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Abstract: Psoriasis is a common chronic immune-mediated inflammatory skin disease with the
association of various comorbidities. Despite the introduction of highly effective biologic therapies
over the past few decades, the exact trigger for an immune reaction in psoriasis is unclear. With the
majority of immune cells residing in the gut, the effect of gut microbiome dysbiosis goes beyond the
gastrointestinal site and may exacerbate inflammation and regulate the immune system elsewhere,
including but not limited to the skin via the gut-skin axis. In order to delineate the role of the gut
microbiome in Southern Chinese psoriasis patients, we performed targeted 16S rRNA sequencing
and comprehensive bioinformatic analysis to compare the gut microbiome profile of 58 psoriasis
patients against 49 healthy local subjects presumably with similar lifestyles. Blautia wexlerae and
Parabacteroides distasonis were found to be enriched in psoriasis patients and in some of the healthy
subjects, respectively. Metabolic functional pathways were predicted to be differentially abundant,
with a clear shift toward SCFA synthesis in healthy subjects. The alteration of the co-occurrence
network was also evident in the psoriasis group. In addition, we also profiled the gut microbiome
in 52 of the 58 recruited psoriasis patients after taking 8 weeks of an orally administrated novel E3
probiotics formula (with prebiotics, probiotics and postbiotics). The Dermatological Life Quality
Index (p = 0.009) and Psoriasis Area and Severity Index (p < 0.001) were significantly improved after
taking 8 weeks of probiotics with no adverse effect observed. We showed that probiotics could at
least partly restore gut dysbiosis via the modulation of the gut microbiome. Here, we also report the
potential application of a machine learning-derived gut dysbiosis index based on a quantitative PCR
panel (AUC = 0.88) to monitor gut dysbiosis in psoriasis patients. To sum up, our study suggests the
gut microbial landscape differed in psoriasis patients at the genera, species, functional and network
levels. Additionally, the dysbiosis index could be a cost-effective and rapid tool to monitor probiotics
use in psoriasis patients.

Keywords: psoriasis; gut microbiome; metagenomics; Parabacteroides distasonis; gut dysbiosis
index; probiotics

1. Introduction

Psoriasis is a common chronic T cell-mediated inflammatory skin disease with a world-
wide prevalence of approximately 2–3% [1–3]. The southern Chinese population is reported
to be less susceptible to psoriasis, with a local prevalence of 0.3–0.6% in Hong Kong [4,5].
According to the 2020 joint American Academy of Dermatology (AAD)—National Psoriasis
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Foundation (NPF) guidelines [6], psoriasis is not only a skin disease but also a chronic
multisystem inflammatory disorder. About one-third of psoriasis patients develop pso-
riatic arthritis during their lifetime with stiffness, pain and swelling of joints, and it may
progress to exhausting joint destruction with a dramatic deterioration in the quality of
life [7–10]. On top of that, severe psoriasis patients with early onset are found to be at a
higher risk for cardiometabolic comorbidities than the general population, including but
not limited to vascular inflammation [11], coronary atherosclerotic plaques [12,13], type 2
diabetes [14,15], strokes [16], or myocardial infarction [17,18]. In addition, there has been
consistent evidence that psoriasis is associated with gastrointestinal comorbidities, such as
irritable bowel syndrome and inflammatory bowel disease [19,20].

Similar to other inflammatory diseases, the pathogenesis of psoriasis is complicated
and has not yet been fully understood [6]. However, the overactivation of an adaptive
immune system is believed to be central in psoriasis development [6,21], involving various
cell types such as natural killer T cells, macrophages, myeloid dendritic cells, plasmacytoid
dendritic cells, and keratinocytes. For example, activated T lymphocytes (Th1 and Th17)
release pro-inflammatory interleukins (IL-1, IL-6, IL-17, IL-28, etc.), which trigger the in-
flammation cascade in psoriasis patients. Other than that, genetic factors are also major risk
factors, such that the risk of psoriasis is approximately 40%, 14% and 6% if both parents or
either parent or sibling are affected, respectively [22,23]. The histocompatibility complexes,
HLA-Cw6 and HLA-Cw7, have been linked to erythematous, inflamed, and thickened skin
in people with the disease [24–26]. On top of that, behavioral and environmental factors
can also accelerate and trigger the onset of psoriasis [6], e.g., streptococcal infection, recent
skin trauma, smoking and stress.

In addition, there have been growing amounts of evidence about the association
between gut microbiota with psoriasis as an inflammatory disease, where gut microbial
dysbiosis has been reported in patients with psoriasis and psoriatic arthritis [27–33]. This
association was conceptualized and postulated as a “gut (-brain)-skin axis”, which pro-
vides valuable foundation and insights into the role of a symbiotic relationship between
the gut microbiota and skin barrier via the modulation and maintenance of the host’s
immune system [34]. It is also believed that gut microbes regulate immunological path-
ways via microbial-derived metabolites and products, which include, but not limited to
short-chain fatty acids (SCFA), polysaccharides A and lipopolysaccharides (LPS) [35]. Mi-
crobes residing in the gut can also synthesize and modify the host secretion of neuroactive
molecules, hormones, and neurotransmitters, e.g., serotonin, at varying degrees to crosstalk
with the neuroendocrine system, which hampers the skin’s homeostasis. In general, gut
dysbiosis with an altered abundance of Akkermansia muciniphila, Staphylococcus aureus,
Streptococcus pyogenes, or Candida albicans was evidential and commonly reported in psoria-
sis patients [27,30,31]. Nonetheless, it is commonly known that gut flora composition varies
with numerous environmental factors, such as geographical location, diet, and lifestyle.
Hence, the changes in the microbiome profile in psoriasis patients may not be similar across
different populations.

With the recognition of the role of dysbiosis in psoriasis, probiotics have been explored
as a potential approach to restore microflora balance in an effort to alleviate cutaneous symp-
toms in psoriasis patients [36,37]. A handful of clinical trials have explored the efficacy of
probiotics (Bifidobacterium infantis, Bifidobacterium longum, Bifidobacterium lactis, Enterococcus,
Lactobacillus rhamnosus) as the treatment of psoriasis with a modest improvement in the Pso-
riasis Area and Severity Index (PASI) [38–41]. Although a recent meta-analysis concluded
that probiotics and the control group did not yield statistical significance (p = 0.11) [42], pos-
sibly due to increased compliance in both groups after enrolment into clinical trials [37,43],
probiotics demonstrated potentially positive effect with minimal adverse effects in psoriasis
patients and warranted further studies.

In this study, our group aimed at exploring alterations in the gut microbiome profile
between psoriasis patients and healthy subjects in Southern Chinese people with closer
lifestyles by targeted 16S rRNA sequencing. We then evaluate the effectiveness and gut
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microbiome evolution upon the application of a novel E3 synbiotics mixture of prebiotics,
probiotics and postbiotics. These findings could help to evaluate, refine, and improve the
clinical efficacy of probiotics as an intervention in psoriasis patients.

2. Results
2.1. Study Cohort

A total of 58 subjects aged between 18 and 65 years old with chronic plaque psoriasis
and 49 healthy subjects without inflammatory skin diseases were prospectively recruited
into the cohort through the Hong Kong Psoriasis Patients Association. The diagnosis and
severity of psoriasis were further evaluated by a board-certified dermatologist (S.K.F.L.).
The demographic and disease characteristics are summarized in Table 1. In brief, there
was no statistically significant difference in age distribution between psoriasis and control
group (mean age—psoriasis: 44.4 years, control: 46.3 years; p = 0.4413). The mean weight
(psoriasis: 71.8 kg, control: 64.3 kg; p = 0.0226) and BMI (psoriasis: 25.8 kg/m2, control:
23.7 kg/m2; p = 0.0278) were slightly higher in the psoriasis group (which agreed with
previously reported observation studies [44–46]), there was also a statistically significant
discrepancy in gender between the two groups, but this did not significantly impact the
gut microbiome composition as reflected by the adonis test (Table S1). Therefore, based
on the adonis test result, we did not control for the weight or gender discrepancy during
subsequent analysis.

Table 1. Baseline demographic and disease characteristics of participants.

Psoriasis (n = 58 ˆ) Control (n = 49) p Value

Sex, No. (%)
0.0122Male 38 (65.5) 20 (40.8%)

Female 20 (34.5) 29 (59.2%)
Age, mean (SD) (range), y 44.4 (12.1) (18–65) 45.5 (13.2) (21–64) 0.4624
Weight, mean (SD), kg 71.8 (16.3) 63.1 (13.4) 0.0026
BMI, mean (SD) † 25.8 (4.8) 23.4 (4.0) 0.0049
BSA, mean (SD) 13.1 (16.2) N/A
PASI, mean (SD) 7.6 (7.1) N/A
DLQI, mean (SD) 7.6 (7.1) N/A
Psoriatic arthritis, No. (%) 20 (34.5) N/A

† BMI between 25.0 and 29.9 kg/m2 is classified as overweight, while BMI > 29.9 kg/m2 is classified as obese.
ˆ Six participants with psoriasis lost to follow up at week 8. BMI, body mass index; PASI, Psoriasis Area and
Severity Index; DLQI, Dermatology Life Quality Index.

2.2. Significant Difference in Gut Microbiome Composition between Psoriasis and Control Group

The gut microbiome composition of participants with psoriasis was significantly dif-
ferent from the apparently normal group in terms of Bray–Curtis (p = 0.001, PERMANOVA)
and Jaccard distance (p = 0.001, PERMANOVA), which was demonstrated by the principal
coordinates analysis biplot (Figure 1A,B). This difference was not due to a change in alpha
diversity, including richness, Chao1 index, Faith’s phylogenetic diversity, Shannon, or
Inverse Simpson, as shown in Figures S1 and S2.

A total of 4474 unique amplicon sequence variants (ASV) were identified, of which
126 ASVs were categorized as rare ASVs with exactly one count through the dataset. After
alignment, these ASVs were assigned to 12 phyla, 269 genera and 622 species. The Fir-
micutes/Bacteroidetes ratio was marginally increased in the psoriasis group (p = 0.046,
Mann–Whitney U), but no other significant difference at the phylum level was identified.
The most abundant genera were Bacteroides, Blautia, Prevotella, Facalibacterium, Megamonas,
Bifidobacterium, Ruminococcaceae CAG-352, Agathobacter, Fusicatenibacter, Subdoligranulum.
Among these genera, Blautia was found to be significantly enriched in psoriasis patients
(p = 0.015, Mann–Whitney-U). ANCOM was performed to discover a differential abun-
dance at the ASV level. A total of 25 ASVs, which were assigned to seven named species
and eight unnamed species from 11 genera, were found to be differentially expressed
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among the two groups, as detailed in Table 2. Among the differentially abundant ASVs, the
signal of Blautia wexlerae was further augmented with the Mann–Whitney U test (p = 0.038)
on its relative abundance. With B. wexlerae being the most abundant species within Blautia,
it is highly likely that B. wexlerae is the main contributor to the increase in Blautia observed
at the genus level. More subjects from the control group harbored a higher percentage
of Parabacteroides distasonis (center-log ratio transformed) (p = 0.024, Mann–Whitney-U,
Figure 2, Table S2).
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Figure 1. Gut composition profile of psoriasis patients. (A,B) Principal Coordinate Analysis biplot
based on Bray–Curtis and Jaccard distances (PERMANOVA, 999 permutations). (C) Boxplot of
Firmicutes/Bacteroidetes (F/B) ratio (Mann–Whitney U test). (D) Relative abundance of phyla.
(E) Venn diagram of all ASV between control and psoriasis group. (F) Venn diagram of ASV (excluding
rare ASV) between control and psoriasis group.

2.3. Effect of 8-Week Probiotics Intake in the Gut Microbiome Composition in Psoriasis Group

Six subjects were lost to follow-up after recruitment, and a total of fifty-two subjects
with psoriasis were included in further analysis (Figure 3A). No adverse effect was re-
ported nor recorded throughout the study period. No substantial weight gain or loss
which warranted recording was described by the participants during the study period. The
Dermatological Life Quality Index (DLQI) (∆DLQI = −2.3 ± 6.3, p = 0.009, Figure 3B) and
Psoriasis Area and Severity Index (PASI) (∆PASI = −2.9 ± 5.1, ∆%PASI = −24.5 ± 26.3%,
p < 0.001, Figure 3C) were significantly improved after taking 8 weeks of oral administra-
tion of probiotics. The details of PASI or DLQI improvement regarding disease severity
are included in Table S7. We further stratified the patients into subgroups by disease
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severity and responsiveness, where patients who were either currently receiving systemic
therapies or PASI > 10 at the baseline were regarded as having moderate to severe psoriasis.
Subjects who showed a significant improvement in PASI or DLQI (e.g., ∆DLQI < −3.3)
were regarded as responders towards 8-week probiotics treatment. The responsiveness
and objective improvement in BSA, DLQI or PASI were found to be independent of disease
severity (Table 3). Therefore, subsequent analysis of the gut microbiome was performed
without further stratification.

Table 2. Differentially abundant ASV (taxonomical unit assigned by q2-feature-classifier) identified
by ANCOM.

Feature ID Taxon W

01f2a9a0f64a0c8e9f380e4759f68e42 f_Bacteroidaceae;g_Bacteroides;s_Bacteroides_vulgatus 4972
ccc00ff50c15bc9d115d53589fd1db6f f_Lachnospiraceae;g_Fusicatenibacter;s_uncultured_organism 4945
725ae09bd27ee835f1e2afaee85aafe0 f_Lachnospiraceae;g_Blautia;s_Blautia_wexlerae 4940

16feabdbf1087e04e1eef52210ed93ad f_Erysipelatoclostridiaceae;g_Erysipelotrichaceae_UCG-
003;s_uncultured_bacterium 4918

7523ad91056301e66e3a8f299c0878fc f_Ruminococcaceae;g_Faecalibacterium 4905
f678835c929c59443b1e5e736048e209 f_Ruminococcaceae;g_Faecalibacterium;s_human_gut 4903
fd947e8f706a04316b167e2935696c96 f_Lachnospiraceae;g_Dorea 4896
f86c8767307c0f2ab691b9892c1e99c6 f_Lachnospiraceae;g_Agathobacter;s_[Eubacterium]_rectale 4890
d37e5aa22497be27a11bce9eda0c8cf7 f_Lachnospiraceae;g_Blautia;s_Blautia_wexlerae 4875
da5fdabeacf9b6cafc8d2dcbe81db05d f_Bacteroidaceae;g_Bacteroides;s_Bacteroides_thetaiotaomicron 4850
18a8fe3a9227e73e6f15d50980cb5c75 f_Lachnospiraceae;g_Anaerostipes;s_human_gut 4826
428f4904e0dfb8dfb40952a57526dbb2 f_Lachnospiraceae;g_Lachnospiraceae_ND3007_group;s_metagenome 4817
f4465d8e3fddd8dd39702387f21ffb4e f_Bacteroidaceae;g_Bacteroides;s_Bacteroides_vulgatus 4791
f444b6959a6760ca409a51e8107f729f f_Ruminococcaceae;g_Subdoligranulum 4772
3866fc184b629f22b6b29f848dd90694 f_Lachnospiraceae;g_Blautia 4765
bf5fc5be757c244017374074589e41d7 f_Monoglobaceae;g_Monoglobus;s_uncultured_organism 4745
7c73dc21566ae02ef3e98859d879468c f_Lachnospiraceae;g_[Ruminococcus]_torques_group;s_uncultured_Firmicutes 4728
a0836bd4a80786ce759ffb26d563eb54 f_Lachnospiraceae;g_Blautia;s_uncultured_Blautia 4686
928a2600b168d35b17d8c7578352c596 f_Streptococcaceae;g_Streptococcus;s_Streptococcus_salivarius 4647
9755d76a1a899b96090b30fe9582c058 f_Butyricicoccaceae;g_Butyricicoccus 4634
60d6ecdf998b630c36e1277da586e204 f_Ruminococcaceae;g_Faecalibacterium 4621
434c8851e06baea123e89217030e6e23 f_Bacteroidaceae;g_Bacteroides;s_Bacteroides_uniformis 4620
93198e1fc1b71b9e7d3abf522a926278 f_Lachnospiraceae;g_Blautia;s_Blautia_faecis 4588
65b9f8997ba78cf0dae03e7146efc23b f_Lachnospiraceae;g_Blautia;s_Blautia_wexlerae 4543

4655a784c774d4acb1bb902a65ed9612 f_Lachnospiraceae;g_Lachnoclostridium 4483

While the objective improvement in DLQI or PASI could have been introduced by
the E3 probiotics formula through the restoration of gut dysbiosis, we compared the gut
microbiome profile of the participants after 8-weeks of probiotics intake with respect
to their baseline profile (Figures S3 and S4). To interrogate the impact of probiotics
on the gut microbiome, ANCOM at the ASV level was performed as the exploratory
analysis of differentially abundant units. Five differentially abundant ASVs, which be-
longed to three named species and two unnamed species from five genera, were identified
(Table 4). Two out of five ANCOM identified differentially abundant species, namely
Lactobacillus plantarum (adjusted p < 0.001, Wilcoxon signed rank, Benjamini-Hochberg cor-
rection) and Parabacteroides distasonis (adjusted p = 0.007, Wilcoxon signed rank, Benjamini-
Hochberg correction), which were further confirmed by the Wilcoxon signed rank test
on the center-log ratio transformed abundance from the paired samples. The increase in
Lactobacillus plantarum abundance could likely have contributed to the intake of a probiotics
mixture rich in Lactobacillus.

In addition, we also performed the taxonomic analysis at the phylum and genus level
by the Wilcoxon signed rank test with Benjamini–Hochberg correction on the center-log ra-
tio transformed abundance from paired samples. Phylum Synergistota (adjusted p = 0.008,
Wilcoxon signed rank, Benjamini–Hochberg correction) was found to be significantly de-
creased (Figure S5). On the other hand, Lactobacillus (adjusted p < 0.001, Wilcoxon signed
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rank, Benjamini–Hochberg correction) and Parabacteroides (adjusted p < 0.001, Wilcoxon
signed rank, Benjamini–Hochberg correction) were significantly increased after 8 weeks of
probiotics intake (Figures 3 and S6).
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Figure 3. Pilot study of 8-week probiotics in psoriasis group (A) Study flow diagram. (B) Boxplot
of the Dermatology Life Quality Index (DLQI) of the participants. (C) Change in Psoriasis Area
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abundance of Lactobacillus plantarum and Parabacteroides distasonis; Lactobacillus and Parabacteroides
(Wilcoxon signed rank).

Table 3. Demographic and disease characteristics of psoriatic participants.

Mild & (n = 20) Moderate to Severe & (n = 32) p Value

Sex, No. (%)
0.2237Male 11 (55.0) 24 (75.0)

Female 9 (45.0) 8 (25.0)
Age, mean (SD), y 44.1 (13.5) 44.2 (10.8) 0.9795
Weight, mean (SD), kg 68.9 (16.6) 75.3 (15.8) 0.1722
BMI, mean (SD) † 25.4 (5.8) 26.5 (4.4) 0.4200
Psoriatic arthritis, No. (%) 6 (30.0) 10 (31.3) 1.0000
∆BSA, mean (SD) −2.1 (2.1) −5.8 (12.1) 0.1925
∆%PASI, mean (SD) −21.7 (15.9) −26.5 (31.4) 0.7692
∆DLQI, mean (SD) −2.6 (6.5) −2.1 (6.2) 0.5443
Responder, No. (%) ˆ 8 (40.0) 14 (43.8) 1.0000

† BMI between 25.0 and 29.9 kg/m2 is classified as overweight, while BMI > 29.9 kg/m2 is classified as obese.
& Those who were either on biologics or PASI > 10 at the baseline were regarded as having moderate to severe
psoriasis. ˆ Those who showed significant improvement in PASI or DLQI were regarded as responders. BMI, body
mass index; PASI, Psoriasis Area and Severity Index; DLQI, Dermatology Life Quality Index.
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Table 4. Differentially abundant ASV (taxonomical unit assigned by q2-feature-classifier) identified
by ANCOM after the course of 8-week oral administered probiotics.

Feature_ID Taxon W

721a741bef4a5db0211de1a5b84a8b5b f_Tannerellaceae;g_Parabacteroides;s_Parabacteroides_distasonis 4139
72af122f180225b2b0c90e487b25af6c f_Lactobacillaceae;g_Lactobacillus;s_Lactobacillus_plantarum 4139
8cec479da287209d3c7d464f14242794 f_Ruminococcaceae;g_CAG-352;s_uncultured_bacterium 4139
bd4606ad663e209e745c8c51b4deeee8 f_Bacteroidaceae;g_Bacteroides;s_Bacteroides_vulgatus 4142
f678835c929c59443b1e5e736048e209 f_Ruminococcaceae;g_Faecalibacterium;s_human_gut 4141

2.4. Depleted SCFA Related Functional Abundance in Psoriasis Group

In order to investigate the functional abundance, which was postulated to more
accurately reflect the physiological consequence of gut microbiome profile, functional
abundance was in silico inferred by PICRUSt2 following LefSe. A total of 44 discriminative
features were identified with an absolute LDA larger than two (Figure 4A,B). The majority
of the features over-represented in the control group were related to short-chain fatty
acid (SCFA) synthesis or metabolism, such as stearate, oleate, palmitoleate, mycolate,
(5Z)-dodecenoate, L-histidine. By contrast, 22 MetaCyc functional pathways involved in
L-arginine biosynthesis were exacerbated in psoriasis patients, as detailed in Table 5.
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Table 5. Differentially abundant MetaCyc pathways and its corresponding LDA score and p value
inferred by PICRUSt2 and LefSe.

BioCyc ID MetaCyc Pathway Name Group Log LDA p

PWY_5989 stearate biosynthesis II (bacteria and plants) control 2.7092 0.0128
PWYG_321 mycolate biosynthesis control 2.6975 0.0113
PWY_7664 oleate biosynthesis IV (anaerobic) control 2.6970 0.0140
PWY_6282 palmitoleate biosynthesis I (from (5Z)-dodec-5-enoate) control 2.6923 0.0138
PWY0_862 (5Z)-dodecenoate biosynthesis I control 2.6826 0.0142
PWY_6519 8-amino-7-oxononanoate biosynthesis I control 2.6193 0.0037

FASYN_
INITIAL_PWY super pathway of fatty acid biosynthesis initiation control 2.5984 0.0140

P42_PWY incomplete reductive TCA cycle control 2.5914 0.0024
BIOTIN_

BIOSYNTHESIS_PWY biotin biosynthesis I control 2.5560 0.0096

PWY_6703 preQ0 biosynthesis control 2.3734 0.0252
THISYN_PWY super pathway of thiamine diphosphate biosynthesis I control 2.3712 0.0059
HISDEG_PWY L-histidine degradation I control 2.3484 0.0070

PWY_7323 super pathway of GDP-mannose-derived O-antigen building
blocks biosynthesis control 2.3441 0.0074

PWY_5695 inosine 5′-phosphate degradation control 2.3388 0.0282
NAGLIPASYN_PWY lipid IVA biosynthesis (E. coli) control 2.3144 0.0244

GALACTUROCAT_PWY D-galacturonate degradation I control 2.3052 0.0175
POLYISOPRENSYN_PWY polyisoprenoid biosynthesis (E. coli) control 2.2352 0.0305

PWY_6467 Kdo transfer to lipid IVA (Chlamydia) control 2.1935 0.0228

PWY_7328 super pathway of UDP-glucose-derived O-antigen building blocks
biosynthesis control 2.1563 0.0184

PWY_4984 urea cycle control 2.1505 0.0204
COLANSYN_PWY colanic acid building blocks biosynthesis control 2.1109 0.0166

ASPASN_PWY super pathway of L-aspartate and L-asparagine biosynthesis control 2.0583 0.0305
P161_PWY acetylene degradation (anaerobic) psoriasis 2.5697 0.0074
PWY0_1586 peptidoglycan maturation (meso-diaminopimelate containing) psoriasis 2.5201 0.0300
PWY_6471 peptidoglycan biosynthesis IV (Enterococcus faecium) psoriasis 2.4510 0.0184
PWY_5505 L-glutamate and L-glutamine biosynthesis psoriasis 2.3867 0.0330

NONOXIPENT_PWY pentose phosphate pathway (non-oxidative branch) I psoriasis 2.3355 0.0454
PWY_7111 pyruvate fermentation to isobutanol (engineered) psoriasis 2.3156 0.0296

PWY0_1297 super pathway of purine deoxyribonucleosides degradation psoriasis 2.3149 0.0126
PWY_6151 S-adenosyl-L-methionine salvage I psoriasis 2.3130 0.0210
PWY_621 sucrose degradation III (sucrose invertase) psoriasis 2.3016 0.0207
PWY_5686 UMP biosynthesis I psoriasis 2.2906 0.0296
PWY_6317 D-galactose degradation I (Leloir pathway) psoriasis 2.2897 0.0128

DAPLYSINESYN_PWY L-lysine biosynthesis I psoriasis 2.2642 0.0320
PWY0_1298 super pathway of pyrimidine deoxyribonucleosides degradation psoriasis 2.2569 0.0138

ARGSYNBSUB_PWY L-arginine biosynthesis II (acetyl cycle) psoriasis 2.2303 0.0286
ARGSYN_PWY L-arginine biosynthesis I (via L-ornithine) psoriasis 2.2162 0.0277

PWY_7400 L-arginine biosynthesis IV (archaea) psoriasis 2.2090 0.0277
COMPLETE_ARO_PWY super pathway of aromatic amino acid biosynthesis psoriasis 2.1875 0.0391

ARO_PWY chorismate biosynthesis I psoriasis 2.1698 0.0482
SER_GLYSYN_PWY super pathway of L-serine and glycine biosynthesis I psoriasis 2.1284 0.0273

PWY_6163 chorismate biosynthesis from 3-dehydroquinate psoriasis 2.1129 0.0403
PWY_6122 5-aminoimidazole ribonucleotide biosynthesis II psoriasis 2.0896 0.0373
PWY_6277 super pathway of 5-aminoimidazole ribonucleotide biosynthesis psoriasis 2.0896 0.0373

Similar procedures have been employed in the prediction of the functional abun-
dance in the psoriasis group, and after taking 8 weeks of probiotics, there are only
two discriminative features found—PWY-2326 (GDP-mannose biosynthesis) enriched at
the baseline (log LDA = 2.106, p = 0.0357) and PWY-4984 (urea cycle, Figure 4D) enriched
at week 8 (log LDA = 2.352, p < 0.001). Interestingly, PWY-4984 was also found to be
enriched in the control group. The predicted abundance of this pathway is summarized in
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Figure 4C. It may hint at the potential functional mechanism of how probiotics alleviate
disease severity in psoriasis patients.

2.5. Remodelling of Microbial Co-Occurrence Network

Compared with the co-occurrence/exclusion network in the control group, the gut
microbial network was clearly remodeled (Figure 5, Tables S3–S5). For an easier comparison
and better visualization, the topology of the nodes was fixed, such that the lower left node
in Figure 5A could represent the same taxonomic unit as the lower left node in Figure 5B.
Each node represents a taxonomical unit at the genus level, while each connection (i.e., edge)
represents a significant positive (co-occurrence) or negative (co-exclusion) association in
terms of abundance between the connecting nodes as determined by SPIEC-EASI. The
node size is proportional to the respective number of degrees, while the edge width is
proportional to the strength of association. A blue and red labeled edge represents a
positive and negative association, respectively.
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Figure 5. Co-occurrence/co-exclusion network. (A,B,C) Co-occurrence network diagram of control
and psoriasis group. (D) Venn diagram of top 10 hub nodes across networks. (E) Empirical cumulative
distribution function (eCDF) (left) and kernel density distribution (middle) of betweenness, closeness,
degree, and eigenvector centrality measures and centrality of each node (right).

There were 162 nodes in total, and the total number of edges was 104 and 281 in the
psoriasis and control groups, respectively. The number of edges in the psoriasis group in
week 8 was reduced to 85. The connection between the nodes was obviously disrupted in
the psoriasis group. The top 10 hub nodes (the node with the highest degree of connections)
accounted for 96.2% (100/104), 63.3% (178/281), 96.5% (82/85) of the connections in
the network of the control group, psoriasis baseline and psoriasis week 8, respectively.
Therefore, the psoriasis baseline network was more dispersive and distributed in nature.
Only four out of the top ten hub nodes were shared across all groups, namely Merdibacter,
Coprococcs, Lachnospiraceae_ND3007_group and Faecalibacterium (Figure 5D). Apart from the
above-mentioned central hub nodes, Coprobacillus and Allobaculum were shared between
the control and psoriasis at week 8 only, while Leuconostoc was shared by the psoriasis
group across time points. There were more shared hub nodes between the psoriasis week 8
network with the control group (6/10) than the psoriasis baseline network (4/10).

The difference in networks was further supported by centrality measures (including
betweenness, closeness and eigenvector) other than the degree measure, as shown in
Figure 5E. The network centralities measured the psoriasis group at week 8 (colored in
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orange) resembled that of the control group (colored in blue) more than its baseline (colored
in yellow) considering the cumulative distribution of measure (left), the density distribution
of measure (middle) and centrality of each node (right).

2.6. Development of Psoriasis Specific Machine Learning Based Microbiome Dysbiosis
Index (MDI)

Following the above promising results of gut dysbiosis in psoriasis, our group aimed at
developing a lifestyle-neutral gut dysbiosis test in differentiating the psoriasis and control
group. To avoid social and geographical bias in the gut microbiome, 10 microbial markers
were selected as targets based on previously reported microbial species enriched in non-
healthy subjects from a stool metagenomics analysis of 4347 individuals [47]. Quantitative
PCR (qPCR) was performed on the remaining samples in the dataset, including 41 out of
49 data points from the control group, 56 out of 58 baseline data points from the psoriasis
group, and 39 out of 52 post-8-week probiotics intake data points from the psoriasis group.

To construct a dysbiosis index from the qPCR result, a machine learning approach was
utilized, as detailed in the above methodology Section 4.6. In brief, 25% of the data were
held out as the testing set, while 4-fold cross-validation on the training set was adopted to
estimate the performance in terms of F score (a combination of precision and recall) and the
area under the receiver operating characteristic curve (AUROC; combination of sensitivity
and specificity) across five machine learning algorithms, namely logistics regression (LR),
support vector machine (SVM), random forest (RF), extreme gradient boosting (XGB),
and light gradient boosting machine (LGBM). RF and LGBM were the top-performing
models (F score = 0.89, AUROC = 0.88) (Figures S8–S10), and RF was chosen for subsequent
analysis due to its wide adoption in microbiome research [48].

The machine learning-based dysbiosis index (MDI) [range: 0–1] could clearly dis-
tinguish the control and psoriasis group with a cut-off of 0.5 and with the distribution
of the index summarized in Figure 6A. Interestingly, the dysbiosis index was seemingly
weakly and positively correlated with the Bristol Stool Form Scale (BSFS) within each
group (Figure 6B), but more data are required to draw a definitive correlation. The log2∆Ct
values stratified by the group are shown in Figure 6C, and the plain expression without the
aid of dysbiosis index was not straightforward in classifying psoriasis subjects from the
control group. We also evaluated the feature importance in terms of the SHAP value, as re-
flected in Figure 6D. Among all the targets, Lachnospiraceae bacterium, Atopobium parvulum,
Granulicatella adiacens, and Fusobacterium nucleatum were found to impose a higher impact
on the dysbiosis index calculation. Except for Granulicatella adiacens, the abundance of
Lachnospiraceae bacterium, Atopobium parvulum, and Fusobacterium nucleatum were also
consistently influential in the index calculation if employing LGBM and XGB algorithms
(Figure S9). With the insights into important features, we tried to fit the machine learn-
ing models with the fifth most important features. Reducing the dimensionality of data
seemingly improved their performance during training, but the improvement did not
translate into a testing procedure. Even though the performance of LGBM trained with a
smaller dataset was similar, there was a slight drop in both the F score and AUROC for RF
(Figure S8). Therefore, RF trained with all the features was deployed.

2.7. Microbiome Dysbiosis Index (MDI) Correlates with PASI Responsiveness

Based on the improvement in the psoriasis group in reference to DLQI and PASI, we
examined whether the microbiome dysbiosis index (MDI) could be exploited as a tool to
monitor the progress of gut dysbiosis when receiving microbiome probiotics therapy. In
line with the postulated lesser extent of gut dysbiosis in the psoriasis group after 8 weeks
of probiotics intake, the gut dysbiosis index also followed a similar significant decline. At
week 8, the index was found to be significantly lower (p = 0.032, Wilcoxon signed rank,
Figure 7) in PASI responders than in non-responders.
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3. Discussion

Despite the use of effective biologics therapies in the management of psoriasis over
the past few decades, the exact triggers for underlying immunological events are still
unclear [49]. The linkage between the gut and skin is gaining more and more attention
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as gut microbiome dysbiosis may play an important role in the pathogenesis of various
autoimmune diseases. Our study aims to clarify the discrepancy in the gut microbiome
profile at the taxonomic, functional and network levels. To the best of our knowledge, this
is the first gut microbiome study comprising psoriasis patients in Hong Kong. The impact
of diet on the gut microbiome composition is commonly recognized [50–53]. Therefore, it is
believed that the incorporation of gut microbiome data across different geographical loca-
tions and lifestyles could expand and benefit the understanding of the complex interplay
between gut flora and host health in general.

We reported a significant differential gut microbiome profile between psoriasis pa-
tients and the control group. This difference could be briefly explained at the phylum
level by the Firmicutes/Bacteroidetes ratio and augmented by the differential abundance
analysis at the genera level. Of note, Blautia genera (B. wexlerae), a genus composed of
obligate anaerobic intestinal commensal microorganisms belonging to the Lachnospiraceae
family [54,55], was significantly enriched in the gut of psoriasis patients. Similar find-
ings were reported by another group [56]. However, it is uncertain if the difference
observed in B. wexlerae was a consequence of other factors (e.g., weight, BMI) or due
to the presence or development of psoriasis. The exact role of the Blautia genus in pso-
riasis remains unknown and controversial with contradictory associations reported in
liver cirrhosis, colorectal cancer, and early-stage breast cancer [57–59]. On the other hand,
Parabacteroides distasonis, which increased occurrence in the control, was another potential
key player of psoriasis. This observation was also recapitulated by other groups previ-
ously in the mice model and a population other than southern Chinese [31,60–62]. It
has been reported to possess anti-inflammatory properties, with emerging in vitro and
in vivo evidence to alleviate colonic inflammation [63–66]. Most importantly, the abun-
dance of P. distasonis improved after the 8-week oral administration of the novel E3 pro-
biotics formula, reinforcing its key role in psoriasis. A recent study by Zhou’s group on
collagen-induced arthritic (CIA) mice provided convincing evidence that oral feeding live
P. distasonis could restrain Th17 cell differentiation [67], where Th17 is also an important
mediator of psoriasis pathogenesis. Zhou’s group further recapitulated these effects by treat-
ing CIA mice with live P. distasonis derived from lithocholic acid (LCA), deoxycholic acid
(DCA), isolithocholic acid (isoLCA) and 3-oxolithocholic acid (3-oxoLCA). COLANSYN-
PWY (colanic acid building blocks biosynthesis), which was also found to be enriched in
the control group inferred by PICRUSt2 and LefSe (Figure S7).

Furthermore, subsequent analysis revealed the potential explanation of the difference
in the gut microbiome profile at the functional pathway and network level. Most of the
discriminative features enriched in the control group were identified by linear discrimi-
nant analysis and related to the short-chain fatty acids (SCFAs) biosynthesis/degradation
pathway. SCFAs—butyrate, acetate, propionate—are well known for their ability to inhibit
both adaptive and innate immune responses via reducing the proliferation, migration,
and pro-inflammatory cytokine production of various immune cells, such as Th17, Treg,
DCs [68–71]. It is an important class of metabolites that mediate the distal effects of gut
microbiota in the host health status [72]. Some researchers unveiled that SCFAs could
maintain gut barrier integrity and reduce intestinal permeability so that microbial dysbiosis
related to the deregulation of SCFA may associate with “leaky gut” [70,71], and thus lead
to the onset of numerous diseases including but not limited to psoriasis. Furthermore,
a number of studies showed that an altered intestinal barrier was linked with psoriasis
activity and severity through quantifying intestinal barrier integrity markers (such as
claudin-3 and intestinal fatty acid binding protein, I-FABP) or the serum concentrations of
gut microbiota-associated metabolite trimethylamine N-oxide (TMAO) [73–77]. The enrich-
ment of L-arginine-related pathways and urea cycle intermediates (e.g., citrulline, ornithine,
proline) also coincided with previous serum metabolomic studies on psoriasis patients [78].
The extent of this contribution in regulating blood metabolites by the gut microbiome in
psoriasis has yet to be determined, but it certainly implies a plausible mechanism for the
effect of the gut microbiome in people with psoriasis.
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In addition to in silico pathway analysis, the co-occurrence/-exclusion network pre-
sented a paramount piece of evidence for microbial dysbiosis in the gut of psoriasis patients.
It is obvious that connection patterns in the network were remodeled with a clear manifes-
tation in centrality measures. However, the driving force behind this remodeling remains
unknown, and it may be due to the relative abundance changes in individual species or the
disturbed balance of the whole gut flora. Additionally, the interpretation of the network
analysis result is not always direct and straightforward; no gold standard comparison
methodology has existed yet [79–81]. Nonetheless, it does not undermine the observed dis-
tinction of a co-occurrence network between psoriasis and the apparent normal group and
partial restoration of gut dysbiosis in psoriasis after taking 8 weeks of oral probiotics [79].

Leveraging the observed gut dysbiosis in this cohort, we further explored the oppor-
tunity to monitor the level of gut dysbiosis by leveraging cost-effective qPCR and machine
learning techniques. The machine learning-derived gut dysbiosis index demonstrated ex-
cellent precision and recall relying on 10 carefully selected microbial markers based on big
data to minimize lifestyle bias in a targeted discovery. Despite the correlation between the
index and disease severity, this could be affected by a number of confounding factors, and
the index was shown to reflect the treatment outcome of the microbiome probiotics therapy
in psoriasis patients with a favorable PASI response. It warrants further investigation of
the index as a practical and objective tool in the monitoring of gut dysbiosis status while
taking probiotics.

Taken together, our findings provide evidence of gut microbiome remodeling in south-
ern Chinese adult psoriasis patients at the baseline and after a course of orally administrated
probiotics with the taxonomical to pathway and network level. Even though it is expected
that these findings could be discordant from previous studies with psoriasis from different
demographic backgrounds, B. wexlerae was also found to contribute to psoriasis pathology
in our cohort. A detailed mechanism of how B. wexlerae regulates immune response is
largely unresolved [54] and requires further investigations into the underlying principle
to reveal new insights into the development and progression of various immune diseases.
P. distasonis is another crucial player in alleviating psoriasis severity by gut microbiome
modulation. Comprehensive bioinformatics analysis highlighted the connection between
gut microbiota dysbiosis and psoriasis, with SCFAs as a probable mediator. Of note, our
current study was limited by the short 8-week study period. Further investigation with a
longer follow-up period would be warranted to explore the gut microbiome evolution, sta-
bility and resilience after longer-term administration and the discontinuation of probiotics
therapy. Nonetheless, with the recent development of a microbiome-targeted therapeutics
approach in managing various disorders [82–89], our study hints at the possibility and
provides a scientific basis to leverage the microbiome as part of the management of psoriasis
in patients.

4. Materials and Methods
4.1. Subject Recruitment and Study Design

A total of 58 adults (18–65 years old) with psoriasis and 49 adult subjects without
known dermatological disorders of Chinese ethnicity were recruited through the collabo-
ration between the Hong Kong Psoriasis Patient Association, The Chinese University of
Hong Kong and BioMed Microbiome Research Centre. All participants (1) aged above 18
and (2) who provided informed consent were included. All psoriasis patients with any
one of the following conditions were not recruited or were excluded from the study: (1) a
history of adverse reaction to probiotics; (2) known overt bacterial infections in the skin;
(3) known pregnancy; (4) premorbid medical conditions, such as cardiovascular, liver or
renal dysfunction or diabetes mellitus; (5) having used oral corticosteroids, oral antibiotics,
other immunosuppressive or any preparation of oral herbal medicines for the treatment
of psoriasis in the past month; (6) having been diagnosed with atopic dermatitis, scabies,
allergic contact dermatitis or seborrheic dermatitis; and (7) having taken anti-coagulant
or anti-platelet drugs in the past month. All patients involved in this study were first
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diagnosed with psoriasis and evaluated by a board-certified dermatologist according to the
Psoriasis Area and Severity Index (PASI) and Dermatological Life Quality Index (DLQI).
Fecal samples were collected for downstream sequencing. All subjects were allowed to
continue their usual medication or topical maintenance therapy for psoriasis during the
trial. This study was conducted according to the guidelines of the Declaration of Helsinki
and was approved by the Research Ethics Committee of the Hong Kong Doctors Union
(protocol number HKSGM-2020AD-Study-protocol-vl-20220211).

4.2. Library Preparation and 16S rRNA Sequencing

All the fecal samples were homogenized in PurSafe® DNA and RNA preservative
(Puritan, Pittsfield, ME, USA) and were subjected to beating with 425–600 µm glass beads
(Sigma-Aldrich, Saint Louis, MO, USA) for 1 h following the manufacturer’s instructions.
A DNeasy Blood & Tissue Kit (Qiagen, Hilden, Germany) was used to conduct the iso-
lation of microbial DNA from the fecal samples. The extracted DNA concentration of
each sample was quantified using a Qubit™ dsDNA HS Assay Kit (Life Technologies,
Carlsbad, CA, USA) with Qubit 3 Fluorometer (Thermo Fisher Scientific, Waltham, MA,
USA). An amplicon library was constructed with 515F (5′-GTGCCAGCMGCCGCGG-
3′)/907R (5′-CCGTCAATTTCMTTTRAGTTT-3′) and primer pair spanning targeting at
aV4–V5 hypervariable of 16S rRNA genes, together with adapter sequences, multiplex
identifier tags, and library keys. The 16S rRNA gene sequencing was performed using the
Illumina MiSeq platform (Illumina, Inc., San Diego, CA, USA) following the original Earth
Microbiome Project Protocols [90]. Index barcodes and adapters sequences were removed
from pair-ended demultiplexed reads for downstream analysis.

4.3. Probiotic Mixture

All AD patients received a daily capsule of a novel E3 probiotics formula devel-
oped by BioMed Microbiome Research Centre (BioMed Laboratory Company Limited,
Hong Kong) containing a mixture of 8 types of highly effective gastro-resistant probiotics
(not less than 2 × 1011 CFU/capsule at the time of production), effective postbiotic HK-
LP (heat-killed Lactobacillus plantarum, 10 mg/capsule), and triple prebiotics containing
inulin (22 mg/capsule), Galacto-oligosaccharides (GOS) (8.1 mg/capsule), and Fructo-
oligosaccharides (FOS) (0.9 mg/capsule) for eight weeks. The probiotics mixture was
composed of Lactobacillus acidophilus GKA7, Lactobacillus brevis GKL9, Lactobacillus casei
GKC1, Lactobacillus gasseri GKG1, Lactobacillus reuteri GKR1, Lactobacillus plantarum GKM3,
Bifidobacterium bifidum GKB2 and Bifidobacterium longum GKL7. The postbiotics HK-LP
involved in this formula was proved to enhance the probiotics functions. Moreover, prebi-
otics acts as an energy source for probiotics, which not only enhance the probiotic’s function
but also foster intestinal peristalsis as well as detoxification.

4.4. Bioinformatics Analysis

Microbiome bioinformatics data were analyzed using a plugin-based system, QIIME
2–2022.2 [91], integrating various microbiome analysis algorithms and tools. Demultiplexed
reads were quality controlled and denoised with DADA2 [92] using the q2-dada2 plugin
to retrieve exact amplicon sequence variants (ASVs) [93]. All ASVs were then aligned
by mafft [94], and then a phylogenetic tree was generated using fastree2 [95] via the q2-
phylogeny plugin. The taxonomic annotation of the resulting ASV was carried out using
the q2-feature-classifier plugin [96] and a pre-trained Naive Bayes classifier which was
based on SILVA v138 taxonomic reference database with 99% similarity [97,98]. We used
six metrics to indicate alpha diversity: the Observed OTUs, Chao1 Index (Chao1), ACE
Index (ACE), Shannon Diversity Index (Shannon), Simpson Index (Simpson), and Faith’s
phylogenetic diversity (PD). In addition, beta diversity was calculated based on the Jaccard
distance metric, Bray–Curtis distance metric, weighted UniFrac, and unweighted UniFrac
distance metrics. The PERMANOVA test on beta diversity (999 permutations) was applied
to compare the microbial community dissimilarity across groups [99]. Adnois was applied
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to investigate the microbial community dissimilarity across age, gender, weight and BMI.
The co-occurrence/co-exclusion network was inferred by the Sparse and Composition-
ally Robust Inference of Microbial Ecological Networks (SPIEC-EASI) framework using
generalized LASSO regression (‘glasso’) [100].

4.5. Quantitative Real Time PCR

The remaining fecal DNA from 16S rRNA sequencing was retrieved for analysis. Real-
Time PCR was carried out with a total volume of 10 µL, containing 5 µL of GoTaq qPCR
master mix (Promega Corporation, Waltham, MA USA), 2 µL of DNA template, and 3 µL
of primer pair solution (300 nM/reaction). For each run, nuclease-free water (Promega
Corporation, Waltham, USA) was used as the negative control, and melting peaks were
used to determine the specificity of the PCR. qPCR was performed in a DNA thermal cycler
(QuantStudio 1 Real-Time PCR System, Thermo Fisher Scientific, Waltham, USA). PCR
conditions included an initial denaturation step at 95 ◦C for 2 min, followed by 40 cycles
consisting of 95 ◦C for 15 s and 60 ◦C for 1 min, and an additional dissociation step (95 ◦C
for 15 s, 60 ◦C for 1 min, followed by a slow ramp to 95 ◦C). The primer sequences are
included in Table S6.

4.6. Development of Gut Microbiome Dysbiosis Index (MDI)

All machine learning training was conducted in Python 3.9.13 with scikit learn
version 1.1.1, xgboost version 1.7.1, lgbm version 3.3.3, and shap version 0.41.0. The data
set was first split into a training and testing set in a 3:1 ratio with stratification. Machine
learning models (LR—Logistic Regression, SVM—Support Vector Machine, RF—Random
Forest, XGB—Xtreme Gradient Boosting, LGBM—Light Gradient Boosting Machine) were
trained using the training set with 4-fold cross-validation to evaluate the F1 score, precision,
recall and area under ROC. The model was then tested against the 25% held-out testing set.
The best model was selected to be the final model. Feature importance was evaluated by
SHAP values and calculated using the shap package.

4.7. Statistical Analysis

All the statistical analysis and visualization of results were conducted in Python 3.8.13
with numpy version 1.22.3, scipy version 1.8.0, statsmodels version 0.13.2, skbio ver-
sion 0.5.6, matplotlib version 3.5.1 and seaborn version 0.11.2. Normality assumptions
were evaluated by D’Agostino and Pearson’s test (scipy.stats.normaltest function) and the
Shapiro–Wilk test (scipy.stats.shapiro function) if parametric tests were employed. De-
mographic characteristics were evaluated by the non-parametric Mann–Whitney U rank
test (scipy.stats.mannwhitneyu function) for continuous variables and the Fisher exact
test for categorical variables (scipy.stats.fisher_exact function). p-value correction was per-
formed with statsmodels.stats.multitest.multipletests function using Benjamini/Hochberg
(non-negative) procedure. p < 0.05 was considered statistically significant unless other-
wise specified.

5. Conclusions

We demonstrated the notable changes in the gut microbiome composition (1) between
psoriasis and control group and (2) psoriatic patients taking 8 weeks of probiotics in a local
cohort consisting of southern Chinese patients. B. wexlerae and P. distasonis were commonly
dysregulated species in psoriasis patients. The remodeling of functional pathways and the
co-occurrence network was evidential and could provide a novel intuition of the underlying
logic and role of gut microbiota in psoriasis development.
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