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Abstract: Neodymium (Nd)-doped ZnO nanostructures with different amounts of Nd were obtained
by the electrospinning–calcination method. X-ray diffraction measurements indicated that the pre-
pared nanostructures have a wurtzite structure without undesirable impurities. Nd doping changes
the mean crystallite size as well the lattice strain, as proved by Williamson–Hall plots. The ZnO-based
nanostructures were tested as photocatalysts for methylene blue (MB) dye and ciprofloxacin (CIP)
drug pollutant degradations under visible light irradiation. Corroborating the obtained results, it was
found that the reaction rate constant increased almost linearly with the mean crystallite size (from
2.235 × 10−2 to 3.482 × 10−2 min−1) with a variation in the mean crystallite size from 24.2 to 42.1 nm.
Furthermore, the best catalyst sample (0.1% Nd-doped ZnO) was used to optimize the photodegrada-
tion process of ciprofloxacin, taking into account the pollutant concentration as well as the catalyst
dose. The removal efficiency after 120 min was about 100%, with the rate constant of k = 5.291·10−2

min−1 (CIP) and k = 4.780·10−2 min−1 (MB) for the established optimal conditions. Considering
the value of the rate constant, the half-life of the reaction (τ1/2 = ln2/k) was evaluated to be about
τ1/2 =13 min for CIP and 14.5 min corresponding to MB. Several catalytic cycles were successfully
performed without any loss of photocatalytic activity using these nanostructures, demonstrating that
the obtained nanostructures have good stability in the leaching processes.

Keywords: electrospinning–calcination method; zinc oxide (ZnO) and Nd (0.05, 0.1, 0.5, 1%)-doped
ZnO; photocatalytic activity; methylene blue and ciprofloxacin

1. Introduction

Nanostructured oxide semiconductor materials have been intensively studied in re-
cent years due to various commercial applications, including in photocatalysts, batteries,
self-cleaning surfaces, fabrics, photovoltaics, antiseptic patches, ink and paints, and so
on [1]. Zinc oxide (ZnO) is considered one of the most important n-type semiconductors
owing to its outstanding performance and numerous applications (sensors, nanomedicine,
optoelectronics, energy, and environment) [2]. It possesses excellent properties such as a
wide band gap around 3.34 eV and a high excitation energy of 60 meV, and it preferentially
crystallizes in a hexagonal wurtzite-type structure and can form a variety of nanostruc-
tures (nanoparticles, nanowires, nanorods, nanofibers, nanospheres, and nanotubes) [3].
Furthermore, due to their large surface area, good compatibility, abundance, nontoxicity,
and simple synthesis methods, these nanostructures exhibit unique optical, electronic,
physical, and chemical properties [4]. Recently, ZnO has been extensively studied for its
photocatalytic performance. Various techniques can be used to prepare this semiconductor,
including chemical vapor deposition, molecular beam epitaxy, electrodeposition, electro-
spinning, sol–gel processes, sputtering, hydrothermal methods, etc. [5–7]. On the other
hand, electrospinning represents one of the most accessible methods for obtaining these
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materials due to its low cost and feasibility. The materials prepared by this method have a
large active surface, high porosity, and improved functional properties compared to the
other techniques [8]. A variety of factors can contribute to improving the performance
of ZnO nanostructures as photocatalysts, including their structure, morphology, dopants,
band gaps, and structural defects [2]. In this context, rare earth elements are considered
ideal dopants to modify the crystal structure, electronic structure, and optical properties
of ZnO-based oxide nanostructures, which can effectively influence the positions, widths,
and density of the conduction band (CB) and valence band (VB) states [9,10]. Many oxide
semiconductor materials based on ZnO doped with various rare earth ions are used for
organic pollutant degradation [11–13]. Recent developments in pharmaceutical products,
such as antibiotics, have presented an environmental and health threat due to their toxicity
and nonbiodegradability. Several effects are associated with residues from antibiotics,
including the development of antibiotic-resistant microorganisms and the disruption of
photosynthetic cycles. A common antibiotic found in wastewater is ciprofloxacin (CIP),
a quinolone-type antibacterial used for infections caused by Gram-negative and Gram-
positive bacteria [14]. According to our knowledge, there are insufficient studies on the
photocatalytic degradation of pharmaceutical products using ZnO catalysts doped with
various rare metals under visible light irradiation. In a recent study, Alahmadi et al. [15]
used Pt@ZnO nanorods as photocatalysts for ciprofloxacin degradation under visible light
irradiation. The authors reported 100% efficiency after 120 min of irradiation.

In our quest to develop new materials with improved photocatalytic performances,
Nd-doped ZnO nanostructures were prepared by the electrospinning–calcination method
for the degradation of MB dye and CIP drug pollutants. A variety of methods were used in
analyzing the photocatalysts, including XRD, SEM, DRS, and fluorescence spectroscopy.
The photocatalytic performances of ZnO nanostructures were improved by doping with
various amounts (0.05, 0.1, 0.5, 1%) of Nd ions. The photocatalytic performances and kinetic
parameters of all materials were assessed using MB (C0 = 10 mg/L) as a model organic
pollutant. Special attention was dedicated to the synergistic effect of the initial pollutant
(ciprofloxacin) concentration (mg/L) and catalyst dosage (%w/v) on the performance of the
photodegradation process in the presence of the best photocatalyst. This material was also
evaluated regarding its stability and reusability (after five cycles under the same conditions).

2. Results
2.1. XRD Analysis

The effect of Nd in the crystal structure of ZnO was unveiled using powder X-ray
diffraction. Figure 1 shows XRD patterns for the undoped ZnO, as well as at different
dopant concentrations.

In each case, XRD patterns present diffraction peaks located at 20 = 31.79, 34.45, 36.26,
47.67, 56.62, 62.89, 66.45, 68.18, and 69.12, further indexed as (100), (002), (101), (102),
(110), (103), (200), (112), and (201) reflections of ZnO (ICDD card no. 00-036-1451) with
a = b = 0.324 nm and c = 0.517 nm (spatial group P63mc(186) with hexagonal symmetry).
Other compounds were not identified, confirming the powder purity. Further, the Nd effect
on the mean crystallite size and lattice strain was assessed based on size–strain Williamson–
Hall (WH) plots. While the band gap value changes slightly after doping with different
concentrations of Nd ions for certain systems, the photocatalytic properties are always
improved due to intrinsic defect concentration and “impurities” (Nd), since photocatalytic
reactions take place in the active sites located on the surface of the nanostructures. The
method developed by Williamson and Hall [16] assumes that the diffraction peak has two
independent components, namely: size broadening, βτ , and strain broadening, βS, and
their dependence to the Bragg angle, θ, is given by the following relations:

βτ =
kλ

τcosθ
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βS = 4εstanθ (1)
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Figure 1. X-ray diffraction patterns for pure ZnO and Nd-doped nanostructures.

From Equation (1), one can observe that the size broadening depends on 1/cosθ , while
the strain broadening depends on tanθ. Briefly, the Williamson–Hall method assumes that
size and strain contributions are additive factors of the total breadth of the diffraction
peak [17,18], thus the convolution is either a simple sum or a sum of squares. Combining
Equation (1), it can be obtained:

βtot = βτ + βS =
kλ

τcosθ
+ 4εstanθ (2)

Then, multiplying this equation by cosθ:

βtotcosθ =
kλ

τ
+ 4εssinθ (3)

where k is the crystallite shape factor taken as 0.93, τ is the size of the crystalline domains
(known as the mean crystallite size), and εs is the lattice strain.

Figure 2a–d present the Williamson–Hall plots (red line) on multiple reflections for
each doped sample with corresponding intercept and slope values as inset, which further
provide the value of the mean crystallite size and lattice strain.
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Figure 2. Williamson–Hall plot (red line) on different (hkl) reflections for Nd-doped ZnO samples:
(a) ZnO:Nd (0.05%), (b) ZnO:Nd (0.1%), (c) ZnO:Nd (0.5%), and (d) ZnO:Nd (1%), respectively.

Based on the linear plots, the following values for the mean crystallite size and lattice
strain were obtained: 31.8 nm (0.05% Nd), 42.1 nm (0.1% Nd), 24.2 nm (0.5% Nd), and
30.8 nm (1% Nd) (mean crystallite size), and 0.084% (0.05% Nd), 0.107% (0.1% Nd), 0.065%
(0.5% Nd), and 0.075% (1% Nd) (lattice strain). For the undoped ZnO sample, the value
36.9 nm was obtained.

An approximate linear fit was obtained in the dependence between the lattice strain
and the mean crystallite size (Figure 3), suggesting that the low crystalline size favors
the lattice relaxation, usually ascribed to the formation of structural defects in the lattice.
The high correlation between these two microstructural parameters is proved by the ρ
Pearson’s correlation parameter, whose value is close to unity. This indicates that the lattice
strain and the mean crystallite size are interrelated in our ZnO samples, and later, it is
shown that the different reaction rate constants could be explained in this framework. From
these results, it can be seen that the concentration of the dopant does not impose a linear
behavior of the lattice strain and crystalline size. This aspect is found in many scenarios in
the literature [19–21], and this nonlinear variation in the lattice strain is due to the variation
in the electron affinity of lanthanide ions at a particular concentration. It seems that there
is an optimum in terms of the dopant concentration that does not take into account the
magnitude of the values for the size of the crystallites and lattice strain.
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ZnO samples.

2.2. Morphological Characterization

To determine the morphology of pure ZnO and 1% Nd-doped ZnO (e.g., highest
dopant amount), SEM micrographs and EDX spectroscopy were employed. Thus, the SEM
images of pure (Figure 4a) and 1% Nd-doped ZnO (Figure 4b) nanostructures acquired
at different magnifications (×2500 and 10,000) are presented in Figure 4. These materials
exhibit characteristic features of nanostructures obtained by the electrospinning–calcination
method, represented by one-dimensional worm-like nanofibers composed of interconnected
nanocrystals. In addition, the microstructure of the ZnO-based materials obtained by
this method keeps its one-dimensional shape, but as expected for this kind of material,
the mechanical integrity is quite weak (i.e., the materials are brittle) compared to other
semiconductors (for example, TiO2) [17]. Energy-dispersive spectrometry (EDX) was used
to confirm the presence of Nd ions in the doped materials. Figure 4 shows the EDX
spectra of undoped and 1% Nd-doped ZnO samples. The spectra corresponding to the
doped material highlighted the presence of Zn, O, and Nd with a 1% value of atomic
percentages. We are inclined to believe that the detected difference in the morphology
between ZnO and ZnO:Nd (1%) (evidenced by SEM images) might be associated with the
fact that these two systems were not equivalent from a thermodynamic standpoint. For
the first system (production of ZnO), in the calcination stage, the PVP polymer and acetate
anions participated in the burning process. For the second system (production of ZnO:Nd)
the burning reaction involved the PVP polymer, acetate anions, and nitrate anions. The
latter (nitrate ions) led to the formation of nitrogen dioxide (NO2), which is a volatile gas
that might contribute to the morphological structuring of the final material during the
calcination step.
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2.3. Optical Analysis

A way to evaluate the photocatalytic properties of oxide semiconductor materials is to
perform diffuse reflectance spectroscopy measurements, which enable us to establish the
band gap values. The band gap energy (Eg) can be calculated from the UV-Vis reflectance
spectra and using the well-known Kubelka–Munk ((Equation (4) and Tauc (Equation (5))
formulas [22,23].

F(R∞) =
(1 − R∞)2

2R∞
(4)
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[F(R∞)hν]
1
n = c

(
hν− Eg

) 1
n (5)

where F(R∞) is the Kubelka–Munk function; R∞ represents the absolute reflectance of the
materials; hν is the photon energy; and Eg is the band gap energy. Factor n can have various
values depending on the nature of the electron interband transition, being 1/2 for the direct
transition and 2 for the indirect transition band gap, respectively. The Eg can be evaluated

by plotting [F(R∞)hν]
1
n against hν and extrapolating the linear part of the absorption edge

to intercept the photon energy axis.
Figure 5a shows the UV-visible diffuse reflectance spectra of pure and Nd-doped ZnO

samples recorded between 300 and 1100 nm. To evaluate the Eg from the Kubelka–Munk
calculation, we plotted the graphics using both factor n values, 1/2 and 2 (Figure 5b,c,
respectively). Table 1 summarizes the obtained values of Eg. As can be seen, the calculated
Eg values are attributed to a factor n of 2 (indirect transition band gap). Moreover, there is
no important variation between pure and doped ZnO. Many authors have shown that the
band gap value changes slightly after doping with different elements for certain systems.
For example, Kumar et al. [13] reported slightly higher values after doping with Ce ions
(3.32 eV for ZnO and 3.38, 3.36, 3.36 eV for 1, 5, and 10 mol% Ce-doped ZnO materials),
which is due to the size reduction in ZnO and the effects of quantum confinement. Another
study [24] found higher Eg values for ZnO doped with Eu compared to ZnO (3.16 eV).
Likewise, Ajala et al. [25] showed that an increase in the Al content of ZnO powders results
in a slight blue shift in the absorption edge, indicating a slight increase in the bandgap
energy (from 3.21 eV for ZnO to 3.23, 3.24, and 3.25 for 0.5, 1.0, and 1.5% for Al-doped ZnO,
respectively). Despite the fact that the band gap values reported in all cases do not change
significantly, the photocatalytic properties are always improved, as in our case.
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Table 1. Optical band gap (Eg, eV) values of the prepared materials.

Samples
Eg (eV)

n = 1/2 n = 2

ZnO 3.03 3.13

ZnO:Nd (0.05%)→ ZNd1 3.05 3.16

ZnO:Nd(0.1%)→ ZNd2 3.01 3.14

ZnO:Nd(0.5%)→ ZNd3 3.05 3.18

ZnO:Nd(1.0%)→ ZNd4 3.08 3.16

2.4. Photoluminescence

The photoluminescence properties of the semiconductor materials can also influence
the photocatalytic response. Moreover, semiconductor stoichiometry, intrinsic defect con-
centration, and impurities can affect the positions and intensity of the band edges in the
photoluminescence spectra. Figure 6 shows the emission spectra of pure and Nd-doped
ZnO nanostructures excited at wavelengths of 320 and 370 nm, measured between 350 and
600 nm. From these figures, it can be seen that in the visible area of the spectra, there are
several bands (423, 434, 440, 446, 459, 484, 528, and 541 nm) due to microstructural defects.
Many authors [25–27] reported several structural defects in ZnO due to the doping or
material preparation method, such as Zni interstitial zinc, zinc vacancies (VO and VZn), Oi
oxygen interstitials, and oxygen antisites (OZn). According to Figure 6, the peak positions
are similar for all materials, but the intensity of the doped photocatalysts is lower than that
of the undoped ZnO. Thus, the decrease in PL intensity in Nd-doped ZnO ascertains that
the recombination charge carriers are effectively suppressed by neodymium doping. In con-
sequence, the lower recombination rate of the photogenerated electron–hole pairs increases
the lifetimes of electrons and holes, inducing enhanced photocatalytic activity [21].
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Figure 6. Photoluminescence spectra for pure ZnO and ZnO doped with various amounts of Nd ions
(0.05, 0.1, 0.5, 1%) excited at wavelengths of 320 (a) and 370 nm (b).

2.5. Photocatalytic Activity
2.5.1. Photodegradation Kinetics under Visible Light Irradiation

In the first part of this study, the screening test was carried out for MB dye degradation
with an initial concentration of 10 mg·L−1 in the presence of 0.1%w/v Nd-doped ZnO
nanostructures.

Figure 7 displays the photodegradation kinetics of MB dye in aqueous solutions under
visible light irradiation and in the presence of the produced catalysts (ZnO and ZnO:Nd).
By using the nonlinear regression technique, the experimental data were interpolated to the
pseudo-first-order (PFO) kinetic model. According to this PFO model, the time evolutions
of the MB dye concentrations can be written as follows:

Ct = C0 e−kt (6)

where C0—initial MB dye concentration (10 mg/L), k—pseudo-first-order reaction rate
constant (min−1), and t—irradiation time (min). The goodness-of-fit was assessed by
the error function (ε2) representing the sum of squares of residual errors (ε2=Σ(C(t)exp −
C(t)calc)2). The smaller the error function (ε2), the better the prediction of the PFO model.
The fitted parameters of the PFO model are reported in Table 2.
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Figure 7. Kinetics of MB dye photodegradation in aqueous solutions under visible light irradiation
and in the presence of the produced catalysts (ZnO and ZnO:Nd); solid and dash lines provide pre-
dictions according to pseudo-first-order kinetic model; experimental conditions: catalyst dosage = 1
g/L; T = 23 ± 2 ◦C; pH 7.0 ± 0.2.



Int. J. Mol. Sci. 2023, 24, 6436 10 of 19

Table 2. Kinetic parameters for MB dye photodegradation under visible light in the presence of the
produced catalysts (ZnO and ZnO:Nd).

Material
Code

Material
Formulation

Pseudo-First-Order
of the

Reaction Rate
Constant, k (min−1)

Error Function (ε2)

– –/Photolysis 3.339 × 10−4 0.028
ZnO ZnO 1.817 × 10−2 0.907

ZNd1 ZnO:Nd (0.05%) 3.174 × 10−2 0.290
ZNd2 ZnO:Nd (0.1%) 3.482 × 10−2 0.272
ZNd3 ZnO:Nd (0.5%) 2.235 × 10−2 0.432
ZNd4 ZnO:Nd (1.0%) 2.579 × 10−2 0.977

According to Table 2, the amount of the doping element (Nd) in the ZnO matrix
of the catalyst has a significant influence. Moreover, the optimal amount of the doping
element (Nd) was found to be 0.1% w/w. Thus, the optimal formulation of the catalyst
was attributed to the ZNd2 sample (ZnO:Nd (0.1%)), which disclosed the maximum
value for the constant (k = 3.482 × 10−2 min−1). Furthermore, reaction rate constant
decreased to 3.174 × 10−2 min−1 (ZnO:Nd (0.05%), then to 2.579 × 10−2 min−1 (ZnO:Nd
(1%)), reaching 2.235 × 10−2 min−1 for the ZnO:Nd (0.5%) sample. An explanation of the
different observed reaction rate constants could be provided considering the results related
to the doped ZnO microstructures or their optical properties. While the bandgap was
almost constant at different Nd doping percents, the mean crystallite size was significantly
affected. Previous reports showed that the increase in the mean crystallite size enhances the
photodegradation of phenol using anatase nanoparticles [28], the photodecomposition rate
of organic material using WO3 particles [29], or the photocatalytic degradation of phenol of
ZnO nanoparticles [30]. In our case, corroborating the results of the photocatalytic activity
with the XRD findings, one can observe that the reaction rate constant, k, increased as
the mean crystallite size increased. Moreover, considering the linear fit between mean
crystallite size and the lattice strain, one can infer that the reaction rate constant decreases
in the presence of the lattice relaxation (at small lattice strain).

2.5.2. Design of Experiments (DoE) for Empirical Modeling and Optimization of the Process

The photodegradation process of organic pollutants in the presence of metal oxide cata-
lysts is influenced by various parameters such as the light intensity, the initial concentration
of the pollutant, the type and mass of the photocatalyst, the morphology, shape, and surface
of the photocatalyst, the temperature of the solution, the pH, and the irradiation time.
Photocatalyst dosage depends on each system and is essential for the degradation process,
but the most common catalyst loading range is between 0.04 and 5.0 g/L [31]. It is known
that the efficiency of the photodegradation increases with the increase in catalyst loading
due to the increase in active sites in contact with the pollutant. However, there is a limit up
to which the amount of catalyst has maximum efficiency, after which it decreases due to
several factors (increased turbidity of the solution leads to a decrease in light transmission,
reduction in the surface area available for the light to promote the generation of h+/e−

pairs due to particle agglomeration, and surface deactivation caused by particle collisions).
This section deals with evaluating the synergetic effect of two important factors, initial
pollutant concentration C0 (mg/L) and catalyst dose (CatDose,%w/v), on the performance of
the photodegradation process. To this end, the design of experiments (DoE) and response
surface methodology (RSM) were used as the main chemometric tools. One may find more
details regarding the mentioned methodologies (DoE and RSM) in the literature [30,31].
In these experiments, ciprofloxacin (CIP) was assayed as an organic pollutant dissolved
in water. The experiments were conducted at room temperature, 23 ± 2 ◦C, and at a
naturally occurring pH (7.0 ± 0.3). The performance of the photodegradation process was
expressed through the removal efficiency Y (response of the process) that was recorded
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after an irradiation time of 120 min. Hence, the objective of the optimization implied the
maximization of the removal efficiency Y(%), which can be written as:

Y =

(
1− Ct

C0

)
× 100 (7)

where C0 denotes the initial concentration of the CIP organic pollutant and Ct is the residual
concentration of the organic pollutant (CIP) recorded after t = 120 min irradiation time in
the course of the photodegradation process. According to modeling methodology, both
factors (C0 and CatDose) were converted into coded dimensionless variables x1 and x2.
This converting operation was performed to compare the effect of factors in the same
dimensionless scale. The mathematical equations used for converting actual factors into
coded variables are provided elsewhere [32,33]. To explore the photodegradation process
in a systematic way, a central composite design of rotatable type (DoE) was adopted for
experimentation (Table 3). As highlighted in Table 3, the factors are reported as actual
values (C0 and CatDose) as well as coded levels (x1 and x2). The experimental plan provided
in Table 3 relied on 11 experimental runs, where both factors (C0 and CatDose) were
varied simultaneously. As a result, the process response (Y%) was determined for each
run (set of conditions). The central runs (numbers 9 to 11) were performed to estimate
the reproducibility of the experiment. Note that for each run (shown in Table 3), the
kinetics profile of the ciprofloxacin photodegradation was recorded, as shown in Figure 8.
Experimental data were fitted (by using a nonlinear regression technique) to pseudo-first-
order (PFO) and pseudo-first-order with stable component (PFO-SC) kinetic models [34].
The determined values for the rate constant are reported in Table S1 (in the Supplemental
Materials). For the studied system (CIP/ZnO:Nd (0.1%)), the rate constant varied from
1.230·10−2 min−1 to 4.743·10−2 min−1 (see Table S1).

Table 3. Central composite design (rotatable type) used for experimentation of ciprofloxacin pho-
todegradation in the presence of ZnO:Nd (0.1%) catalyst.

Run

Initial Concentration of Pollutant
(mg/L) Catalyst Dose (% w/v) Removal Efficiency (Response),

Recorded After 120 min Irradiation
TimeCoded Actual Coded Actual

x1 C0, mg/L x2 CatDose, % w/v Y (%)

1 −1 10.0 −1 0.10 89.70
2 +1 30.0 −1 0.10 80.03
3 −1 10.0 +1 0.20 93.91
4 +1 30.0 +1 0.20 81.43
5 −1.414 5.9 0 0.15 99.60
6 +1.414 34.1 0 0.15 82.08
7 0 20.0 −1.414 0.08 62.93
8 0 20.0 +1.414 0.22 81.66
9 0 20.0 0 0.15 74.53

10 0 20.0 0 0.15 74.90
11 0 20.0 0 0.15 74.89

Based on the experimental matrix (Table 3), an empirical mathematical model was
constructed using the multiple regression method [32,34]. Hence, the developed empirical
model (in terms of coded variables x1 and x2) can be written as given:

Ŷ = 74.71− 5.87x1 + 4.01x2 − 0.70x1x2 − 9.23x2
1

subjected to : −1.414 ≤ xj ≤ +1.414; j = 1, 2
(8)

The resulting empirical model (Equation (8)) was validated from the statistical view-
point by the analysis of variance (ANOVA) [35]. The statistical estimators provided by
ANOVA are listed in Table 4.
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Table 4. Analysis of variance (ANOVA) for the fitted model Ŷ (x1, x2).

Source DF (a) SS (b) MS (c) F-Value (d) p-Value (e) R2 (f) Radj
2 (g)

Model 4 932.36 233.09 14.05 0.0033 0.903 0.839
Residual 6 99.56 16.59

Total 10 1031.92
(a) degree of freedom; (b) sum of squares; (c) mean square; (d) ratio between mean squares; (e) probability of
randomness; (f) coefficient of determination; (g) adjusted coefficient of determination.

As reported in the ANOVA table (Table 4), the F-value of 14.05 and a small p-value
(0.0033) suggested a significant model from a statistical standpoint. Therefore, the model
can be employed for the predictions in the region of experimentation (valid region). The
value of the determination coefficient R2 revealed that the empirical model might explain
about 90% of data variation. Moreover, the adjusted coefficient R2

adj was somewhat smaller
than R2, disclosing that the data-driven model provided satisfactory estimations. The
empirical mathematical model in terms of actual factors was detailed using the substitution
technique, and it is given by:

Ŷ = 107.10− 4.07C0 + 108.37× CatDose− 1.41× C0 × CatDose + 0.09× C2
0

subjected to : 5.9 ≤ C0 ≤ 34.1
(mg

L
)
; 0.08 ≤ CatDose ≤ 0.22

(
% w

v
) (9)

Figure 9 shows the outcomes of empirical modeling by RSM. The accordance between
the experimental data (actual response) and model estimations is highlighted in Figure 9a.
Herein, scattering the data around the bisector (45◦ straight line) indicates a good agreement
between the experiment and mathematical model (Figure 9a).
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and model estimations; (b) response surface plot predicted by the empirical model showing the
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The final empirical model in terms of actual factors (Equation (9)) was used to plot
the response surface diagram and highlight the synergetic effect of factors C0 and CatDose
on the process performance (Figure 9b). According to Figure 9b, the main effect of the
initial concentration C0 is negative, whereas the main effect of the CatDose factor is positive
with respect to the estimated process response (Ŷ,%). This means that the increment
of the C0 factor participates in the diminishing of the response. Instead, as the CatDose
factor increases, the estimated response is gradually increased (Figure 9b). The quadratic
effect of the C0 factor induced a negative curvature by bending the response surface to
a syncline region (C0: 16–30 mg/L). Likewise, there is a weak interaction effect between
both factors C0 and CatDose. According to this, the influence of the CatDose factor is
somewhat more evident at lower initial pollutant concentrations (C0 < 10 mg/L). As one
can see from Figure 9b, the reddish zone of the response surface indicates the optimal
region, which is located in the following interval of the factors C0 (6–13 mg/L) and CatDose
(0.19–0.22% w/v).

Ultimately, the developed empirical model was used for the optimization of the
investigated photodegradation process. In this sense, the numerical optimization was
performed by using the method of simplex (Nelder–Mead variant) [35]. Hence, after model-
based optimization, the best possible values of the factors, indicated by the simplex method,
were found to be C0 = 6.0 mg/L and CatDose = 0.20% w/v. Under these optimal conditions,
the calculated response was equal to Ŷ = 106 (predicted value), whereas the observed
removal efficiency (recorded at 120 min irradiation time) was found to be Y=99.86% (actual
value) for CIP pollutant degradation. The difference of about 6.14% was attributed to
the residual error between the model and experiment. This value (99.86%) for the actual
response was the maximal one observed in this study. The full kinetics profile for the
photodegradation of the CIP pollutant (Figure 10a) and MB dye (Figure 10b) under optimal
conditions are illustrated in Figure 10. For these kinetics profiles, the enhanced PFO rate
constants (k= 5.291·10−2 min−1) for CIP and (k= 4.780·10−2 min−1) MB were determined.
Speaking in terms of the half-life of the reaction (τ1/2 = ln2/k), these values of the rate
constants disclosed the half-lives of the reactions of about τ1/2 =13 min (CIP) and τ1/2 =14.5
min (MB). Additionally, these results are relevant for the photodegradation process carried
out under visible light irradiation. The technical and scientific computations for modeling
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and optimization were conducted using the Design-Expert 10 and MatLab (v.9.9.0) software
programs.
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tant (a) and MB dye (b) determined under optimal conditions (C0 = 6.0 mg/L and CatDose = 0.20%
w/v) in the presence of the most efficient catalyst, ZnO:Nd (0.1%).

Additionally, we found that ciprofloxacin was degraded by about 59% under UV light
irradiation without a catalyst (photolysis), compared to only 14% in visible light (Figure
S1, Supplementary Materials). Therefore, this study pointed out the degradation of both
pollutants in mild environmental conditions, involving no acidification of solutions and/or
the absence of H2O2, usually used to boost the photochemical reactions, and using a visible
light source. The stability and reusability of the materials with the best photocatalytic
performance (ZnO:Nd(0.1%) material) were evaluated for five reuse cycles, according to
Figure 11. For all measurements, the experimental conditions and parameters were kept
constant. After each use, the photocatalyst was recovered and dried at 80 ◦C for 12 h and
then used for the next cycle. As can be seen from Figure 11, the photocatalytic performances
of the material were relevant even after five cycles of use, which confirmed the superior
stability of the newly prepared catalyst. Good stability of the ZnO:Nd (0.1%) material was
also obtained for the MB degradation (see Figure S2, Supplementary Materials).
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ZnO:Ag (1%) 
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Vis 
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ZnO:La (2%) 
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Figure 11. Reuse tests of the ciprofloxacin pollutant degradation in the presence of the ZNd2 sample
(ZnO:Nd (0.1%)) for the five evaluations under optimal conditions.
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A comparative analysis of materials based on ZnO doped with different elements
(transition metals and lanthanides) is presented in Table 5. The photocatalytic activities
of Nd-doped ZnO are superior to pure ZnO and comparable to or even better than most
reported state-of-the-art metal-doped ZnO photocatalysts. According to the data reported
in this table, these materials have high degradation efficiencies (~100%) after 120 min
of visible light irradiation, with reaction rates reaching k = 4.780 × 10−2 min−1 for MB
dye degradation and k = 5.291 × 10−2 min−1 corresponding to CIP pollutants. Another
advantage of these systems was related to the light conditions, involving no acidification of
solutions and/or the absence of H2O2, usually used to boost the photochemical reactions.

Table 5. Comparative data of existing ZnO-based materials in the literature for the degradation of
different pollutants.

Catalyst, Dose Synthesis Method Pollutant, Initial
Concentration

Light
Source k (min−1) References

ZnO:Ag (1%)
0.2 g/L electrospinning–calcination Amaranth,

11 mg/L
Vis

(400 W) 3.229 × 10−2 [20]

ZnO:La (2%)
0.2 g/L electrospinning–calcination CR,

10 mg/L UV 2.734 × 10−2 [36]

ZnO:Sm (1%)
0.2 g/L electrospinning–calcination CR,

10 mg/L UV 1.337 × 10−2 [11]

ZnO:La (2%)/C
0.1 g/L electrospinning–calcination RhB [na] UV 4.270 × 10−2 [37]

ZnO:Nd (1%)
0.25 g/L sol–gel TC,

15 mg/L Vis 7.3 × 10−3 [38]

ZnO:Nd (1%)
2 g/L sol–gel MB,

10 mg/L
UV

(125 W) 0.158 [39]

ZnO:La (2%)
5 g/L solvothermal RhB

1.0 × 10−5 M
UV

(15 W) - [40]

ZnO:Pt (0.6%)
1.6 g/L - CIP Vis

(300 W) - [15]

ZnO:Nd (0.1%)
2 g/L electrospinning–calcination MB,

6 mg/L
Vis

(400 W) 4.780 × 10−2 This work

ZnO:Nd (0.1%)
2 g/L electrospinning–calcination CIP,

6 mg/L
Vis

(400 W) 5.291 × 10−2 This work

Note: Type of irradiation of the photocatalytic system: Vis—visible light and UV—ultraviolet light; CR = Congo
Red; TC = Tetracicline; CIP = Ciprofloxacin; MB = Methylene Blue; RhB = Rhodamine B.

According to the available literature [20,41–44], a proposed mechanism for the degra-
dation of organic pollutants (MB, CIP) in the presence Nd-doped ZnO nanostructures is
provided (Figure 12). The light of a certain wavelength is absorbed by the photocatalysts,
along with electron excitation from the valence band (VB) to the conduction band (CB).
This spawns positive charge carriers (holes, h+) in the VB of the photocatalysts. The holes
in the VB trigger hydroxyl-free radicals (OH•) from H2O molecules. Simultaneously, the
oxygen molecules are converted to oxygen radicals (O•−2 ) due to the capture of the gener-
ated electrons (e−) in the CB. Additionally, secondary reactions can occur, which produce
more OH• radicals. The generated OH• radicals trigger the decomposition of the organic
pollutants previously adsorbed on the surface of the catalyst resulting in CO2, H2O, or
other byproducts, depending on the pollutant type [41].
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3. Materials and Methods
3.1. Materials

Zinc acetate [Zn(CH3COO)2·2H2O]), neodymium (III) nitrate hexahydrate (Nd(NO3)3·6H2O),
N,N-dimethylformamide (DMF), ethanol (EtOH), polyvinylpyrrolidone (PVP) (Mw = 1,300,000),
methylene blue dye (MB), and ciprofloxacin (CIP, C6H9N3O3) were purchased from Sigma-Aldrich
(St. Louis, MO, USA) and used without further purification.

3.2. Preparation of Nd-Doped ZnO Nanostructures

Pure and Nd (0.05, 0.1, 0.5 and 1%)-doped ZnO nanostructures were obtained by the
electrospinning technique, after which they were calcined at 700 ◦C (15 ◦C/min heating
rate) for 3 h. Undoped ZnO was obtained by dissolving 0.92 g of zinc acetate and 0.72 g
of PVP in a solvent mixture of Ethanol:DMF (1:1). The doped materials were obtained
by adding different amounts (0.05, 0.1, 0.5, and 1%) of neodymium (III) nitrate to the
corresponding solution. After mixing and homogenizing the resulting solution for 12 h,
it was transferred to a needle with an inner diameter of 0.5 mm for electrospinning. The
composite fibers (PVP + salts) were developed using an electrospinning setup produced
by the Fluidnatek® LE-50 laboratory line from Bioinicia S.L. (Valencia, Spain). The main
working parameters were set at a high voltage of 25 kV, the distance between the needle tip
and the collector of 15 cm, and the feed flow rate of the electrospun solution of 5 µL/min.
A square stainless-steel sheet was used to collect the composite fibers. Afterward, the
samples were calcined for 3 h in an air atmosphere at 700 ◦C to completely remove the
PVP matrix, and the ZnO and Nd-doped ZnO nanostructures were obtained according to a
possible chemical reaction (10) (developed for the case of ZNd4 (1% Nd) as an example).
The developed materials were labeled as follows: pure ZnO (ZnO) and Nd (different
percentages)-doped ZnO→ ZNd1 (0.05% Nd), ZNd2 (0.1% Nd), ZNd3 (0.5% Nd), and
ZNd4 (1% Nd).

99Zn(CH3CO2)2 + Nd(NO3)3 + 395O2 → 100Nd0.01Zn0.99O + 396CO2↑ + 297H2O↑ + 3NO2↑
Anctionte ofanthanides

(10)

3.3. Characterization of the Prepared Materials

Characterizations of the prepared materials are provided in the Supplementary Materials.
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3.4. Photocatalytic Tests

Model pollutant photodegradation experiments were conducted using the methylene
blue dye (MB) and ciprofloxacin (CIP) drug pollutants in an aqueous solution. A halogen
lamp (400 W) was used as a lighting source, with the emission spectrum reported in our
previous study [23]. As a first step, screening tests were performed for the degradation of
MB (C0 = 10 mg/L−1) in the presence of pure and Nd-doped ZnO (catalyst dose = 0.1%w/v)
nanostructured materials. The adsorption equilibrium was established by magnetic stirring
(500 rotations/min) the catalyst and pollutant mixture in the dark for 30 min before each
photodegradation kinetics. According to the established protocol, 3 mL of degradation
solution was collected after certain time intervals, then its UV-Vis spectra were recorded
using a SPECORD 210+ spectrometer (Jena, Germany). The temperature and distance
between the light source and the reactor can influence photocatalytic activity. Thus, the
experiments were conducted at room temperature with a 30 cm distance between the
light source and the reactor. Moreover, the pH value used for all measurements was
7.0 ± 0.3. After selecting the catalyst with the best photocatalytic performance, a protocol
was developed to optimize the CIP photodegradation process based on the most important
factors (initial pollutant concentration and catalyst dose).

4. Conclusions

In this work, pure and Nd-doped ZnO nanostructures obtained by the electrospinning–
calcination method were investigated as catalysts for the degradation of MB dye and CIP
drug pollutants. The XRD analysis confirmed the crystallinity of the obtained materials
with wurtzite symmetry, without identifying any other additional compounds. The in-
vestigations showed that the different Nd content changes the mean crystallite size and
the lattice strain. The SEM measurements of pure and 1% Nd-doped ZnO nanostructures
exhibited one-dimensional worm-like nanofibers composed of interconnected nanocrystals.
The photoluminescence properties of the prepared pure and 1% Nd-doped ZnO nanostruc-
tures highlighted the presence of microstructural defects that influence the photocatalytic
response. Next, the ZnO-based nanostructures were used to photodegrade methylene blue
dye and ciprofloxacin drug pollutants from aqueous solutions under visible light irradia-
tion. First, all the prepared materials were tested to find the proper amount of the doping
element (Nd) in the ZnO structure to show the best photocatalytic performance. Therefore,
the optimal amount of the doping element (Nd) was found to be 0.1% w/w. For this, the
maximum rate constant for MB dye degradation using the Nd (0.1%)-doped ZnO (ZNd2)
catalyst was 3.482 · 10−2 min−1. For this sample, it was also found that the mean crystallite
size was the highest. Then, starting from the best photocatalyst, the synergistic effect of two
important factors such as the initial pollutant concentration (ciprofloxacin) (mg/L) and the
catalyst dose (%w/v) on the performance of the photodegradation process was evaluated
and discussed. Hence, after model-based optimization, the best possible values of the fac-
tors, indicated by the simplex method, were found to be C0= 6.0 mg/L and CatDose = 0.20%
w/v. Under these optimal conditions, the removal efficiencies (recorded at 120 min irra-
diation time) were found to be Y = 99.86% with the rate constant of k = 5.291·10−2 min−1

for CIP and Y= 100% with the rate constant of k = 4.780·10−2 min−1 corresponding to
MB dye degradation. Regarding the half-life of the reaction (τ1/2 = ln2/k), the value of
the rate constant disclosed a reaction half-life of about τ1/2 = 13 min (for CIP) and τ1/2
= 14.5 min (for MB). Likewise, the optimized material showed excellent stability in the
recovery processes without any decrease in their photocatalytic performance after five
reuse cycles.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms24076436/s1.
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