fresh and dry weight was previously reported for wheat
through pre-treatment of seeds with Streptomyces atroolivaceus CFS [73]. The increase in RFW
and RDM could be a result of the bioactivity of extracellular proteins found in the CFS, as
previously identified in a secretome analysis of these strains [65]; they could, however, also
be the result of interaction with pH among other unknown compounds, factors requiring
further investigation. Extracellular proteins, being related to root biomass increase, are also
reported in Glycine max after treatment with CFS from Bacillus amyloliquefaciens KPS46 [74].
Protein profiles of CFS for B. subtilis EB2004S cultured at pH 5 expressed increased clusters
of ABC-F family ATP-binding-cassette proteins, a family of soluble proteins within the ABC
superfamily [65]. These proteins are involved in protein synthesis when cells encounter
multiple stresses. In plants the ABC proteins are responsible for transmembrane molecule
transport of phytohormones, organic acids, and metal ions, contributing to enhanced plant
growth and development [75]. The current study, therefore, provides primary information
that culturing the same microbe at different pH levels could be beneficial depending on the
final use, such as the expression of ABC proteins which were only expressed under pH 5.

3.4. Effect of CFS Treatment and pH on Potato Plant WPFW and WPDM

Plant biomass accumulation is a direct measure of growth. The partitioning of biomass
to harvestable parts determines the harvest index of the crop (tubers in the case of potato).
Since potato tubers were not fully developed, calculating the harvest index at 45 DAP was
not possible, hence the whole plant biomass was considered in the assessment of the effect
on overall plant biomass accumulation of CFS treatments. The findings obtained in the
current study show significant increases in WPFW and WPDM, confirming that there were
effects of CFS application and/or partly interactive effects of pH and CFS treatments, and
therefore justify rejecting the null hypothesis. Potato plants growing at pH 5 treated with a
52EL2006H~0.4% CFS treatment recorded a mean WPFW above the controls (Figure 1D).
Similarly, an interactive effect of pH 8 and a 52EB2004S~0.4% CFS treatment increased
WPFW significantly over the positive control (Figure 1D). This was consistent with the
previous study on seedling growth of Solanum lycopersicum and Zea mays, showing they
were influenced by application of the same CFS of the same strains [40]. A study on
Cucumis sativus using CFS from Cladosporium sp. showed increases in both plant fresh and
dry weights due to the effects of gibberellins found in the CFS [76]. Potato plants that
received a treatment combination involving 83EB2004S~0.2% CFS treatment had greater
WPDM than the positive control. The effect of CFS on plant dry weight has been reported
in other crops such as Cucumis sativus [76] and Coreandrum sativum [77].

Though the study has not clearly identified specific mechanisms contributing to such
effects, it has provided clear evidence that is consistent with previous studies on Solanum
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lycopersicum and Zea mays conducted using the same strains’ CFSs [40] and featuring
variability of secretome proteins of L. helveticus and B. subtilis [65]. CFSs, especially proteins
of unknown functions within the CFS, might also be the contributing factors. The presence
of peptides from CFS responsible for plant growth promotion may also be considered as
contributing factors as was reported from Bacillus thuringiensis NEB17 commercialized as
Thuricin 17 [78,79]. The findings of this study prove that using a pre-selected optimum
benchmark pH is less effective than varying pH levels when it comes to both culturing
microbes and applying them to plant growth media; furthermore, replacing plant growth-
promoting microbes with cell-free supernatants extracted from PGPMs at specific pH levels
may be more beneficial to plant growth than the PGPM inoculation itself.

4. Materials and Methods
4.1. Preparation of CFS Treatments

The microbial strains used in this study were obtained from EVL Inc. (http://www.
evlbiotec.com, accessed on 10 February 2023), as a subset of a microbial biostimulant consor-
tium in 2018. The two bacteria, B. subtilis EB2004S and L. helveticus EL2006H, were selected
based on previous reported effect of their CFSs on enhancement of seed germination and
seedling growth for corn and tomato [40]. The strains were revived from working stock
cultures stored at −20 ◦C; a loopful was added into 50 mL fresh sterile M13 (B. subtilis
EB2004S) or MRS (L. helveticus EL2006H) medium broth, contained in 250 mL flasks. The
cultures were then incubated for 48 h at 30 and 37 ◦C for B. subtilis EB2004S and L. hel-
veticus EL2006H, respectively. An additional incubation condition including the use of an
orbital shaker at 120 rpm was used for B. subtilis EB2004S, while L. helveticus EL2006H was
incubated without agitation.

To obtain CFSs, strain cultures after 48 h of incubation were transferred to sterile
Falcon tubes for cell separation by centrifugation at 12,000× g. The supernatant was filtered
using vacuum filters (0.22 µm pore size) (Corning® Vacuum Filter systems, Fisher Scientific,
Tewksbury, MA, USA) to ensure no cells or debris remained. The obtained CFSs from pHs
5, 7, and 8 for B. subtilis EB2004S and pHs 5 and 7 for L. helveticus EL2006H, including
sterile medium (positive control) at respective pHs and a negative control, were used
for treatments as indicated in Table 3. For final treatment formulations, a ratio of CFS to
distilled water (volume of CFS/volume of distilled water) was used to obtain 1, 0.4, and
0.2% (Table 3).

Table 3. List of CFS factor treatments used during greenhouse experiments for potato (except for the
negative control, the first number for each treatment indicates the pH of origin; names of the strains
are coded by EB2004S and EL2006H for B. subtilis and L. helveticus, respectively; MRS and M13 stand
for medium controls).

Experiment 1 Treatments Experiment 2 Treatments

H2OCONT∼Negative control H2OCONT∼Negative control
51EL2006H∼1% 72EB2004S∼0.4%
51MRSCONT∼1% (Positive control) 72M13CONT∼0.4% (Positive control)
52EL2006H∼0.4% 71EL2006H∼1%
52MRSCONT∼0.4% (Positive control) 71MRSCONT∼1% (Positive control)
52EB2004S∼0.4% 83EB2004S∼0.2%
52M13CONT∼0.4% (Positive control) 83M13CONT∼0.2% (Positive control)

4.2. Experimental Design and Layout

Greenhouse experiments were carried out at the Macdonald Campus of McGill Uni-
versity between winter 2021 and winter 2022. Greenhouse pot experiments involved potato
(Solanum tuberosum L., variety Goldrush) as the host bioassay plant. This variety was
selected because of its popularity in the province of Quebec, and due to the positive results
when treated with EVL biostimulant products, including the two strains of the consortium
strains used in this study. CFSs from B. subtilis EB2004S and L. helveticus EL2006H were

http://www.evlbiotec.com
http://www.evlbiotec.com
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evaluated for their effects on potato growth under greenhouse conditions. Medium-sized
(3–4 cm) potato seed tubers were grown in 8.82 L pots. A total of 63 pots were used,
arranged following a completely randomized design (CRD), with the CFS treatments of the
experiments (Table 1) assigned randomly to 21 pots corresponding to three sets of pH levels
(5, 7, and 8). Each complete set of the treatments had three replications. Two factors (pH
levels (5, 7, and 8) and CFSs from B. subtilis EB2004S and L. helveticus EL2006H obtained
from pH 5) were used in the first experiment (Experiment 1), while the second experiment
(Experiment 2) constituted CFS obtained from pHs 7 and 8 (Table 1). Limited greenhouse
space led to treatment subdivision based on the pH level of origin of the CFS. The choice to
make the division based on pH of the CFS production rather than strain was because of
the desire to compare how CFS of B. subtilis EB2004S and L. helveticus EL2006H originating
from the same pH compares with respect to potato growth promotion. The organization of
the resulting two experiments is indicated in Table 1. The entirety of each experiment was
repeated twice.

4.3. Treatment Application and Experiment Management

There were two sequential CFS treatments, one at planting and the second at 30 days
after planting (DAP), along with one zero CFS control treatment as a negative control and
sterile broth medium as a positive control (Table 1). The CFS treatments were applied twice
at the beginning and at 30 DAP to increase the chances of capturing their effect at early
vegetative and flowering growth stages. Three pH levels (5, 7, and 8), which constituted
the second factor through water and nutrient solutions, were maintained throughout the
experiment with three replications for each pH by CFS treatment combination. The first
CFS treatment application was applied by soaking potato seed overnight in treatment
solution before planting in pots. A total of 9 selected potato seed tubers with 2 or more eye
buds were soaked for each treatment then sown in 8.82 L pots containing 500 g of perlite.
Perlite was used in this experiment because it has a neutral pH which corresponds to the
reference pH of the treatments. Furthermore, perlite has high moisture retention, aeration,
and no nutrients which allowed equal supply of nutrient from the nutrient solution. After
sowing, the pots were placed on top of benches following a pre-randomized order and
watered with 100 mL of decanted fluid from the overnight soaking, followed by 1 L of
water at adjusted pHs of 5, 7, and 8 using HCl or KOH. The greenhouse conditions were
set at 16/8 h light/dark and 23 ± 2/18 ± 2 ◦C day/night temperature with 68 ± 2%
relative humidity (RH). Pots were watered to saturation on the planting date followed
by watering once to twice a week with respect to moisture balance. All the pots received
equal volumes of treatment nutrient solution and water at each watering. Half-strength
Hoagland solution [80] was prepared with the composition as previously described in
Msimbira et al. [38] and its pH adjusted to 5, 7, and 8 and used for watering plants
alternating with water in the first 30 DAP. A second application of the treatment was
applied on the 30th DAP by mixing CFS in half-strength Hoagland solution at respective
concentrations for each treatment, then dispensing 150 mL per pot. Plants were then
irrigated with full-strength Hoagland solution and water interchangeably, as required.

4.4. Data Collection

Potato plants were managed from sowing to 30 DAP, at which time the first non-
destructive data collection was made. Potato physiological variable indices were measured
using a portable photosynthesis system (Li-Cor 6400, Lincoln, NE, USA) with photosyn-
thetic photon flux density set at 800 µmolm−2 S−1, CO2 concentration of 400 ppm or µmol
mol−1, flow rate of 500 µmol S−1 in the chamber was used to measure photosynthetic
rates and stomatal conductance of fully expanded leaves of potato plants at 30 and 45
DAP. The chamber temperature and RH were set at 25 ◦C and 44%, respectively. The
relative leaf greenness was measured using a SPAD meter (chlorophyll meter) (SPAD-502,
Konica Minolta Sensing Inc., Tokyo, Japan) at 600 nm. Potato growth indices (plant height
measured using a ruler at 0.1 cm accuracy and stem diameter measured using vernier
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calipers at 0.001 mm accuracy) were also recorded at both 30 and 45 DAP. The second
treatments were applied on the day of first data collection to each pot. Plants were then left
to grow for another 15 days and then harvested at 45 DAP. Careful cutting of potato shoots
at the soil (perlite) line was carried out using a pruner, separating the potato plants into
shoots and roots. The leaves from the shoots were detached and scanned for their total area
using a leaf area meter (LI-3100 C, Lincoln, NE, USA), after which fresh shoot (stems and
leaves) weight was also recorded. Roots were then carefully removed from perlite growth
medium by gentle shaking and washed to remove the loosely adhered perlite particles.
The roots were aerated on blotter paper to remove the excessive water from washing, then
fresh weight was recorded. Roots and shoots, in separate envelopes, were then dried to a
constant weight in an oven set at 60 ◦C, to determine dry matter production.

4.5. Data Analysis

The data collected from the greenhouse experiments were tested for normality to fulfil
statistical assumptions before being subjected to analysis of variance (ANOVA) using PROC
GLM of SAS 9.4 for Windows (SAS Institute, Inc., Cary, NC, USA). Two-way ANOVA was
performed to determine main effects of CFS treatments and pH (5, 7, and 8) and interaction
effects for the two factors (pH and CFS treatments) on response variables, leaf greenness,
leaf area, plant height, photosynthesis, stomatal conductance, shoot fresh and dry weight,
root fresh and dry weight, and whole plant fresh and dry weight. Treatment means specific
differences were tested using Fisher least significant difference (LSD) at α = 0.05. Graphs
of mean values and results tables were generated using Microsoft Excel (Microsoft 365,
Version 2301).

5. Conclusions

The findings of this study are unique in that it probed the effect of CFS produced under
differing pH conditions (some of which are relevant to commercial bioreactor production),
compared to the standard practices of producing the microbes under optimum growth
conditions and applying them to mitigate stresses in plants. While it is not possible to
state the mechanisms involved in the effects observed, it is interesting to note that pH and
pH-dependent CFS had positive effects on most of the studied potato variables, including
chlorophyll, photosynthesis, and stem diameter at 30 DAP. Although the results of non-
destructive data collected at 30 DAP did not remain consistent to the final harvest day
(45 DAP), this study has been very insightful to learn the effect of CFS at the transition
of potato growth stages. Visual observation of the roots showed potato treated with a
52EB2004S~0.4% CFS treatment grown at pHs 7 and 8 had tubers, an indication that CFS
influenced early tuberization. In conclusion, there is a need for further research to clarify the
effect of CFSs, however, the findings reported here are highly encouraging. Determination
of both microbial CFS and potato plant cellular metabolic profiles could further fill in the
gaps in scientific understanding.
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