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Abstract: The discovery and development of new drugs are extremely long and costly processes.
Recent progress in artificial intelligence has made a positive impact on the drug development pipeline.
Numerous challenges have been addressed with the growing exploitation of drug-related data and
the advancement of deep learning technology. Several model frameworks have been proposed to
enhance the performance of deep learning algorithms in molecular design. However, only a few have
had an immediate impact on drug development since computational results may not be confirmed
experimentally. This systematic review aims to summarize the different deep learning architectures
used in the drug discovery process and are validated with further in vivo experiments. For each
presented study, the proposed molecule or peptide that has been generated or identified by the deep
learning model has been biologically evaluated in animal models. These state-of-the-art studies
highlight that even if artificial intelligence in drug discovery is still in its infancy, it has great potential
to accelerate the drug discovery cycle, reduce the required costs, and contribute to the integration of
the 3R (Replacement, Reduction, Refinement) principles. Out of all the reviewed scientific articles,
seven algorithms were identified: recurrent neural networks, specifically, long short-term memory
(LSTM-RNNs), Autoencoders (AEs) and their Wasserstein Autoencoders (WAEs) and Variational
Autoencoders (VAEs) variants; Convolutional Neural Networks (CNNs); Direct Message Passing
Neural Networks (D-MPNNs); and Multitask Deep Neural Networks (MTDNNs). LSTM-RNNs were
the most used architectures with molecules or peptide sequences as inputs.

Keywords: drug discovery; drug design; artificial intelligence; machine learning; deep learning;
biological evaluation; animal model; in vivo

1. Introduction

The key aims to curing diseases using de novo drug development involves the molec-
ular design of new chemical entities with desired properties or the identification of known
molecules that can modulate the effect of a disease. The generalized steps in the drug dis-
covery pipeline include target discovery, lead compound discovery and synthesis pathways,
and lead optimization [1]. This process can take up to five years, and 5000–10,000 candidate
compounds are tested to achieve a single approved drug. On average, it takes 10–15 years
with a total cost of $2–3 billion for a new drug to reach the market [2,3]. Once a target has
been identified, the pharmaceutical industry and academic centers follow several work-
flows to identify molecules that possess the characteristics that render them acceptable as
drugs [4]. However, the chemical space is vast (i.e., 1023–1060), and the exploration of a
molecule balancing multiple properties, as well as safety and potency against a specific
target, is challenging [5].
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Computer-aided drug design (CADD) methods have become a powerful tool in the
process of drug discovery and development [6]. When the structure of the target is available,
structure-based drug design methods can be implemented. Biological target structures
can be defined with techniques such as X-ray, NMR, and electron microscopy [7]. When
the three-dimensional structure of the target is unknown, a ligand-based strategy such as
quantitative structure–activity relationships (QSAR) and pharmacophore modeling [8] can
be followed. The increasing amount of available chemical and biological data combined
with the evolution of automation technology has generated great efforts to design and
apply novel machine learning methodologies in the drug discovery pipeline [1]. All stages
of drug discovery have benefited from the utilization of machine learning algorithms and
software to identify novel targets, improve small-molecule compound design, etc. [1–8].

Deep learning is a subdivision of machine learning that allows computational models
to learn representations of data with multiple levels of abstraction [9]. Big data combined
with the more powerful computer hardware that allows faster parallel data processing,
such as graphical processing units (GPUs), allows deep learning to be successfully ap-
plied in a range of applications. These include, but are not limited to, speech recognition,
computer vision, and natural language processing (NLP). The basis of deep architectures
is Artificial Neural Network (ANNs) systems with many layers of nonlinear processing
units for learning data representations [10]. Deep learning uses a higher number of hidden
layers, whereas traditional Neural Networks (NNs) use one or two hidden layers [11]. Each
nonlinear module transforms the previous representation into a higher-level representation.
With the composition of these architectures, very complex features can be learned [12]. The
main deep learning architectures can be classified into one of the three categories: Convo-
lutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), and Pretrained
Unsupervised Networks (PUNs) [12]. CNNs differ from traditional NNs as they perform
convolution in at least one of their layers. RNNs allow the connection among neurons in
the same hidden layer to form a directed cycle. RNNs can take sequential data, so they are
used for time-dependent tasks and language modeling. PUNs are deep learning models
that use unsupervised learning to train the hidden layers and achieve better fitting of the
data. The two most used PUNs architectures are Generative Adversarial Networks (GANs)
and Autoencoders (AEs) [12].

Recently, deep learning methods have gained increasing popularity in the fields of
cheminformatics, drug discovery, and drug design. By utilizing nonlinear models in the
hidden layers of the deep NNs, complex patterns can be extracted, providing a better
understanding of the very complex contexts of biological space [13]. Deep learning can be
employed for the prediction of drug–target interactions (DTIs), de novo molecular design,
synthesis prediction, etc. [14–16]. While several studies have reviewed the contribution
of deep learning in drug development, in vivo evaluation of the published algorithms is
limited. The aim of this systematic review is to enumerate and highlight the deep learning
methodologies that have been applied in the drug discovery or drug design process. Our
focus is on the models that have identified or generated molecules that have been validated
in animal models. Figure 1 depicts the steps of the general workflow followed by the
scientific studies covered in this review.
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Figure 1. The workflow followed by most studies presented in this review. It contains molecules, 
molecular encoding, a deep architecture model, virtual screening, and/or molecular docking to re-
duce the number of candidate compounds to a final set of compounds. These are synthesized and 
tested for their activity in vitro and in vivo. 

2. Materials and Methods 
2.1. Protocol and Registration 

This systematic review was registered on PROSPERO, the international prospective 
register of systematic reviews, of the National Institute for Health Research. The review 
question was stipulated as: “Which Deep Learning methodologies have been used for 
drug design or drug discovery and have been validated with in vivo studies?” The proto-
col for the systematic review can be found at [17]. The Systematic Reviews and Meta-
Analyses (PRISMA) checklist for systematic reviews was applied [18]. 

2.2. Eligibility Criteria 
We considered published studies which utilized a deep learning methodology to 

drug discovery and drug design, and the resulting molecules of the study have been val-
idated in vivo. We considered studies that investigated small molecules and peptides as 
potential therapeutic candidates for a specific disease. All publications were written in 
English and published between January 2018 and April 2022. Further details on the char-
acteristics of individual studies are covered in Section 3. Studies that do not include the in 
vivo evaluation of the selected compounds by the deep learning method were excluded. 
Studies that did not contain information about the deep learning method developed were 
also excluded. 

2.3. Study Information Sources and Search Terms 
The sources for performing the literature review were Scopus [19], PubMed [20], 

SciFinder [21], and Google Scholar [22]. These databases were selected because they con-
tain an abundance of publications and peer-reviewed papers. The search on these data-
bases was completed in April 2022. The terms that were used to search abstracts, titles, 
and keywords of papers were: 

Figure 1. The workflow followed by most studies presented in this review. It contains molecules,
molecular encoding, a deep architecture model, virtual screening, and/or molecular docking to
reduce the number of candidate compounds to a final set of compounds. These are synthesized and
tested for their activity in vitro and in vivo.

2. Materials and Methods
2.1. Protocol and Registration

This systematic review was registered on PROSPERO, the international prospective
register of systematic reviews, of the National Institute for Health Research. The review
question was stipulated as: “Which Deep Learning methodologies have been used for drug
design or drug discovery and have been validated with in vivo studies?” The protocol for
the systematic review can be found at [17]. The Systematic Reviews and Meta-Analyses
(PRISMA) checklist for systematic reviews was applied [18].

2.2. Eligibility Criteria

We considered published studies which utilized a deep learning methodology to
drug discovery and drug design, and the resulting molecules of the study have been
validated in vivo. We considered studies that investigated small molecules and peptides
as potential therapeutic candidates for a specific disease. All publications were written
in English and published between January 2018 and April 2022. Further details on the
characteristics of individual studies are covered in Section 3. Studies that do not include the
in vivo evaluation of the selected compounds by the deep learning method were excluded.
Studies that did not contain information about the deep learning method developed were
also excluded.

2.3. Study Information Sources and Search Terms

The sources for performing the literature review were Scopus [19], PubMed [20],
SciFinder [21], and Google Scholar [22]. These databases were selected because they
contain an abundance of publications and peer-reviewed papers. The search on these
databases was completed in April 2022. The terms that were used to search abstracts, titles,
and keywords of papers were:

1. (“drug discovery” OR “drug design” OR “de novo” OR “ligand-based” OR “structure-
based” OR “virtual screening” OR “protein-ligand interaction *” OR “protein-protein
interface”) AND
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2. (“deep learning” OR “neural network” OR autoencoder * OR “generative adversarial
network” OR “deep reinforcement learning” OR “graph attention”) AND

3. (“in vivo” OR “animal” OR “mouse” OR “murine” OR “rat”)

A correct balance between sensitivity and specificity of the research was identified,
in order to maximize high quality data retrieval [23]. A sensitive search provides the
researchers with the opportunity to lower the risk of relevant data loss, however, more
irrelevant literature is retrieved as well, increasing the time for filtering and screening [23].
On the other hand, specificity decreases the retrieval of irrelevant results and there is
a substantial amount of time saving for filtering and screening the results. The draw-
back is that the more specific the search becomes, the higher the risk of missing relevant
literature [23,24]. In the case of this systematic review, an example of a specificity search is
the operator is: de novo AND autoencoder. The respective example of a sensitive search
is: drug discovery AND neural network AND in vivo. As indicated in Section 2.4, from a
total of 283 papers, only 12 were selected for this systematic review. The low percentage
of papers that meet the eligibility criteria is attributed to the inclusion of the search term
“in vivo”, which dramatically increased the produced results without necessarily increasing
the number of eligible papers. Several papers contained the search term “in vivo” without
containing an experimental evaluation of the model. On the other hand, removing this
specific search term could reduce the number of identified papers with a risk of losing
articles of interest. An article could possibly present in vivo studies to verify the in silico
results and not describe the selected animal model in the abstract.

2.4. Study Selection

The titles and abstracts of papers obtained using the search terms presented in
Section 2.3 were collected. Publications that did not meet the eligibility criteria were
removed. The remaining articles were carefully studied and examined. Those satisfying
the inclusion criteria were characterized and included in the present review. A total of
464 papers were initially identified. Following the removal of duplicates, 283 papers re-
mained. All abstracts were screened, resulting in 36 papers that were retained for full text
screening. A list of selected papers for full text screening can be found in the Supplementary
Material. Although a lot of studies present interesting results on the application of deep
learning models in drug design, “real world” application examples of published algorithms
are still relatively rare. Only 12 out of 36 papers present a deep learning model whose
results are validated in vivo. Most of the retrieved studies presented the possibilities of
deep learning in drug discovery, highlighting the importance of further in vitro or/and
in vivo evaluation [25]. Other studies took their research one step further and confirmed the
in silico results with in vitro experiments [26]. Studies that continued the evaluation of the
in silico results with in vivo experiments were scarce. Deep learning models can accelerate,
for example, the hit identification and lead optimization steps, which are present in the
early drug discovery phase. The in vitro and in vivo studies are integral in the preclinical
phase of the drug development pipeline. The existence of both early-stage research and
preclinical studies is not very usual and research is probably conducted by scientists from
several fields. As a result, the papers that met the criteria of this review—validating the
result of a deep learning algorithm with in vivo experiments—are very limited. However,
even the existence of those few published papers is essential for the direct evaluation of
the contribution of deep learning methods in drug discovery and development. Papers
considered in each stage of the review process are shown in Figure 2.

2.5. Outcomes

This review includes the deep learning architectures developed in each study, the
molecular representation, the selected animal model for the validation of the identified
compounds, the drug/compounds reported by each study as the most effective in an
animal model, and the pipeline followed in each study.
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Figure 2. A summary of the papers considered in each stage of the review process. Studies combining
early-stage drug discovery and preclinical studies are very limited, resulting in 12 studies to be
included in the review.

3. Results

We first present the fundamentals of deep learning algorithms, and we review the latest
developments in the application of various models in drug discovery. These include not
only in silico applications, but also established cases with experimental verification results.

3.1. Applied Deep Learning Models Overview

The deep learning models presented here are divided into four categories, includ-
ing the models based on AEs, GANs, RNNs, and CNNs. The basic principles and re-
cent developments of these models are described together with highlights of their use in
drug discovery.

3.1.1. Autoencoders

AEs are deep learning structures for unsupervised learning that consist of an encoder
and a decoder. They are a type of feed-forward neural network with an extra bias for calcu-
lating the error of reconstructing the original input [12]. They use unsupervised learning
for dimensionality reduction, compressing the input in the hidden layer, and generating
an output that is close to the original input as much as possible (Figure 3). One variant of
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AEs is the Adversarial Autoencoder (AAE). AAE is a probabilistic autoencoder that uses
Generative Adversarial Networks (GANs) to perform variational inference by matching
the aggregated posterior distribution of the latent representation of the autoencoder to an
arbitrary prior distribution [18]. Adversarial training is used for discriminatively predicting
whether samples originate either from hidden code or a user-specified distribution [12].
AAE can be used for semi-supervised classification, unsupervised clustering, dimension-
ality reduction, etc. [12,27]. A Variational Autoencoder (VAE) assumes that the data are
sampled from an arbitrary statistical distribution [28]. It is trained in an unsupervised
manner with an encoder that provides a low-dimensional latent representation of the
data vector, and a decoder which attempts to reconstruct the input vector. The encoder
transforms its input into the parameters of a multidimensional statistical distribution, and
sampling occurs where a point is drawn from the encoded distribution and fed into the
decoder [28]. It can be seen as a probabilistic version of AE that can generate new data
and transform existing data within an encoding–modification–decoding scheme [29]. A
VAE which directly encodes from and decodes to discrete data represented as a parse tree
from a context-free grammar is called Grammar Variational Autoencoder (GVAE). This
architecture ensures that the generated outputs of discrete data are syntactically valid [30].
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Figure 3. An autoencoder consists of an encoder functionality, which translates an input into a latent
space, and a decoder, which translates the internal latent space back to the original input space. The
goal of the autoencoder is to compute a reconstruction x’ with minimal error compared to the original
input x.

AEs have been widely used in de novo drug design [31]. The encoder converts the
discrete representation of a molecule into a multidimensional continuous representation,
and the decoder converts these continuous vectors back to discrete molecular representa-
tions. This model allows the exploration of the chemical space through the development
of optimized chemical structures. Schultz et al. [32] developed a VAE-based software that
generated novel antagonists of the NMDA receptor. Data obtained in silico and experimen-
tally were combined to train and refine the model, improving its predictive accuracy. A
conditional VAE was employed to develop a new molecular design strategy that generated
molecules with the desired target properties [33]. The AAE is a method that can show
good performance in the generation of new compounds while compressing the data to
the latent space. An AAE was developed for the identification and generation of new
compounds in oncology [34]. The same group compared the VAE and AAE as a molecular
generator model in terms of the reconstruction error and variability of the output molecular
fingerprints and published an improved model named druGAN [35]. Compared with
the VAE model, the AAE model showed better capacity and efficiency in generated new
molecules with specific anticancer properties.
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3.1.2. Generative Adversarial Networks

In GANs, two neural networks are trained simultaneously: the generator and the
discriminator (Figure 4). The objective of the generator is to create an output that is so
similar to the real one that it makes it difficult for the discriminator to differentiate be-
tween real and fake data [10]. GANs have gained attention in applications such as image
reconstruction, segmentation, detection, and classification [12,36]. There are various GAN
architecture applications used in drug discovery [37]. Sanchez-Lengeling et al. [38] invented
the Objective-Reinforced Generative Adversarial Network for Inverse-design Chemistry
(ORGANIC)—a framework of previous published Objective-Reinforced Generative Ad-
versarial Networks (ORGAN) architecture [39]. With the exception of solubility, ORGAN
performed well in comparison to naïve Reinforcement Learning (RL) in terms of drug
likeliness and synthesizability [39]. The main shortcoming of ORGANIC was the large
number of invalid molecules and the numerous repetitions in the valid molecules. Another
architecture called reinforced adversarial neural computer (RANC) was developed for de
novo drug design combining GANs and RL. RANC used a differential neural computer—a
type of RNN with external memory—as a generator. The existence of an explicit memory
bank mitigated common problems found in adversarial settings [40].
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Figure 4. Generative Adversarial Network (GAN): Two independent competing networks are trained
simultaneously: the Generator (G), which takes an input z from probability distribution p(z) and
generates data G(z); and the Discriminator (D), which receives as input the training data or the output
from the generator G(z) and tries to predict whether the input is real or generated.

3.1.3. Recurrent Neural Networks

RNNs, like feed-forward networks, may not have cycles among conventional edges,
but edges that connect adjacent time steps (Figure 5). These are called recurrent edges and
introduce a notion of time to the model. RNNs can pass information across sequential steps
and process data one element at a time. Thus, the input features can be nondependent
sequences of elements [41]. An input is consecutively processed and a connection carrying
the output from the previous step into the current step is introduced. As the number
of steps increases, RNNs face the problem of vanishing or exploding gradients during
backpropagation, thus impairing the training problem. The effect of the input on the hidden
layer may decay or blow up, causing the so-called vanishing gradient problem. Many
attempts have been made to reduce this problem, with long short-term memory (LSTM)
and gated recurrent units (GRU) being the most favored approaches [42,43].

Several examples of the employment of RNNs in de novo drug design have been
reported in the literature [44–46]. In the work of Olivecrona et al. [44], one of the first
attempts to produce a generative model for molecular de novo design is described. A
policy-based RL approach was proposed to fine-tune RNNs for generating molecules with
given desirable properties. Training of an RNN was performed through maximum likeli-
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hood estimations of the next token in a target sequence of given tokens from the previous
steps. Once the RNN was trained, it was used to generate new sequences. One year later,
Popova et al. [45] proposed a stacked LSTM-RNN model which implemented RL to gener-
ate new chemical structures with desired physical and/or biological properties. Transfer
learning (TL) approaches were also used to fine-tune the predictions of RNNs for specific
molecular targets [47]. Gupta et al. [47] trained an LSTM-RNN model to generate libraries
of valid SMILES strings. The model was fine-tuned with TL to generate molecules that were
structurally similar to drugs with known bioactivities against a particular biological target.
Similar to Popova et al. [45], Gupta et al. combined RNN with another technique to reduce
the error and unwanted bias. A scaffold-based deep generative model was proposed by
Arús-Pous et al. without the implementation of RL or TL [48]. An LSTM-RNN generated
scaffold–decorations tuples and another LSTM-RNN decorated the scaffolds. The trained
models became synthetic-chemistry-aware and generated molecules that had synthetically
feasible decorations without the need to combine it with other techniques [48].
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Figure 5. Architecture of recurrent neural networks. The inputs are represented by xt. For the
standard RNN, the hidden state at time step t is represented as st.; is the “memory” of the network,
and for time step t, st is calculated based on the previous hidden state and the input at the current
step: st = f(Uxt + Ws(t − 1)). The function f is usually a nonlinearity, such as tanh or Rectified Linear
Unit (ReLU).

3.1.4. Convolutional Neural Networks

CNNs are a specialized type of NNs that perform convolution in at least one layer [12].
The first few stages of the CNN have two types of layers: the convolutional layers and
the pooling layers (Figure 6). The convolutional layers generate new images called feature
maps, and each unit is connected to local patches in the feature map of the previous layer
through weights [12]. The created feature maps are processed through a nonlinearity such
as the ReLU activation function. The role of the pooling layer is to reduce the size of
the input image, as it merges semantically similar features into one. Typically, a pooling
unit computes the maximum of a local patch into one feature map. Different convolution,
nonlinearity, and pooling stages are stacked, followed by fully connected layers. CNNs
have a large range of applications in image classification, video recognition, and image
analysis [9,49]. CNNs have been used in drug design to improve the performances of
the ligand-based virtual screening process [50] or the prediction of DTIs [51]. An efficient
variant of CNNs on graphs is a graph convolutional network (GCN). GCNs stack layers
of learned first-order spectral filters followed by a nonlinear activation function to learn
graph representations [52]. GCN models are a type of NN that can leverage the graph
structure and combine node information from the neighborhoods in a convolutional manner.
Ryu et al. [53] proposed an attention- and gate-augmented GCN for the prediction of
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molecular properties. For the same purpose, an edge-attention-based multirelational GCN
was developed [54].
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Figure 6. Schematic diagram of a CNN. A convolutional layer followed by a pooling layer forms a
convolutional module. Each module learns to identify features while preserving spatial relationships.
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predicts the class in a classification problem, based on the features extracted in previous stages.

3.2. Generating Compounds and Searching Chemical Libraries

The goal of drug discovery is to discover new chemical structures with desired phar-
macological properties. De novo molecular design aims to leverage computational methods
to automate the molecular generation process and reduce the time of searching in a vir-
tually infinite chemical space [55]. Most existing studies of generative models use the
Simplified Molecular Input Line Entry System (SMILES), which is a line notation en-
coding topological and structural properties of molecules [56], or molecular graphs as
molecular representation.

One notable study that includes the biological evaluation of the in silico results was
published by Zhavoronkov et al. [57], who introduced a generative tensorial RL pipeline
named GENTRL. The model employed the variational inference, tensor decomposition,
and RL, combined with three different self-organizing maps (SOMs), which were used as
reward functions. GENTRL successfully discovered potent inhibitors of Discoidin domain
receptor1 (DDR1). Within 23 days, 30,000 unique and valid structures were obtained using
the generative model, and six compounds were selected for further examination. By day 46,
these molecules had been synthesized and tested for their in vitro inhibitory activity. One
compound was tested in mice and showed favorable pharmacokinetics, demonstrating
the potential of the method for effective molecular design [57]. Compounds with a potent
DDR1 inhibition profile were also designed by Tan et al. [58]. The authors identified a series
of FGFR inhibitors, including compound DC-1, which was selected as a starting point for
developing DDR1 inhibitors. A scaffold-based molecular design method was developed,
consisting of the matched molecular pairs algorithm proposed by Arús-Pous et al. [48]
and an AE as generative model. The most potent compounds were selected based on the
kinase selectivity and molecular docking scores [58]. To evaluate the quality of generated
molecules, the synthetic accessibility score, the water–octanol partition coefficient (clogP),
and the molecular weight of generated molecules were compared with the published DDR1
inhibitors. These properties were consistent with DDR1 inhibitors, showing the ability of
the model to design molecules with desired properties. Two promising compounds were
selected for synthesis and experimental validation, and one showed promising results in
the dextran sulfate sodium-induced mouse colitis model [58].

Another successful deep generative model, apart from AE, is the RNN. After training
an RNN with a large number of SMILES sequences, the model can generate valid SMILES
strings that may not be present in the training dataset. The LSTM models have exhibited
significant improvements over the RNN and tend to replace RNNs in drug discovery [47].
Several studies have applied the strategy of TL, training the model with a larger dataset,
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and then fine-tuning it with a more specific dataset. An LSTM-based generator can be
trained with a chemical database and fine-tuned to generate molecules with desired ac-
tivity against a target. Yang et al. [59] trained an LSTM-based neural network [60] using
200,000 compounds from ChEMBL database. The model was fine-tuned with a smaller
dataset of published p300 inhibitors and macrocycle molecules with potential use in several
targets to generate novel p300/CREB-binding protein (CBP) lead compounds. A focused
library of 672 chemical structures was generated. After filtering, the top compounds were
submitted according to their docking score for visual inspection and further systematic op-
timization. A potential candidate, B026, showed high inhibitory activity against p300/CBP
in animal models of human cancer [59]. Similarly, Tan et al. [61] used an LSTM to design
antipsychotic drugs. A pretraining was performed to ensure that the LSTM could gener-
ate valid molecules, and then the model was fine-tuned to design molecules that target
D1/D2/5-HT1A/5-HT2A receptors. Tan et al. combined the generative model with a mul-
titask deep neural network (MTDNN) to predict whether the generated molecules target
multiple G-protein coupled receptors (GPCRs) (bioactivities pIC50, pEC50). Molecules with
high predictive activity were used to expand the fine-tuning set at each iteration during the
TL process. The validity of the generated compounds was 97% and the novelty was 87%.
The deep discriminative model achieved a test model accuracy expressed as an r2 of 0.71
and mean absolute error (MAE) of 0.47 for the IC50 dataset and an r2 of 0.71 and MAE of
0.54 for the EC50 dataset. A hit compound was obtained, and analogs of hit compounds
were also designed. The activity profiles of 6 analogs were characterized in vitro. Then,
the antipsychotic activities of the selected compounds were studied in the phencyclidine-
induced locomotor hyperactivity test in ICR mice, showing good potential for subsequent
development [61].

Comparison of the deep generative models for de novo molecular design in [57,59],
and [61] reveals that the models are pretrained to learn the general SMILES vocabulary and
then fine-tuned to generate DDR1 inhibitors, p300-CBP inhibitors, and GPCR inhibitors,
respectively, using a smaller set of specific molecules. Generated compounds showed
strong inhibitory activity, with an IC50 of 10 nM to DDR1, 1.8 nM to p300/9.5 nM to
CBP, and 1.6 nM to 5-HT1A for each study. In order to optimize the generated molecules,
Zhavoronkov et al. [57] and Tan et al. [61] combined RL into their models. In [57], the
reward of the RL was based on a trending SOM that scored compound novelty, a general
kinase SOM to distinguish kinase inhibitors from other molecules, and specific kinase SOM
to isolate DDR1 inhibitors. In [61], the MTDNN model provides reward signals to generate
more attractive molecules. A different approach was followed in [58]: the selective DDR1
inhibitors were generated using a potent scaffold and applying decorations, resulting in
the identification of a compound with a potent DDR1 inhibition profile (IC50 of 10.6 nM).
This study implemented a global attention mechanism to assign different focus to the
information output from the hidden layers of the RNN.

Although many deep learning models use SMILES to represent molecules [59,61],
this notation has limitations. For example, a molecule may be represented by multiple
different SMILES strings. Moreover, SMILES may be too simple to deliver the topologi-
cal information of molecular structures. Molecular graphs intuitively express molecules
with 2D topological information and are widely adopted for molecular representation for
generative models and predictive models [55]. GCN models in drug-related applications
construct graph representations of a molecule that include information about the chemical
substructures by summing up all the features of all adjacent atoms [13]. GCNs learn their
own expert feature representations directly from the data, and they have been shown to
be very capable of capturing complex relationships given sufficient data [62]. A model
that belongs to this category was published by Yang et al., who proposed an advanced
model which adopts a directed message-passing paradigm for property prediction [62]. The
direct-message-passing neural network (D-MPNN) matched or outperformed traditional
models that use fixed molecular descriptors or other graph neural networks (GNNs). The
main difference implemented into their work was that instead of using messages associ-
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ated with vertices (atoms), the D-MPNN used messages associated with directed edges
(bonds). Stokes et al. [63] utilized this D-MPNN in structure-based antibiotics prediction
and became the first reported study where it explored with deep learning a large-scale
chemical library for the identification of an antibiotic. A drug library of FDA-approved
drugs and additional natural products was screened against E. coli, resulting in a training
dataset of molecules binarized as hit or non-hit. This dataset was used to train a D-MPNN
for a binary classification model that predicts the probability of whether a new compound
inhibits the growth of E. coli or not. The resulting model achieved a receiver operating
characteristic curve–area under the curve (ROC-AUC) of 0.896 on the test data. An en-
semble of trained models was used in molecules from the Drug Repurposing Hub [64].
After empirically testing, authors proposed halicin as a candidate antibiotic: a preclinical
nitrothiazole under investigation as a treatment for diabetes. In vitro studies showed that
halicin had a broad-spectrum bactericidal activity and effectively treated various infections
in murine models [63]. Additionally, from a set of >107 million molecules from ZINC and
WuXi databases, the model identified eight antibacterial compounds that were structurally
distant from known antibiotics. This study by Stokes et al. [63] indicates the potential of
applying machine learning in antibiotic discovery, enabling the expansion of the antibiotic
arsenal and increasing the rate at which new molecular entities are discovered. Following
their paradigm, Wang et al. used the same D-MPNN model [62] for the identification of
Cav1.3 antagonists as Parkinson’s-disease-relevant drug candidates [65]. They engineered
a cell-based drug discovery platform for multiplexed analysis of Cav1 channel blockers,
which was used as a pilot test for high-throughput screening (HTS) of plant essential oils.
To identify the putative active constituents of the essential oils, in silico virtual screening
was performed and validated with the D-MPNN with an ROC-AUC of 0.978. Experimental
testing of five candidate compounds confirmed that sclareol showed Cav1.3 antagonistic
activity [65].

Deep learning has also been employed for the prediction of drug efficacy and the
underlying pathogenic mechanisms. Using the drugs and the corresponding transcriptional
profiles as the input, Zhu et al. [66] developed the deep-learning-based efficacy prediction
system (DLEPS), which predicts the drug efficacy from changes in transcriptional profiles.
DLEPS utilizes chemical libraries and gene signatures for the identification of candidate
disease treatment. In this algorithm, SMILES strings were encoded into a latent space
through a GVAE, after passing from a CNN and a dense network was used for the prediction
of changes in transcriptional profiles. The changes in transcriptional profiles from both the
training and test sets were extremely well fitted with an ROC-AUC around 0.90 and 0.74,
respectively. The study explored various gene signature inputs, including a dual up-/down-
regulated gene set from obesity studies, a dataset for multiple phenotype manifestations
in hyperuricemia, and independent disease stage datasets in nonalcoholic steatohepatitis,
resulting in the top drug candidates which were further tested experimentally [66].

3.3. De Novo Peptide Generation

For a model to be used in the discovery of drug-like molecules, it must first be trained
to sort through the many characteristics of molecules and determine which properties
should be retained or suppressed. Similarly, deep learning methods can be used in peptide
science to perform various tasks, such as peptide identification, property prediction, and
de novo peptide generation [67]. Müller et al. [68] presented a generative LSTM-RNN for
combinatorial de novo peptide design. The LSTM-RNN was trained on pattern recognition
of helical antimicrobial peptides (AMPs) and the trained model was used for sequence gen-
eration, generating 91.4% valid unique sequences. Of these sequences, 82% were predicted
to be active AMPs compared to 65% of randomly sampled sequences. This model was used
by Bolatchiev et al. [69] for combinatorial de novo AMP design and in vivo evaluation of
the most promising generated peptides. The authors differentiated the training set from
the original publication presenting the generative model [68] and used all AMPs, not only
helical peptides. Using an online tool, the generated novel peptides were categorized to
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define the AMPs with an accuracy of 87%, resulting in a total of 35 selected sequences from
200 generated sequences. Further computer screening of generated sequences resulted in
5 peptides that were active against various microorganisms and were synthesized for fur-
ther in vitro and in vivo studies [69]. Apart from sequence-based models like RNNs, VAEs
have also been used for peptide generation [70]. Similarly to Bolatchiev et al., Das et al.
trained a generative model to design AMPs with low toxicity. They utilized a large unla-
beled dataset obtained from UniProt to train a VAE and a Wasserstein autoencoder (WAE).
To sample peptides with desired properties, authors fitted a Gaussian mixture density
estimator and linear property predictors on latent variables of labeled peptide data. Then,
they used a rejection sampling scheme to sample desired latent variables and control the
generation of sequences. Das et al. showed that the combination of their VAE framework
with molecular dynamics simulations and wet-lab experimentation yielded two novel
AMPs within 48 days, highlighting the potential of AEs in peptide drug discovery [70].
This study shows that even training the deep generative AE with a large unlabeled dataset,
the latent space is informative of peptide properties. As a result, all AMPs generated are
unique, valid, and optimized.

By combining a deep generative model with optimization/searching methods such as
genetic algorithms, Bayesian optimization, etc., the generation of peptides can be further
improved. Schissel et al. combined a generative model, a prediction model, and a genetic
algorithm to generate optimized nuclear-targeting miniproteins [71]. An RNN-based
generator was used to produce novel cell-penetrating sequences. A CNN predictor was
then used to estimate the activity for a given sequence, and a genetic algorithm was
used to optimize the sequence. The generated sequences by the LSTM-RNN model were
optimized in the predictor–optimizer loop. The predicted miniproteins where characterized
as nontoxic and effectively delivered antisense cargo in animal studies [71]. For the inverse
design model, multiple combinations of LSTM and nested LSTM layers were combined,
achieving an accuracy of 76%.

3.4. Interaction Prediction

Interaction prediction plays a vital role in drug discovery. According to polypharma-
cology, most drugs have multiple effects on both primary and secondary targets. On the
other hand, neural networks can simultaneously learn the properties of many types of data.
Thus, by combining deep learning with drug-protein(disease)-based networks, the drug
selectivity or the protein promiscuity can be evaluated [72]. DTIs identify the interaction
sites between drug compounds and protein targets [73]. Furthermore, protein–protein in-
teractions are particularly important in predicting drug development for precisely locating
interacting interfaces in pathway-regulatory approaches, as well as drug–drug interactions
(DDIs) for identifying potential side effects and discovering novel applications for finding
new uses of existing drugs.

Machine learning methods, especially deep learning, are widely applied to DTI pre-
dictions. A crucial step in DTI prediction is the feature extraction step of drug–protein
networks. AEs are commonly used for feature extraction. In the studies of [74,75], a
stacked AE was used to generate low-dimensional, compressed vectors from the original
high-dimensional vectors. Zeng et al. [74] proposed a deep learning methodology for new
target identification among known drugs. A stacked AE encoded into low-dimensional
feature vectors the relational properties, association information, and topological context of
each node of a heterogeneous drug–gene–disease network. Topotecan was identified as a
direct inhibitor (with an IC50 = 0.43 µM) of human retinoic-acid-receptor-related orphan
receptor-gamma t (ROR-γt) with therapeutic effects in a multiple sclerosis mouse model.
The proposed model, named deepDTnet, achieved high accuracy (ROC-AUC of 0.963).
Similarly, Zhao et al. developed a DTI prediction framework [75]. A stacked AE was
used to achieve the optimal mapping of the drug space to the protein space and to obtain
low-dimensional feature vectors. The resulting feature vectors integrated the attribute
characteristics, interaction information, and the network topology of each target. The low-
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dimensional feature vectors were used to train the model to obtain the optimal mapping
space, and a CNN was used to predict DTIs. The experimental results showed that DLDTI
achieved promising performance, with ROC-AUC of 0.917. The new DTIs were identified
by ranking candidates according to their optimal mapping space proximity. The predicted
targets of tetramethylpyrazine were validated on a novel atherosclerosis model [75].

3.5. Databases for Drug Discovery

In this section, we provide a summary of databases used for training the selected
models presented above. In Table 1, databases used in Section 3.2, regarding models for de
novo molecular design and molecular property prediction, and the size of training datasets,
are presented. The ZINC database [76,77] contains a curated collection of commercially
available chemical compounds prepared for virtual screening. The new version ZINC-15
contains over 120 million purchasable “drug-like” compounds, and all molecules are in
biologically relevant, ready-to-dock formats. The ZINC database is used as a pretraining
dataset in [57,61]. Zhavoronkov et al. used the ZINC database for the initial training of
a VAE. The pretraining dataset is derived by filtering the ZINC database and removing
structures containing atoms other than carbon, nitrogen, oxygen, sulfur, fluorine, chlorine,
bromide, and hydrogen. In [61], a collection of molecules from ZINC was used to first train
the LSTM model to ensure that it can generate rational “drug-like” molecules. The ZINC-15
database was used by Stokes at al. for virtual screening as well. The authors first trained
a model with FDA-approved drugs and predicted the antibiotic activity of >170 million
molecules from ZINC-15, identifying eight antibacterial compounds that are structurally
distant from known antibiotics [63].

Another commonly used database for drug discovery is ChEMBL [78], which com-
prises bioactive molecules with drug-like properties. The database provides 5.4 million
bioactivity measurements for more than 1 million compounds and 5200 protein targets. The
ChEMBL database and Integrity database [79], which are a collection of about half a million
bioactive compounds, were used by Zhavoronkov et al. for fine-tuning the VAE to generate
DDR1 kinase inhibitors. The ChEMBL database was filtered to contain only DDR/FGFR
inhibitors and used as a training set by Tan et al. [58]. A scaffold-based library was used
by slicing these inhibitors and obtaining a set of 3603 million scaffold–decoration tuples.
ChEMBL was used for pretraining and fine-tuning in [59]. For pretraining, molecules
that interact with human “single-protein” targets were retained and by fine-tuning with
p300 inhibitors, the LSTM-based molecular generator generated potential p300 inhibitors.
Other databases used for the training of deep learning models with a lower frequency are
presented in Table 1.

Table 1. A list of data used for training models for de novo molecular design and molecular property
prediction. The dataset size is presented in number of compounds.

Reference Dataset Dataset Size

GENTRL [57]

ZINC 904,801
Integrity, ChEMBL, literature (DDR1 kinase inhibitors) 1370

Integrity, ChEMBL (Kinase inhibitors) 23,378
Integrity, ChEMBL (Non-inhibitors) 16,692

Integrity (Biological active molecules) 17,000
[58] ChEMBL (DDR/FGFR inhibitors) 902

[59]
ChEMBL 194,560

ChEMBL (p300 inhibitors) 135
ChemBridge [80], Asinex[81] 38,176

[61]
ZINC 310,703

GLASS [82], Reaxys, SciFinder [21] 10,286
DLEPS [66] L1000 project—Library of Integrated Network-Based Cellular Signatures [83] 17,051

[63]
FDA (growth inhibition of E. coli) 2335

Drug Repurposing Hub [64] 6111
WuXi, ZINC >107 million

[65] Literature search (Calcium channel blockers)
MUV [84] 240 400
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The databases used in the studies presented in Sections 3.3 and 3.4 are shown in Table 2.
While there are publicly available datasets for protein informatics with labeled activity,
their size is limited. For the generation of peptides with antimicrobial activity, which was
the goal in studies of Bolatchiev et al. [69] and Das et al. [70], labeled negative data are
often more scarce than positive. Bolatchiev et al. trained an LSTM-based generative model
using the APD3 database [85]. The generated sequences were further filtered using online
available tools to predict AMPs. A different approach was chosen by Das et al., who trained
the generative model using unlabeled sequences from the UniProt DB [86].

Table 2. A list of data used for training models for de novo peptide design and DTI prediction.

Reference Dataset Dataset Size

[69] APD3 3100 sequences
[71] CPPSite2.0 1150 19,800 sequence-next character pairs

CLaSS [70] Uniprot DB AmPEP/DBAASP/ToxinPred ~1.7 million sequences 9000 sequences

deepDTnet [74]

DrugBank/TTD/PharmGKB 5680 DTIs
15 bioinformatics DBs 16,133 PPIs

DrugBank 132,768 DDIs
repoDB, DrugBank, DrugCentral 1208 DDNs

MetaADEBD, CTD, SIDER, OFFSIDES 263,805 DSENs
DLDTI [75] DrugBank 904 drugs 613 targets

Labelled data collected from AmPEP [87], DBAASP [88], ToxinPred [89] were used for
training a classifier to distinguish sequences with AMP and non-AMP, toxic and non-toxic.
Using a larger training dataset, Das et al. improved the generalizability of the generative
model and controlled the generation of desired peptides using a smaller, labelled dataset.
In [71], the goal was to generate nuclear-targeting abiotic miniproteins, thus, a more specific
database containing cell-penetrating peptides—named CPPSite 2.—was used [90].

Section 3.4 presents models focused on DTI prediction. DrugBank [91] is a comprehen-
sive database that contains molecular information about drugs and was used to collect data
in both studies [74,75]. DrugBank contains DTIs, DDIs, drug–disease networks (DDNs), etc.
Therapeutic Target DB (TTD) [92] contains information about known therapeutic proteins
and nucleic acid targets described in the literature. DrugBank, TTD, and PharmGKB [93]
were used in [74] for the DTI network. MetaADEBD [94], CTD [95], SIDER [96], and OFF-
SIDES [97] are databases containing information on drugs and adverse effects, and were
used in [74] to design the drug–side effect network.

3.6. Drug Representation

String-based representations are the most frequent option for molecular encoding,
among which the SMILES strings are the mostly used drug representation. As it is a
sequence-based feature, it can be used as a “sentence” to learn the representations. Many
deep generative model techniques have been developed specifically for sequence gener-
ation. Therefore, when generative models are applied to de novo drug design, SMILES
are most used as a molecular representation. An important feature of SMILES is that it is
easy to learn and human-readable compared to other methods of molecular representation.
Molecules are represented as SMILES strings in studies [58,59,61]. The deep generative
models presented in these studies use an LSTM-based network for the design of novel
molecules. Tan et al. [61] used canonical SMILES as an input in the generative model and
molecular-fingerprint-based descriptors in the discriminative model. A few years later,
Tan et al. [58] used randomized SMILES, as it was shown from previous studies that the
model trained with randomized SMILES could generate more unique molecules than the
model trained with canonical SMILES [98]. Molecules were represented using the SMILES
format in other studies as well [57,66]. In [66], the authors tried different ways of encoding
SMILES of chemical compounds. They encoded the compounds into latent space as plain
text through a VAE, and they also converted them into a grammar tree (GVAE), resulting
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in the latter being indicated as the best representation. Among the models included in
this review, there were studies that focused on de novo peptide design. In these cases,
peptide sequences were used as text input to train the models that are learning sequence
grammar [69–71]. Schissel et al. [71] trained a CNN to predict the activity of sequences,
apart from the generative model. For the training of the classification model, one-hot
encodings and fingerprints were examined. It was shown that the CNN-fingerprint model
was able to extrapolate in the codomain and generate predicted activity values that were
greater than any in the training set.

In the study of Stokes et al. [63] and Wand et al. [65], the molecular graph for each
molecule was constructed using SMILES strings, following the initial work of Yang et al. [62].
A feature vector was initialized for each atom and bond, based on computable features. The
message-passing paradigm followed was based on updating representations of directed
bonds rather than atoms. Even though the message-passing paradigm can extract features
that depend on local chemistry, it may struggle to extract global features. For that reason,
the molecular representation was a concatenation of learned features and fixed molecule-
level features. In the cases of interaction prediction, more complex, heterogeneous networks
were examined. A deep neural network for graph representation algorithms was employed
to learn a low-dimensional vector representation of drugs and targets. The drug–target
network was described as a bipartite graph G(D,T,P), where the drug set was denoted
as D, the target set as T, and the interaction set as P [74]. In [75], heterogeneous data
were integrated, including circular fingerprints to map the structural information of drugs,
sequences of drug targets, and graph-embedding-based features for drug and targets.

4. Discussion

The selected studies in this systematic review include different applications of deep
learning in drug discovery, with their in vivo evaluation results, from de novo molecular
design, de novo peptide design, and specifically, AMPs and miniproteins, antibiotic discov-
ery, drug repurposing, and drug efficacy. The available codes and tools of these studies are
presented in Table 3.

Table 3. Open-source codes and web applications for different tasks of computational drug discovery
presented in this systematic review.

Author Application Tool

Bolatchiev et al., 2022 [69] De novo peptide design github.com/alexarnimueller/LSTM_peptides
(accessed on 10 December 2022)

Wang et al., 2022 [65] Drug property prediction github.com/chemprop/chemprop
(accessed on 10 December 2022)

Das et al., 2021 [70] De novo peptide design github.com/IBM/controlled-peptide-generation
(accessed on 10 December 2022)

Schissel et al., 2021 [71] De novo peptide design github.com/learningmatter-mit/peptimizer
(accessed on 10 December 2022)

Zhu et al., 2021 [66] Drug efficacy prediction github.com/kekegg/DLEPS
www.dleps.tech/dleps/index (accessed on 10 December 2022)

Stokes et al., 2020 [63] Drug property prediction github.com/chemprop/chemprop
chemprop.csail.mit.edu/ (accessed on 10 December 2022)

Zeng et al., 2020 [74] DTI github.com/ChengF-Lab/deepDTnet
(accessed on 10 December 2022)

Zhavoronkov et al., 2019 [57] De novo molecular design github.com/insilicomedicine/gentrl
(accessed on 10 December 2022)

Deep generative models based on AEs and RNNs are employed for the design of
novel molecules and peptides. Most de novo design tasks require generating compounds
that meet specific requirements. To optimize the generated compounds, methods such
as fine-tuning, TL, and RL have been combined with the core of the generative model. A
method that is not examined by the selected studies is the conditional generative model.

github.com/alexarnimueller/LSTM_peptides
github.com/chemprop/chemprop
github.com/IBM/controlled-peptide-generation
github.com/learningmatter-mit/peptimizer
github.com/kekegg/DLEPS
www.dleps.tech/dleps/index
github.com/chemprop/chemprop
chemprop.csail.mit.edu/
github.com/ChengF-Lab/deepDTnet
github.com/insilicomedicine/gentrl
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Conditional molecular design samples new molecules from a conditional generative dis-
tribution without any additional optimization process. In the case of [57] and [59], the
generated molecules were reduced to most “drug-like” molecules by adding restrictions,
such as molecular weight, logP values, no violation of Lipinski’s rule of five, etc. With
conditional design, these models could directly produce molecules with desired features.
An interesting approach was presented by Das et al. [70], who did not implement an RL
approach to design AMPs, since this method for targeted generation requires optimal
policy learning. Instead, they trained on the latent space of a deep AE, which represented
all known peptide sequences and not only AMPs, an attribute classifier to select the infor-
mative space for sampling. This study revealed that the latent space is linearly separable
into different functional attributes, and sampling from the selected space can generate
optimized peptides. By combining deep generative models with optimization methods
such as genetic algorithms, generated samples can be further optimized to acquire im-
proved functions. Schissel et al. [71] studied this notion to generate peptides using a deep
generative model with a genetic algorithm. They also examined the representation of amino
acids and concluded that topological fingerprints led to models with lower accuracies,
but with an enhanced generalizability to peptides with labels outside the range of the
training data. Regarding molecular representation for property prediction, D-MPNN [62]
which combines fixed and learned features of molecules, was selected both by [63,65]. The
hybrid representation of molecules yielded higher performance and generalized better
than either convolutional or fingerprint-based models. These studies experimentally eval-
uated the results of virtual screening using the D-MPNN. In [63] the authors identified
an antibiotic that, even if structurally divergent from conventional antibiotics, displays
growth-inhibitory properties against a wide spectrum of pathogens. In [65] the authors
identified an essential oil that inhibits Cav1.3. Heterogeneous data sources of DTIs, DDNs,
PPIs, etc., were fed into AEs for the generation of low-dimensional but informative vectors
for both drugs and targets [74,75].

With his methodology, Zeng et al. [74] uncovered known drug targets contributing to
drug repurposing. Relationship-based features were collected by training an AE and were
used in [75] for DTI prediction. A CNN prediction model that combined deep information
was taught using the stacked AE technique.

It is important to emphasize that machine learning is imperfect. Therefore, the success
of deep neural network model-guided drug discovery rests heavily on coupling these
approaches with appropriate experiments. Before in vitro studies, the results of the deep
learning models were filtered based on other methods. Generated molecules were evaluated
using SOMs and pharmacophore modeling on the basis of crystal structures in complex
with DDR1 [57], kinase selectivity, and molecular docking [58,59]. Generated peptides
were screened for AMPs, toxicity, drug efficacy using sequence-level classifiers [70], and
online prediction tools [69]. For in vivo studies, the animal model used for the biological
evaluation of the compound of interest, and the compound identified by the deep learning
algorithm, are presented in Tables 4 and 5, respectively.

Changes in the frequencies of the selected model architectures per year are shown
in Figure 7. LSTM-RNN models were the most commonly published models between
2019 and 2022. The four LSTM-RNN models presented include the use of de novo de-
sign for antipsychotic drugs [61], p300 and CBP lead compounds [59], nuclear-targeting
miniproteins [71], and AMPs design [69]. AEs were widely used in different architectures,
including VAEs, GVAEs, and WAEs. Stacked AEs were used to generate low-dimensional
vectors from the original high-dimensional vectors [74,75], and AE architectures were
used to design DDR1 inhibitors [57,58]. A WAE was used as an alternative to a VAE for
AMP design [70], and in the same year, a GVAE was used to encode SMILES into latent
space, with this vector then passing through a CNN to estimate the activity of the given
sequence [66]. CNNs were used for the activity prediction of the generated sequences [71]
and for the prediction of DTIs [75]. A multitask DNN was used for the virtual screening of
molecules based on their activity score [61]. D-MPNN was presented in two studies, for
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predicting the probability of whether a new compound inhibits the growth of a spectrum
of pathogens or not [63], and for the identification of Parkinson’s-disease-relevant drug
candidates [65].

Table 4. A selection of the animal models used in each study for biological evaluation.

Author Animal Model

Tan et al., 2022 [58] Dextran sulfate sodium-induced inflammatory bowel disease mouse model
Bolatchiev et al., 2022 [69] Murine experimental model of sepsis

Wang et al., 2022 [65] Parkinson’s disease mouse model
Das et al., 2021 [70] BALB/c mice

Schissel et al., 2021 [71] Mice containing EGFP IVS2-654 gene

Zhu et al., 2021 [66]
Diet-induced obesity mouse model

Hyperuricemia mouse model
Nonalcoholic steatohepatitis mouse model

Stokes et al., 2020 [63] Murine wound model of A. baumannii and C. difficile infections
Tan et al., 2020 [61] Phencyclidine-induced hyperactivity ICR mouse model

Yang et al., 2020 [59] Animal model of human cancer (Balb/c mice bearing MV-4-11 tumor cells)

Zhao et al., 2020 [75] Ldlr−/− hamsters developed severe hyperlipidemia
and atherosclerosis lesions

Zeng et al., 2020 [74] Experimental autoimmune encephalomyelitis mouse model
Zhavoronkov et al., 2019 [57] C57BL/6 mice

Table 5. A selection of reported candidate compounds and biologics in the studies reviewed.

Author Reported Candidate Compounds and Biologics

Tan et al., 2022 [58]
2-(2-(4-Acetamidophenyl)-4-amino-7-oxo-6,7-dihydro-

2H-pyrazolo[3,4-d]pyridazin-3-yl)-3-methyl-N-(3-
(trifluoromethyl)phenyl)benzofuran-6-carboxamide

Bolatchiev et al., 2022 [69] PEP-36 GIFSKLAGKKIKNLLISGLKNIGKEVGM
PEP-137 KWKSFIKKLAKFGFKVIKKFAKKHGSKIAKNQ

Wang et al., 2022 [65] Sclareol

Das et al., 2021 [70] YI12 YLRLIRYMAKMI-CONH2
FK13 FPLTWLKWWKWKK-CONH2

Schissel et al., 2021 [71] Mach3 and Mach4

Zhu et al., 2021 [66]
Chikusetsusaponin IV

Perillen
Trametinib

Stokes et al., 2020 [63] c-Jun N-terminal kinase inhibitor SU3327 (halicin)
Tan et al., 2020 [61] 1-(4-(4-(benzo[b]thiophen-4-yl)piperazin-1-yl)butyl)quinazoline-2,4(1H, 3H)-dione

Yang et al., 2020 [59]
(S)-1-(2-((S)-7-Fluoro-3-(trifluoromethyl)-2,3-dihydrobenzo[f

]-[1,4]oxazepin-4(5H)-yl)-2-oxoethyl)-5′-(1-methyl-1H-pyrazol-4-yl)-
2′,3′-dihydrospiro[imidazolidine-4,1′-indene]-2,5-dione (B026)

Zhao et al., 2020 [75] 288 predicted targets of tetramethylpyrazine on atherosclerosis, and 190 proteins involved in the platelet
activation process, indicating that tetramethylpyrazine inhibited signaling transduction.
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5. Conclusions

Drug discovery based on artificial intelligence has received much attention, since it has
had a significant influence on developing novel drugs. Owing to the rapid advancements in
computer hardware, coupled with the growth in size and availability of publicly accessible
datasets, deep learning has met unprecedented success in the field of CADD [99,100]. Ad-
vances in deep learning techniques have been successfully combined with well-established
drug design strategies, such as drug repositioning, opening new pathways and prospects in
the identification of novel therapeutics using cutting-edge computational methods [101,102].
Particularly in the field of de novo drug design, deep learning applications have gained
increasing popularity, since numerous approaches (e.g., RNNs, AEs, GCNs) have been
developed to build novel compounds with desired pharmacological and physiochemical
properties [103,104].

In the present study, a systematic review of peer-reviewed research articles from
2018 up until April of 2022 is presented. The scientific articles considered were used to
extract information regarding trends in deep learning models for drug design that were
complemented with in vivo animal studies. The outcomes of this review include the deep
learning architectures developed, the molecular representations, the workflow of each
study, the animal model for the validation of the selected compounds, and the resulting
compounds. The deep learning algorithms that were selected were LSTM-RNNs, AEs,
CNNs, MTDNNs, and D-MPNNs. LSTM-RNNs were the more frequently used algorithms.

It is important to note that although several studies have examined the potential role
that deep learning models could play in the discovery of new drugs, applications of these
models in “real cases” are still uncommon due to the need for additional computational
and experimental validation. This review selected breakthrough studies that started from
a deep learning model and continued to in vivo studies to provide a validated process.
We believe that deep learning will become an essential part in drug discovery in the near
future, and as highlighted by the presented studies, and will assist medicinal chemists in
generating new ideas and accelerate the cycle of drug discovery.
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Abbreviations

AAE Adversarial autoencoder
AEs Autoencoders
AMP Antimicrobial peptide
ANNs Artificial neural networks
CADD Computer-aided drug design
CBP CREB-binding protein
CNNs Convolutional neural networks
D-MPNN Direct-message-passing neural network
DB Database
DDIs Drug–Drug Interactions
DDR1 Discoidin domain receptor1
DDNs Drug–Disease Networks
DSENs Drug–Side effect Networks
DTIs Drug–target interactions
FDA Food and drug administration
GANs Generative adversarial networks
GAT Graph attention network
GCNs Graph convolutional networks
GNN Graph neural network
GPCR G-protein coupled receptor
GPU Graphical processing units
GRU Gated recurrent units
GVAE Grammar variational autoencoder
HTS High-throughput screening
IC50 Half-maximum inhibitory concentration
LSTM Long short-term memory
MAE Mean absolute error
MTDNN Multitask deep neural network
NLP Natural language processing
NNs Neural networks
ORGAN Objective-Reinforced Generative Adversarial Networks
ORGANIC Objective-Reinforced Generative Adversarial Network for Inverse-design Chemistry
PPIs Protein–Protein Interactions
PRISMA Preferred reporting items for systematic review and meta-analyses
PUNs Pretrained unsupervised networks
QSAR Quantitative Structure–Activity Relationships
RANC Reinforced adversarial neural computer
ReLU Rectified linear unit
RL Reinforcement Learning
RNNs Recurrent neural networks
ROC-AUC Receiver operating characteristic curve-area under curve
ROR-γt Retinoic-acid-receptor related orphan receptor-gamma t
SMILES Simplified molecular input line entry system
SOM Self-organizing map
TL Transfer Learning
TTD Therapeutic Target DB
VAE Variational autoencoder
WAE Wasserstein autoencoder
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